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OSCILLATION IN SECOND ORDER 
LINEAR DELAY DIFFERENTIAL EQUATIONS 

WITH NONLINEAR IMPULSES 

ZIIIMIN H E * — W E I G A O G E * * 

(Communicated by Milan Medved') 

ABSTRACT. In this paper, the second order linear delay differential equation 
with nonlinear impulses 

x"(t) + P(t)x(t-T) = 0, t > t 0 , t J: tk , k = 1 ,2 , . . . , 

*(*t) = 9k (
x(h)) , *'($) = hk (*'(h)) > fc = 1, 2 , . . . , 

is considered, where 0 < t0 < t^ < • • • < tk < . . . with lim tk = -foo, and r 
A:—»-f-oo 

is a positive constant. Some sufficient conditions are obtained ensuring tha t cill 
solutions of this equation oscillate. 

1. Introduction and preliminaries 

Recently there has been an extensive studies in the oscillatory theory of 
first order impulsive delay differential equations, see [4]-[8]. However, there are 
not much concerning the oscillatory properties of the second order impulsive 
delay differential equations and the second order impulsive ordinary differential 
equations, which is an important mathematical model of many evolutionary 
processes, see [9]-[12]. In this paper, we consider the following second order 
linear delay differential equation with nonlinear impulses 

x"(t)+P(t)x(t-r) = 0, t>t0, t?tk, fc = l , 2 , . . . , 

*(** ) = 9k (*(**)) , x'(tt) = hk {x'(tk)) , fc = 1, 2 , . . . , 

where 0 < t0 < tx < • • • < tk < ... with lim tk = -f-oo, and r is a positive 
k—> + oo 

constant. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 34C10. 
K e y w o r d s : delay differential equation, oscillation, impulse. 
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Throughout this paper, we always assume that 

(i) P€O ( (0,+cx>) , [0 ,+oo) ) , 

(ii) gk,hk G C(R, R) and there exist positive numbers ak,ak,bk,bk such 
that 

ak < ^ ^ < ak , bk < ^ ^ - <bk for all x ^ O , k = 1, 2 , . . . . 

Let J C R be an interval, we define 

PC(J , R) = {x: J —r R : x(t) is continuous everywhere 

except some tk's at which 

x(tk) and x(tk) exist and x(tk) = x(tk)} ; 

P C ( J , R) = {x G PC(J,R) : x(t) is continuously differentiable everywhere 

except some tk's at which 

x'(tk) and xf(tk) exist and xf(tk) = x'(tk)) . 

Let £0 > 0, (/> G PC([f0—r, £0], R) . By a solution of (1) we mean a real valued 

function x G P C ( [ ^ 0 - r , + o o ) , R ) nPC ; ( [* 0 ,+co) ,R) which satisfies 

(iii) for any t G [*0-r,*0], a;(*) = <f>(t), x(t£) = x 0 , x 7 ( ^ ) = ^ , 

(iv) for any t G [£0, +co) , t ^ tk, k = 1, 2 , . . . , :r(£) satisfies 

/ ( t ) + F ( ^ ( ^ - r ) = 0, 

(v) for any k = 1, 2 , . . . , *•(*+) = gk(x(tk)), xf(t+) - hk (x'(tk)). 

Let t0 be a given initial point and let (J) G PC([r;0—r, f0], R) be a gi\en 
initial function, then one can show by using the method of steps that (1) l a 
a unique solution on [r:0,+oo) satisfying the initial condition x(t) — (t) foi 
t G [t0-T,t0]. 

A solution of (1) is said to be nonosdilatory if this olution is evcntuall) 
positive or eventually negative. Otherwise this solution is aid to be oscillat 

LEMMA 1. ([1]) Assume that 

(al) The sequence {tk} satisfies 0 < t0 < ^ < t2 < • • < tk < ... i tf 
lim tk = +oo. 

k—>oo 

(a2) m G Pc7 ;(R+ , R) is left continuous at tk for k — 1, 2 . . . 
(a3) For k = 1,2,. . . ; t > t0, 

m (t) < p(t)m(t) + q(t) t?tk, 2 

m(tt)<dkm(tk) + lk 

where p, q G Cf(R+, R) , dk > 0. and bk are real constants. 
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Then 

m(t) < m(t0) TT G^expl / p(s) ds 
to<tk<t \ . 

L0 

+ / П dкexpljp{a)da)q{s)ds (4) 

t0

 s < t к < t 

+ 
ío 

._ľ П diЄXP( / p ^ á s ) ь к 
<tк<t tк<tj<t \f ) 

Remark 1. If the inequalities (2) and (3) are reversed, then in the conclusion 
the inequality (4) is also reversed. 

2. Main results 

LEMMA 2. Let x(t) be a solution of (I). Assume that there exists some T >t0 

such that x(t) > 0 for t >T and the following conditions hold 

(hi) conditions (i) and (ii) are satisfied, 
t 

(h2) lim f n ^ ds = +oo. 

Then x'(t) > 0 for te [T,t,] U [ \J(tk,tk+1]\ , where I = min{/c : tk > T}. 

P r o o f . At first, we shall prove that x'(tk) > 0 for any k > I. If it is not 
true, then there exists some j such that j > I and x'(t-) < 0. From (1) and 
(ii), we have 

x'(i+) = ^ ( x ' ( ^ . ) ) < ^ x ' ( t . ) < 0 . 

Let x'(t+) = -a (a> 0). By (1) and (i), for t <E U {tj+i-x,tj+l] we have 
+ CЮ 

Ui 
ѓ = l 

x"(t) = - P ( ť ) x ( ť - т ) < 0 . 

Hence, x'(t) is monotonically nonincreasing in (t-+i_1, t-+i], i = 1,2,... . 
So, 

x ' ( * i + 1 ) < x ' ( i + ) = - a < 0 , 

x'(tj+2) < x'(t++1) = hj+1(x'(tj+1)) < bj+1x'(tj+1) < -bj+1a < 0, 

x'(tj+3) < x'(t+

+2) < bj+2x'(tj+2) < -bj+2bj+1a < 0. 
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It is easy to show that, for any positive integer n>2. 

Atj+n)<-\J[bj^«<0. 

Consider the following impulsive differential inequalities 

x"(t) < 0 , t>tjt t? tk , k = j + 1, j + 2,... , 

x'(t+

k)<bkx'(tk), k = j + l,j + 2,.... 

Let m(t) = x'(t). Then 

m'(t)<0, t>tj, t?tk, k = j + l,j + 2,... , 

m(t+) <bkrn(tk), k = j + 1, j+ 2,... . 

From Lemma 1, we have 

I.Є. 

m(t)<m(t+) fj Ъk, 
tj<tk<t 

(5) 

(G x'(t)<x'(t+) J J bk. 
tj<tk<t 

Then, using the facts that x(tk) < akx(tk) (k = j + 1, j + 2 , . . . ) holds, by 
Lemma 1 we get 

t 

x(t)<x(tp n «*+/ n °k(*'(tt) n \)^ 
tj<tk<t \ s<tk<i ^ tj<tk. s ' 

= п 
tj<tk<t 

*(tf) 

t 

aí TJ ^ d í 
t{ i3<tk saA 

(7 

Since x(t) > 0 for t > T , the last inequality (7) contradicts (h2) of Lemma 2 
Therefore, xf(tk) > 0 for k > I. The condition (ii) implies x'(£+) > bkx

f(tk) _ 0 
for any k > 1. Because xf(t) is nonincreasing in (tk)tk+i\, it i cleai that 
xf(t) > xf(tk^) > 0 for t c ( ^ , ^ + 1 ] , k > l, and j'(t) x' tt > 0 for 
t G [T, ̂ ] . Thus the proof of Lemma 2 is complete 

R e m a r k 2. In the cas that x(t) is event tally negativ , urd^ the c ldit 
(hi) and (h2), it can be prov d s'milar y th it '(t) < 0 G T, 

+ oo \ 

U ( M A + I - ' ^ h r ' umik } 
I - I J 
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THEOREM 1. Assume that the conditions (hi) and (h2) of Lemma 2 hold and 
there exists a positive integer k0 such that ak > 1 for k > kQ. If 

t 

t
l™ / II rp^ds = +cx>> w 

t->+oo / A J L o, 
/0 t 0 < t f c O * 

£/ien e^erH solution of (1) is oscillatory. 

P r o o f . Without loss of generality, we can assume k0 = 1. Let x(t) be a 
nonoscillatory solution of (1), say x(t) > 0 for t > t0. From Lemma 2, we can 

find x'(t) > 0 for t G [*0.*i] U ( \J(tk,tk+1] J . It is clear that X ' ( £ - T ) > 0 for 

t>t0+T. 
Set 

u (*) = —+—— z-n—zr- -̂  ~ p w > lrtk 

x(t - T) 

Then, u ( t + ) > 0 for A; = 1,2,..., u(t) > 0 for t > t0. By (i) and (1), we get 

x"(t) x'(t)x'(t - T) 

x(t-r) x2(t-T) 

If tk — T £ [tk : k = 1,2,...} , then x(tt — T) = x(tk — r ) . Condition (ii) yields 
that, 

««) = ̂ S ^ = W « . (9) 

If tk — T G {tfc : k = 1, 2 , . . . } , we assume tk—T = t. for some positive integer j . 
From condition (ii), 

x(-t ~ T) = x ( ^ + ) = 9j{x(tj)) > ^jx(tj) = ajx(tk - T) . 

Since a > 1, we obtain 

u(t+) - x ' ^ < >**'(«*) < 6 ^ ' f a ) - b u ( t ) m 
U{tk } ~ x(tt - r) ~ ajX(tk - T) * x(tk - T) " W ' * > • ( 1 0 ) 

If tk + T £ {tfc : A; = 1,2,...}, then x ( t + + T) = x(tk + T) . By (ii), 

/,+ x x'(tt+T) ^ ^(tk+r) ,. \ 

"«+ T )=^fer s^fcr=" ( (*+ r )-
If tk+T £ [tk : k = 1, 2,...} , we assume tk+T = t- for some positive integer j . 
From (ii), 

-'(ĄŤ + r) < Ь^Чŕfc + r) 
-(*ř + -) = ̂ ^ ^ т ^ < ^ H 1 ^ = ^ - ( ^ + -) -
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We construct the sequences 

{t'k : keN} = {tk: keN}u{tk+T: k E N} , 

where 0 < t[ < t'2 < • • • < t'k < . . . with lim t'k = +00. Set 
k—¥+oo 

_ ( b { if ffc = *€, fc = l , 2 , . . . , 
&h 1 1 \it'k=tj+T, k=l,2,.... 

Consider the following impulsive differential inequalities 

u'(t)<-P(t), t>t0, t^t'k, k = l,2,..., 

<(fk)
+)<eku(t'k), k = l,2,.... (11) 

By Lemma 1, we obtain 

t 

u(t)<u(t0) n bk~ f n bkp(S)ds 
t0<t'k<t tQ s<t'k<t 

t 

=«(*o) n h-f n hP(s)^ (12) 
to<tk<t fQ s<tk<t 

r * 

= n h «(*0) - / n f p(5)ds 

t0<tk<t L ^ t0<tk<s h 

The last inequality (12) and u(t) > 0 contradict (8) of Theorem 1. Hence every 
solution of (1) is oscillatory. The proof of Theorem 1 is complete. • 

THEOREM 2. Assume that the conditions (hi) and (h2) of Lemma 2 hold and 
tk+i ~tk~r for all k = 1,2,... . If 

t 

*$&>[ I I j-P(s)ds = +oo, (13) 
t0 t0<tk<s k 

where 

_(b1 ifk = l, 
C* l ^ ifk = 2,3,..., 

then every solution of (1) is oscillatory. 
P r o o f . Let x(t) be a nonoscillatory solution of equation (1), say x(t) > 0 

for t > t0. From Lemma 2, x'(t) > 0 for t > t0. It is clear that x'(t — T) > 0 
for t >t0 +-T. 
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Set 

«(*) = *'(*) 
x(t - T) ' 

Then, u(tk) > 0 for k = 1,2,..., u(t) > 0 for t > t0. Using condition (i), 
by (1), we have 

If Jfc = l , 

u'(t) < -P(t), t ф tk . 

<) = ^ ) ^ = W = ̂ ) ' (14) 

If fc = 2,3, . . . , 

n+\ *'(**) ^ bkx'(h) ^ bkx'(h) bkx'(h) u \ 
u(tt) = , 2 v < / ... x < , x = ,, —r = Ct-íťt.). 

V k ' x(t+ - T) - *(«+_,) - a^Mh-!) ak_lX(tk - r) k k) 

Consider the following impulsive differential inequalities 

u'{t)<-P(t), t>t0, t£tk, A; = 1,2,. 

u(t+) < cku(tk), A: = 1,2,. . . . 

By Lemma 1, we have 

t 

«(*)<«(*0) n °k-1 n °kp(s)ds 

4^^4. ^4 " 0^4. S4 

(15) 

(16) 

*0<tfc<t to s<tk<t 

= п 
*0<*fc<t 

t 

u(*o) - í П г p ( f i ) d s 

J + . ^ 4 . ^„Ck to 
tQ<tk<s Ь 

(17) 

The last inequality (17) and u(t) > 0 contradict (13) of Theorem 2. Hence every 
solution of (1) is oscillatory. The proof of Theorem 2 is complete. • 

From Theorem 1 and Theorem 2, we can immediately obtain the following 
corollaries. 

COROLLARY 1. Assume that the conditions (hi) and (h2) of Lemma 2 hold 
and there exists a positive integer kQ such that ak>l, bk < 1 for k > kQ. If 

t 

lim / P(s) ds = +oo , 
t->+ooj v 7 

to 

then every solution 0/(1) is oscillatory. 
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Proof . Without loss of generality, let k0 = 1. Since bk < 1, we have 

t tn + l 

lim / TT ^P(s) ds = lim / TT ^P(s) ds 
t->+oo / LL bu n->+oo J L± bu 

t o t0<tk<s k £ t0<tk<s k 

n ti+1 

-JJE-E/ II rf(^» 
i=0 *+ t0<tk<s * 

i=0 t0<ifc<tt+i * ^ 

n t t + 1 

> lim V / P(s) ds 
"" n-»+oo - ^ / 

tn + l 

= lim / P(s) ds = +00 . 
n->+oo J 

ti 
In view of Theorem 1, we find that every solution of (1) is oscillatory. • 

COROLLARY 2. _4ssurae that the conditions (hi) and (h2) of Lemma 2 hold 
and there exist a positive integer k0 and a constant a > 0 such that ak > 1. 
£ > ( ^ ) Q fork>k0.If 

t 

lim / saP(s) ds = +00 , 
t-»+oo J 

to 

then every solution 0/(1) is oscillatory. 

Proof . Without loss of generality, let k0 = 1. We have 

1 n U+1 

lim / FT ^-P(s) ds = lim Y TT ^- f P(s) ds 
t->+oo / 1L b. n-> + oo ^ J---- b, / W 

/0 *o<*fc<s k z=0 t0<tk<ti+1 k •/_ 

n U+1 

- t „ i & o ^ E ^ i / ^ ) d -
z = l . 
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ti + l 

> lim - = - > ' / " saP(s) ds lim -i Y í saP(s) 
- S + 
*n + l 

= lim -i- í sQP(s) ds = +00 . 

In view of Theorem 1, we can see that every solution of (1) is oscillatory. • 

COROLLARY 3. Assume that the conditions (hi) and (h2) of Lemma 2 hold 
and tk+1 ~tk=r for all k = 1,2,... . Suppose that there exist a positive integer 
k0 and a constant a > 0 such that ^- > (-7^) for k>k0, where 

cŁ = | =k- if k = 2,3,.. . 

// 

t 

lim / 5 a P ( s ) ds = +00 , 
t-> + oo J 

to 

then every solution 0/(1) is oscillatory. 

Corollary 3 can be deduced from Theorem 2. Its proof is similar to that of 
Corollary 2. Here we omit it. 

EXAMPLE 1. Consider 

x"(t) +-l-x(t-1) = 0, * > § , * ^ 2 \ fc = l , 2 , . . . , 
(18) 

*((2*)+) - ^ f ^ x ( 2 * ) , s'((2*)+) = *'(2*), fc = l,2 

where a, = afc = ^ , 6fc = 6, = 1, P(*) = ^ , t0 = | , tfc = 2 \ 
fc = 1,2,... . Obviously, the condition (hi) of Lemma 2 is satisfied and 
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+00 

f n ^ d S = 
*->+c 

t _ +00 

lim f П ~ d s = í П ^7ГZÌld5 

++00 J tJ^. «* J 3 " 2(fc + -) 
ł o to«fc<« * Ҙ § « * < 

t l t 2 

- / . П - Ï T Ï У W . П itïTïT* 
Ҙ §<tfc<5 ,+ §<tfc<5 
2 Ч 

*3 t 4 

Let fc0 = 1. Then 

and 

+ / . n 5 - T i j W . n - Í T Í J ^ 
+ §<tfc<5 + §<*fc<5 ' 

r 2 l 3 

= | + i x l x 2 + ( i ) 2 x l x | x 2 2 

+ G ) 3 x ^ x ! x ! x 2 3 + - - = + o ° -

+OO +OO 

/ P W d t = / f r n l d i = + 0 ° ' 
3 3 
2 2 

By Corollary 1, every solution of (18) is oscillatory. 
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