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Moth. Slovaca 30,1980, No. 4,351—361 

ON EXTENSION OF MAPS WITH VALUES 
IN ORDERED SPACES 

PETER VOLAUF 

The aim of this paper is to present an extension of maps defined on a lattice A 
and having their values in an ordered commutative group G. Following [5] we 
postulate properties of the lattice A in such a way that theorems about the 
extension of measures and the Daniell integral are obtained as consequences of the 
main theorem. 

The construction is a modification of the well-known Daniell scheme which, 
modified in another way, has been used also in [1]. In his paper [1]D. H. F r e m l i n 
gave a direct proof of the Matthes—Wright integral extension theorem which states 
that the condition of weak a-distributivity of the range of an integral is necessary as 
well as sufficient. 

After our presentation of the general construction we derive several results from 
the main theorem and discuss the relation of the conditions weak a-distributivity 
and #-regularity in the case of a-complete vector lattices. 

Notations and notions 

An ordered commutative group G is a commutative group with a reflexive, 
antisymmetric and transitive relation connected with the group structure of G by 
the condition: x^y implies x + z ^y + z for all JC, y and z in G. A group is said to 
be monotone complete (a-complete) if, for each upper bounded, upward directed 
family (xK) in G (monotone increasing sequence (xn) in G), there exists a least 
upper bound VJCA (v^„) in G. 

In analogy with the notion of the order separable Riesz space ( = vector lattice) 
we call an ordered group G o-separable if every non-empty subset EczG 
possessing a supremum contains an at most countable subset possessing the same 
supremum as E. It is clear that the monotone a-complete commutative group G is 
Archimedean. When an ordered group is a lattice group, then a-completeness 
implies not only that it is Archimedean but also commutative. 
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In [7] we introduced the notion of the regularity of a lattice group, but this notion 
has a meaning also in an ordered group. We recall that a monotone a-complete 
ordered commutative group G is said to be regular if there holds: If (a„,J„iJk€N is 
an order-bounded double sequence in G such that an,*\0 (k-> <») for each neN, 
then there exists ^ e r f 1 (<p0:N-»N is a function) such that the sequence 

( 2 a* vo(n)) is bounded from above and if b e G, b ^ 0 is an element for which 
\ „ = 1 / meN 

bs£ V (E««.«><»>) f o r a» <peNN, then 6 = 0. 
m = l \ „ = 1 1 

As the notion of regular Riesz spaces ( = regular vector lattices) is reserved for 
Archimedean Riesz spaces possessing the diagonal property or another equivalent 
property, see § 70 [3], we shall call a vector lattice, resp. a partially ordered vector 
space V, #-regular if the group (V, + ) is a regular in the above sense. 

Examples 

There are many spaces which are regular groups, resp. #-regular vector lattices. 
Here are several of them: 

(a) Real numbers, or course, resp. Rn with a pointwise ordering. 
(b) a-complete regular Riesz spaces, o -convergence is stable and such spaces 

have the a-property, in other words, every sequence of a-convergent sequences 
has a common regulator of convergence (§ 5, Ch. 6 [8]). If an, k\0 (k-**>) for each 
n eN and u is the common regulator for (a„,*), then for every positive real 8 there 

c 

exists <p eNN such that a„,<P(„)
:^^r u and we obtain b ^ew for all E > 0 , assuming 

that b is a lower bound of j V ^an,<p(n)'-(peNN\. 
[m=i„=i J 

(c) Let s be the Riesz space of all real sequences and the ordering is 
coordinatewise. Let F be the space of all real sequences having only a finite number 
of non-zero terms. Since F is an ideal in s, o -convergence is pointwise. If c eF 
bounds the double sequence (fl„,k)n,keN, an,keF9 n,keN, such that a„,*\0 
(&--> oo), the problem is reduced on a finite number of coordinates and so F is 
#-regular. It is well known that F has not the a-property, i.e. is not a regular Riesz 
space. 

As a next example of a non regular Riesz space which is g-regular is the space 
Lp+0, p real, p>\ see for a detail discussion §6 Ch. VII. [8]. 

(d) Every commutative, a-complete, linearly ordered group G is regular. 
Example of a regular group which is not a lattice group is the multiplicative group 
G of reals with ordering ^ associated with a semigroup {xeGix^l in natural 
ordering}, i.e. x^y iff y . jc_1iSl. Note that this ordering is not directed. 
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II 

Construction 

In this part of the paper we consider a relative a-complete and cr-continuous 
lattice X in which there are given two binary operations + and /, satisfying the 
following conditions: 

(i) + is commutative. 
(ii) If x,y, zeX, x^y, then x + z^y + z, x/z^y/z, z/y^z/x. 

(hi) If xn,yneX, n=0, 1, 2, ..., xn/x0, yn/y0, then xn+yn/x0 + y0 and 
xjy0/x0ly0. 

(iv) If xn eX, n = 1, 2, ..., xn\x0, y eX, then y/xn/y/x0. 
(v) If x, y eX and x^y, then y =x +y/x. 

It is clear that a cr-complete Boolean algebra or a a-complete Reisz space are 
examples of the given structure. The interpretation of operations + and / is evident 
in both cases. Now we start with a triple (A, T0, G), where 

A denotes a sublattice of a lattice X which is closed under the operations + , / 
and members of A dominate the elements ofX, i.e. for all xeX there exist 
elements u,v eA such that u^x^v, 

G denotes a monotone complete, o-separable, regular group and 

To: A —> G is a map satisfied 

(i) If x^y, then T0(x)^T0(y) and T0(y) = T0(x) + T0(y/x). 
(ii) If x, y e A , then T0(;t) + T0(y) = T0(xvy) + T0(x Ay) and T0(JC + y) ^ 

T0(x) + T0(y). 
(hi) If xn eA, n = 1, 2, ..., xn/x0 in X, then T0(x0) = vT0(xn). 

Let us denote 

A, = {y eX: 3(xn)neN in A, xn/y in X } . 
A2 = {yeX:3(xn)neN in A, xn\y in X } . 

Just as in [5] def. 5 we find that T0 may be extended to A ^ by writing Ti: A i -» G, 
Ti(y)= vT0(xn), whenever (xn)neN is sequence in A increasing to y eAx. 

Observe that the supremum of (T0(jt„))neN exists; as y is dominated by some 
v e A, so does T0(v) bounds (T0(xn))neT*. It is easy to see that the map T{ has the 
following properties: 

(i) Ti is unambiguously defined and is a monotone map. 
(ii) If x,yeAu then Tl(x) + T1(y) = Tt(xvy) + Tx(xAy) and Ti(* + y ) ^ 

Ti(x)+T!(y) . 
(iii) If xneAx, n = \, 2, ..., x0eX and xn/x0 in X, then Jc0eAi and Tx(x0) 

= vTi(xn). 
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We define T*:X-+G 
T*( jc)=A{Ti(y) : jc^yeAi} . 

The infimum always exists because the set { T i ( y ) : x ^ y e A J is bounded from 
below and downward directed (Ax is a lattice and Tx is a monotone map). 

Proposition 1. The map T* has the following properties: 

(i) T* is an extension of T0 and T* is an increasing map. 
(ii) Ifx,yeX,thenT*(xvy) + T*(jcAy) ^ T*(x)+ T*(y) and T*(x + y ) ^ 

T*(JC) + T*(y). 

(Hi) IfxneX, n = l,2, ..., xeX, JC„/JC in X, then T*(x) = vT*(xn) 

Proof. We prove only (iii). It is clear from (i) that T*(JC) ^ T*(JC„). G is 
o -separable and hence there exist sequences (jcn, k)k €N, xn, k e A u n, k e N such that 
for every n e N x n , k ^ x n , k + l for all k e N a n d (Ti(*n,fc) - T*(jcn))\0 (k—><x>). Let 
cp e NN. Using mathematical induction and the properties (i) and (ii) of Tx we have 

/ m " i - 1 

T,( V^n.cp(n)) ^ Ti(xmtq>(m)) + X (Ti(xn,„<„>) - T*(xn)). From this we obtain 
^n=l n = l 

TJ V*.. ,•<->) = T.( V*-.-<->) - T*(JC„) + r*(jcm)_i £ [T0c„.„(„>) - r*(*.)] + 
^n=l / \ n = l / n = l 

+ T*(JCW), 

and so 
° ° / m v o o / . w \ o o ' 

Vr. V~. .« . .«V 2lJ'.(-.,. (. ))-T*(jt,)]+vr ,W-
m = l \ n = l / m = l V n = i / n = 1 

We have 

0 ^ T * ( J C ) - V T * ( x n ) ^ T ! ( V j c n ^ ( n ) ) - \ /T*( jc n )^ 
n = l \ n = l / n = l 

=s V r.( V*-.,<-> - VT*(X.)« V(2lr«(*-.»<-))-r*(*.)l) 
m = 1 \ n = 1 - n = l m = 1 ^ n = 1 ' 

and with respect to the regularity of G, T* ( JC)= VT*(JC„). 

Proposition 2. 
(a) Let x^y, xeA (xeAu resp. jceA2) , yeA{, then T*(x) + T*(y/jc) 

= Ti(y). 
(h) If xn eA 2 , n = 1, 2, ..., xn\x in X, then T*(x) = AT*(JC„). 

Proof. 
(a) Let xeA, uneA, un^x, n=^l, 2, ..., w n / y , ye A,. We have T,(y) 

= vT0(wn)and TO(JV) + T0(un/x) = T0(un) with respect to (i) from preporties of 
T0. Now ujx/ylx and T0(x) + T t y / x ) == T,(y). Let JC e A, and jcn e A , n = 1, 2, 
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..., xn/x. T*(ylx) ^ T*(ylxn) = T,(y) - T0(JC„), which implies T,(x) 
+ T*(ylx) ^ Tx(y). Finally, let xeA2. There exists a sequence (xn), xneAx, 

JC„\JC and T*(x) = AT,(JC„) (G is o-separable). Since x^y eAx, we can manage 
xn^y, n = \, 2, ..., and result follows from the above. 

(b) We can put x0eA, x0^xx. Now we have x0lxn/x0/x and T*(x0/x) 
= vT*(x0/xn) = v(T*(x0) - T*(xn)) = T*(x0) - AT*(xn) , using Prop. 1 (iii). 
According to (a) T*(JC0/JC) + T*(x) = T*(JC0), and so result follows. 

Denote by L the set of all xeX for which 

v{T*(y):x^yeA2} = A{T*(z):x^zeAl}. 

Proposition 3. 
(a) IfxeL, yeX, x^y, then T*(x)+T*(y/x) = T*(y). 
(b) If xn eL, n = l,2, ..., JC„\JC in X, then T*(x) = AT*(JC„). 

Proof. 
(a) Let x eA2, yxeAu y ^ y , . With respect to Prop,2 (a) T*(y/jc) ^ T*(y,/jc) 

= T*(y,) - T*(x) and T*(x) + T*(y/x) ^ T*(y). IfxeL, we have for all u eA2, 
u^x T*(y/x) ^ T*(y/u) ^ T*(y)-T*(u) according to the above. 

We omit the proof of part (b) as a consequence of part (a) and Prop. 1. (ii), (iii). 
Let K be a subset of X. K is said to be a a-monotone subset of X if K contains 

suprema and infima of convergent monotone sequences of elements of K, i.e. if 
(JC„) is a sequence in K, x eX and xn/x, then xeK and dually. 

We shall prove in the next Proposition that L is a a-monotone subset of X. 
Denote by Z the intersection of all a-monotone subsets of X which contain A. 

Proposition 4. L is a o-monotone subset of X, and so ZczL. Z is, in fact, the 
smallest o-monotone subset of X which contains A. 

Proof. We shall prove only that L is a a-monotone subset of X. It is clear that 
L contains A . According to Prop. 1 (iii) if xn eL, xn/x in X, we have x eL. Let 
yn eL, yn\y in X. T*(y) = AT*(yn) with respect to prop. 3 (b). It is sufficient to 
show that T*(y) = v{T*(u):y^ueA2}. 

We use dual arguments as in the proof of (iii) Prop. 1. Let un,keA2, un,k ^ 

w„,*+, ^ yn, n,keN such that \/T*(un,k) = T*(yn). For all (peNN we have 
k = \ 

T*(y)-v{T*(u):y^ueA2}^T*(y)-T*(A /\un,v(n))^ 

\m = ,„ = , 

° ° / m \ . o o / m \ 

^T*(y)- AT* A "*,.<«,= V(T*(y)-T* A «„,.<»>)^ 
m = \ \„ = , / m = \ \„ = , / 

^^(itr^yj-r*^,^,)]) . 
m = \ \„ = 1 / 
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Since T*(yn) — T*(un,k))\0 (£-»<») for all n e N and G is a regular group, the 
result follows. 

Denote by T the restriction of T* to Z . 

Theorem 1. The set Z is a sublattice ofX. The map Tis the extension of T0and 
has the following properties: 

(i) Ifx,yeZ,x^y, then T(x)^T(y), T(x)+T*(y/x)=T(y). 
(ii) If x,yeZ, then T(xvy)+T(xAy) = T(x) + T(y) and T*(x + y) ^ 

T(x) + T(y). 
(Hi) Tis continuous from above and below, i.e. if xn eZ, neN, x eX, xn/x in 

X, then xeZand T(x) = vT(xn) and dually, 
(iv) If T.Z-^G is a map which satisfied (Hi) and is the extension of T0, then 

I = T. 
Proof. Denote by Bx = {yeZ:zvy, x/\yeZ, T(x) + T(y) = T(xvy) 

+ T(xAy)}, where xeZ. Since Bx is a a-monotone subset of X and contains A, 
Bx ZDZ. (i) is evident, (ii) has just been proved, resp. Prop. 1. (ii); (iii) is clear from 
the definition Z and Prop. 1 (iii), resp. Prop. 3 (b). Finally {xeZ: I(x) = T(x)} is 
a a-monotone subset of X and contains A which implies (iv). 

R e m a r k 1. The latest Theorem is a generalization of Theorem 7 in [5] in two 
directions. We abandon the two structures of the range of the map — a linear and 
a lattice one. On the other hand if we consider the Reisz space as the range of the 
map the examples in (c) part I show that our assumptions are weaker than the ones 
in [5]. 

I l l 

Consequences 

As the first consequence of Theorem 1 we obtain the theorem about an 
extension of monotonic group homomorphisms. A mapping / from one /-group H 
to another G is called a monotonic homomorphism if it is a group homomorphism 
and preserves an ordering, i.e. if x^y inH, then f(x)^f(y) in G. 

We shall work with a-complete /-group. It is known that they are commutative, 
Archimedean, relatively a-complete and a-continuous lattices. Let H and G be 
a-complete /-groups and / be a monotonic homomorphism from H to G - f is said 
to be sequentially smooth if (xn)neN, xn eH, xn\0 implies / ( x n ) \ 0 in G. 

Theorem 2. Let Hbea o-complete l-group and G be an o-separable and regular 
l-group. Let A be a sub l-group of H such that every element of His dominated by 
some element of A. Let f0 be a monotic sequentially smooth homomorphism from 
A to G. Then there exists a sub l-group B of a group H which is a a-monotone 
subset of H and a monotonic homomorphism g from B to G which is an extension 
of /0 and sequentially smooth. 
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Proof. Arguing as in Theorem 23.6 page 129 [3], it can be verified that the 
a-complete 0-separable /-group G is a complete /-group. From now on observe 
that all assumptions of the construction of part II are fulfilled, interpreting the 
binary operation / as the minus in /-group, i.e. xly: = x + (—y). We can put B=Z, 
where Z is the sublattice from Theorem 1 and define by g the restriction /* to B 
(/* is an analogy of T*). Now we have to prove that B is a subgroup of H and g 
preserves +. 

From the properties of /* we have /*(.*) +/*(y) -̂  f*(x + y) for all x, y e H. We 
show the reverse inequality for the elements x,y eB. There exist sequences (JC„), 

(yn) in A2 such that xn^x, yn^y, for each neN, f*(x) = vf*(xn), /*(y) 
= v/*(y„), because G is o-separable. 

According to Prop. 2 (b) we have f*(xn)+f*(yn) = f*(xn +yn) for each neN. 
Finally/*(;c) + /*(y) = v(f*(xn)+f*(yn)) = vf*(xn+yn) ^ / * ( x + y ) . The fact 
that B is a subgroup of H follows without difficulty. 

As the second consequence of the main theorem is the theorem concerning an 
extension of a measure defined on an algebra si and having values in an ordered 
group G to a measure on the smallest a-algebra containing si. 

Let m be a set function on an algebra si of subsets of a fixed set Y and having 
values in a mono tome a-complete, comutative group G.m'vs said to be a measure 
on si with values in G iff 

(i) m(A)^0 for every A est, m(0) = O. 

(ii) m(A)=\/ I ̂ m(An)) for every disjoint sequence (An) of elements si 
k = l \ n = l / 

whose union is A. 
It is easy to observe that a measure m has the following properties : 
(iii) m(A)^m(B) whenever A, Besi, A czJB. 
(iv) m(A) + m(B) = m(AuB) + m(AnB) for every A, B esi. 
(v) m is continuous from above (below) on si. 

Theorem 3. If m is a measure on an algebra si with values in a monotone 
complete, o-separable, regular group G, then m has a unique extension m* on 
a o-algebra &* generated by an algebra si. 

Proof. We use result from part Ii in an obvious way. The system 2Y with set 
theoretical operations u , n and - (set theoretical difference) has all the properties 
of the lattice X from part II. It is clear that a measure m, resp. an algebra si, have 
the properties of T0 and A in part II. Consider the system Z from Theorem 1. Z is 
a a-monotone system and the extension m* of m has all the properties of 
a G-valued measure on Z. By its definition Z is the smallest monotone system of 
sets which cantains si, i.e. the smallest a-algebra containing si. 

Remark 2. The above result should be compared with Theorem 3 in [7], where 
the method of measurable sets was used. The case vector valued measure is 
discussed, in fact, at the end of this paper. 
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In his paper [1] D. H. Freml in , using a direct method, proved the well-known 
Daniell integral scheme for a linear map T, whose domain is a Riesz subspace F of 
a Dedekind a-complete Riesz space E and having values in a weakly a-distributive 
Dedekind a-complete Riesz space G. 

Let G be a Dedekind a-complete Riesz space. Then G is said to be weakly 
a-distributive if and only if whenever (an,k)n,keN is an order-bounded double 
sequence such that an,k\0 (k—>oo) for each n e N , then 

A\\/an^(n):(pe1N™} = 0. 

First let us formulate our result of an extension of a linear map having values in an 
ordered vector space V and then consider the condition of g-regularity in case 
when V is a Riesz space. 

Theorem 4. Let X be a Dedekind o-complete Riesz space and A be a Riesz 
subspace of X such that every element of X is dominated by some member of A. 
Let V be a monotone complete, o-separable and g-regular vector space. Let 
T.A-+V be linear, monotone and sequentially continuous. Then T has an 
extension T* to a linear, monotone and sequentially continuous map from Z to V, 
where Z is the smallest o-monotone sublattice of X containing A. 

Proof. The above assumptions imply that we may use the result of Theorem 1. 
It will be sufficient to realize that the extension T* is a linear map and Z (the 
a-monotone sublattice of X from Theorem 1) is a vector subspace of X. The 
desired result follows from the fact that for real a > 0 r*(ouc) = aT*(x) , for all 
xeA\uA2 and T*(—x) = - T * ( x ) for all xeZ, resp. T* is additive on Z . 

Let us discuss the conditions of g-regularity and weak a-distributivity of a Riesz 
space V. 

Let (an, k) be an order-bounded double sequence in V such that an, k\0 (k —> oo) 

for each neN. Since for each qoeNN V ( 2fl«.<p<n>) = Vfln.vdu, ^-regularity 
m = \ \n = \ > n = \ 

implies weak a-distributivity of V. 
Conversely we prove that if V is weak a-distributive, then V is relatively 

g-regular, i.e. if whenever (an,k) is an order-bounded double sequence in V such 
that a„,*\0 (k—>oo) for each rzeN and such that there exists (p0eNN that 

(
m x r oo / m v A 

]£fln,«p„<n>) is bounded, then A V ( 2 ^ * .*<«>) :(P e N f = 0 -
n = l / m e N ( m = 1 \ „ = 1 / ) 

Let c be a positive element in a Dedekind a-complete Riesz space V. Denote 
V[c] = {b e V: -ac^b^ac, real a > 0 } . It is obvious that V[c] is also 
a Dedekind a-complete Riesz space and has an order unit c. By the fundamental 
Krein—Kakutani vector lattice representation theorem there exists a compact 
Hausdorff space 5 such that V[c] is isometric and lattice isomorphic to C(S). It is 
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well known that in this case (C(S) is a-complete) 5 is totally disconnected and the 
closure of a countable union of clopen subsets of 5 is clopen. The proofs of the 
following lemmas are known and therefore may be omitted (see [10]). 

Lemma 1. When C(S) is a Dedekind o-complete and (fn) is a sequence in C(S) 
which is bounded below, then 

i[seS:mffn(s)>(Afn)(s)} 

is a countable union of closed nowhere dense Bake sets. 

Lemma 2. If C(5) is weakly o-distributive, then each subset of the union of 
a countable family of closed nowhere dense Baire sets is nowhere dense. 

Proposition 5. When a Riesz space V is weakly o-distributive9 then V is 
relatively g-regular. 

Proof. Let (a„, fc) be a double sequence in V bounded by an element ceV. Let 
m 

an, k\0 (k —> oo) for each n e N, (p0eNN and deV such that d^^an, <Po(n) for all 
n = l 

m eN. V[c vd] may be identified with C(S), where C(S) is weakly cr-distributive. 
Denote by ^ a system of all clopen subsets of S. Let e e V , e ^ 0 b e a lower, bound 
of 

{vfX,<n>:<peNN 

We have ee V[cvd]~~C(S). Let e^O, i.e. (after identification) there exists an 
x0eS, e(*0)>0. S is totally disconnected, then there exist e > 0 real and C e ^ , 
C ^ 0 such that e %c(x)^e(x) for all xeC. an,k e V[cvd] ~ C(S) for all 

n, k eN. Since j \ a„,fc = 0, according to Lemma 1 there exist Baire sets A„ such 
k = \ 

that a„,fc(jc)\0 (k—>oo) for all xeS—An. Let A = [jAn. With respect to 
„=i 

Lemma 2 A" (the closure of A) is nowhere dense. Let G =£ 0, G e <£, G <-= 
C-A~. Sequences of continuous functions (a„,fc)fc6N, monotonously converge on 
G, pointwise so, by Dini's theorem the zero function is the uniform limit of 
(an,k)keN for each neN. For every n e N there exists qp(n)eN such that cp(n)^ 

(fo(n) and an,<r(n)(x) ^ -^TT for all x e G. Hence 2 «n,„<*)(*) ^ ~ for all x e C,. 
L „ = i Z 

On the other hand a set 

B = \xeCx:(\l ^an,<p(n))(x)>^an,<p(n)(x)\ 
I \ m = l n = 1 / n = 1 j 
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is nowhere dense, according to the lemmas above. In this way there exists 
a non-empty C2e

c€, C2<=Ci-H~. We have 

V 2>»• *<«>)(x)=^an, (p{n)(x)^-<e(x) 
m=\n = \ / n = \ - -

for all x e C2, a contradiction. 
R e m a r k 3. A simple example shows that we cannot prove more because the 

space m of all bounded real sequences with coordinatewise ordering is weakly 
a-distributive but not g-regular. Indeed, if b e m , denote by 6(1), 6(2), 6(3) , . . . its 
coordinates. Hence b = (6(1), 6(2), b(3), . . .). Now we can set 6*(0 = 0 if i<k and 
bk(i)=\ whenever i^k. It is clear that bk\0 (k—»°o) in m but if we define 

an,k = bk for all n e N , we have a sequence ( 2 a"-<*><">) unbounded for all 

(?eNN 

R e m a r k 4. There are several papers discussing an integral with values in 
ordered spaces, however, from other points of view. See, for example [9], [4], [6]. 
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О ПРОДОЛЖЕНИИ ОПЕРАТОРОВ С ЗНАЧЕНИЯМИ 
В ПОЛУУПОРЯДОЧЕННЫХ ПРОСТРАНСТВАХ 

Петер Волауф 

Резюме 

В первой части излагается общая теория — продолжение огератора определенного на 
подмножестве А можества X со значениями в регулярной л-фуппе Г (а-полная л-фуппа Г 
называется регулярной, если выполняется: 

c^a„,k\0(k-»«>)n = 1,2,3, ..., Ф л (V5>.,W<P 6^1 = 0). 

Следствием этой теории являются теорема о продолжении изотопного гомоморфизма а-полной -
л-фуппы X в регулярную л-фуппу Г, теорема о продолжении интефала Дакиела и теорема 
о продолжении меры со значениями в герулярной л-фуппе Г. В последней части работы 
выясняется условие регулярности в том случае когда Г линейная структура. 
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