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BOUNDED OPERATORS ON NON-ARCHIMEDIAN 
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(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. The single mos t importan t fact underlying the theory of infinite 
dimensional Hilbert spaces is embodied in the projection theorem: every orthogo
nally closed subspace is an orthogonal summand. A hermi t ian space which enjoys 
this property is said to be orthomodular. Besides the obvious Hilbert spaces, there 
do exist other infinite dimensional orthomodular spaces, examples of which have 
so far only been constructed over complete fields with a non-archimedian valu
ation. In this article, we study bounded linear operators on such spaces, many 
features of which are found to diverge sharply from those of bounded opera tors in 
the classical Hilbert space setting. In par t icular, we cons truc t an operator alge
bra of von Neumann type that contains no orthogonal projections at all. For this 
algebra a represen ta t ion theorem is derived, which implies that it is commu ta t ive. 

Introduct ion 

Orthomodular spaces are generalizations of Hilbert spaces. More precisely, 
let E be a vector space over an arbitrary skew field endowed with a hermitian 
form <£. Then (E, $ ) is called orthomodular if 

U C E, U1-1- = U = > E = U®U± (P) 

holds true. If dimE < oo, then the "Projection Theorem" (P) is simply equiv
alent to anisotropy of the form $ and is therefore not interesting. In the infinite 
dimensional case, in which (P) is a very strong requirement, the classical exam
ples are the real, complex and quaternionic Hilbert spaces. Although for a long 
time no other examples were known, in 1979 new kinds of infinite dimensional or
thomodular spaces were discovered. All such spaces are constructed over certain 
complete fields with a non-archimedean valuation and are endowed with a natu
ral non-archimedean norm with respect to which they are complete. Since they 
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were first introduced in [Ke], many aspects of these spaces, such as, for example, 
Clifford algebras, measures and orthogonal groups, have been investigated. 

The purpose of this paper is to initiate a study of bounded linear operators on 
non-archimedean orthomodular spaces. In spite of numerous analogies betwreen 
such operators and their classical counterparts, some striking differences surface. 
These deviations from the classical theory arise principally because the base field 
is never algebraically closed, and the underlying geometry diverges sharply from 
that of Hilbert spaces. We will make manifest some of the salient new features 
by closely examining a particular example. 

In §1, we summarize preliminary material on valuations and non-archimed-
ianly normed spaces. In §2, we outline the construction of the orthomodular 
space E under consideration. After establishing a few general results in §3, we 
introduce in §4 a particularly interesting bounded self adjoint linear operator 
A: E —> E. It turns out that, although the spectrum of A consists of the single 
point 1, this number is not an eigenvalue of A, and we shall prove that A, in fact, 
possesses no invariant closed subspace at all. Even though these properties of A 
mean that no satisfactory spectral theory for such operators is to be expected, 
the basic idea of spectral decompositions, namely the expression of complex 
operators in terms of a family of simpler ones, is not to be abandoned. Indeed, 
we shall give such a spectral-type representation for the operators in the von 
Neumann algebra A = {A}' = {B \ BoA = i o 5 } , which is studied in §5; this 
representation will allow us to derive the surprising fact that A is commutative 
and, in fact, an integral domain. 

1. Preliminaries 

1.1. Valuation. 

Let IT be a field and T a totally ordered abelian group, written additively. 
A map 

v: ivT^ru{oo} 

is called a Krull valuation provided that, for all £,77 E K, 

(i) <j(0 = oc <=* f = 0, 
(ii) v(£ri) = v(€) + v(ri), 

(hi) v(£ + r])>mm{v(£),v(ri)}. 

Here we adopted the usual conventions that 7 < 00 and 7 + 00 = 00 for all 
7 E r . The valuation v gives rise to a field topology on K defined by taking 
{U£ I e E T } , where U£ := {£ E K | v(£) > e } , as a neighbourhood base of 
the point 0 E K. Notice that a sequence (&)^N in K converges to 0 in the 
valuation topology if and only if v(&) —> 00. 
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1.2. Non-Archimedian norms. 

Let E be a vector space over a field K and v: K —> T U {00} a valuation. 
A map 

||. || 1 £->ru{co} 

is called a (non-archimedian) norm provided that, for all x, y £ E and all £ G K 

(i) \\x\\ = 00 -<=>- # = 0, 

(ii) \\tx\\ = 2U(0 + NI , 
(hi) \\x + y\\ > min{|jxj | , | |y | |}. 

The corresponding norm topology on E is obtained by taking the sets V£ := 
{x e E I ||x|| > e} (e E T) as a neighbourhood base of 0 G E. 

1.3. Definite spaces. 

Consider a vector space E over a valued field (K, v), char if =£ 2, endowed 
with a non-degenerate, symmetric bilinear form $ : E x E -^ K. For x e E we 

let jY(x) := U($(x,x)) and we ask whether N is a norm. Conditions (i) and (ii) 
in 1.2 are certainly satisfied, however, (hi) may fail. 

LEMMA 1.1. ([Kii]) Assume that v(2) = 0. The following conditions are equiv
alent: 

(i) VxђyЄE 

(ii) \/xђy Є E 

(iii) \/xђyeE 

N(x + y) > min{iV(.r), N(y)} ( "triangle inequality"). 

x±y => N(x + y) = min{N(x),N(y)} ("Pythagoras"). 

2v($(x, y)) > N(x) + N(y) ( "Cauchy-Schwarz"). 

If one (and hence all) of the conditions (i), (ii), (iii) in Lemma 1.1 is satisfied, 
we say that (E7, $ ) is a definite space over (K, v). Notice that a definite space 
is always anisotropic. For, if E contains an isotropic vector x ^ 0, then, by 
non-degeneracy, there exists an isotropic y 7̂  0 with $>(x,y) = 1 in which case 
(iii) certainly fails. 

Thus, if (E,$) is definite, then N(x) = v($(x,x)) is a norm on E (and 
conversely), and we shall often write " | |x | | " instead of aEV(x)". 

2. Construction of the orthomodular space (E,$) 

In this section, we summarize the construction of our non-classiccil ortho-
modular space. For detailed proofs, we refer to [Ke] and [G-Kii]. The original 
reasonings in [Ke] are in the framework of ordered fields, in [G-Kii] these argu
ments are transferred and generalized to valued fields. 

We let N : = { 1 , 2 , . . . } and N 0 : = { 0 , 1 , . . . } . 
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2.1. The value group. 
For j G N let Tj be an isomorphic copy of the additive group Z of integers 

and let T be the direct sum. 
oo 

F : = © TJ = P l © P2 © ' ' * © r n © ' ' ' • 
J = l 

Thus T consists of all sequences 7 = (qj)j^N with ^ G 1̂ - for which {j G N | 
c/̂  T~- 0} is finite. We order T antilexicographically, that means, if 0 ^ 7 = 
(qj)jGN £ T and fc := max{j G N | c/j ^ 0} , then 

7 > 0 in T ^=> gfe > 0 in Tk . 

2.2. The base field. 
We start with the field K0 := R(X;) i G N of all rational functions in the 

variables Xi, X 2 , . . . , Xn,... with real coefficients. We define a valuation v0 : 
K0 - ^ T U {co} as follows. 

(a) v0 is trivial on R, i.e., vn(0 = 0 for 0 ^ £ G R; vn(0) = co . 

(b) Suppose that p £ K0 is a monomial with coefficient 1, say 

H = X{1X? ...Xs^ , where *i > 0 , . . . , sm > 0 . 

Then we let 
vo(p) := ( -« i , -«2 , • • •, - s m , 0 , . . . ) . 

Notice that, if two such monomials p and p' are different, then v0(p) 7̂  

I>O(M')-

(c) If p e K0 is a polynomial, say 

P = cro/io + aiMi H h a ^ s , 

where a0, a i , . . . , as G 1R and /xo, l^i,.. •, ps are monomials, then we 
put 

v0(p) := min{U0(^o), ^o(^i), • • •, vo(ps)} • 
The value v0(p) reflects the "highest" monomial involved in p. 

(d) Finally, every £ G K0 is the quotient of two polynomials, say £ = p/p'. 
We put 

vo(0 = MP) ~vo(p')-
It is readily verified that v0: K0 —> T U {00} is indeed a Krull valuation. 
We finish the construction of the field by passing to the completion 

K:=K0 

of the valued field (K0,v0) (for details see [Ri]). Uo extends uniquely to a valu
ation v on K with the same value group V. 

For reference later on we need the following elementary fact which indicates 
the "gaps" in the square function K —> K2 , £ H-> £2 . 

In order to unify formulas, we put down the convention that X0 := 1. 
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LEMMA 2 . 1 . Let £ G K and let n > 1. 

(i) / / v(£2Xn) > 0, then v(£2Xn) > v(Xr
n_1) for all r G Z. 

(ii) / / v(i2/Xn) > 0, then v(£2/Xn) > v(Xr
n_1) for all r G Z. 

P r o o f . 
(i) In case £ = 0, the claim is trivial, so assume £ 7-= 0 and wrrite i>(£) = 

tei,g2,..-) S T . Then 

<;(£2Xn) = 2v(£) + v(Xn) = ( 2g i , . . . , 2 9 n _ i , 2 q n - l , 2g n + i , . . . ) . 

Clearly, v(£) ^ ( 0 , 0 , . . . ) . Put fc := max{i G N | ft ^ 0} . The hypothesis 
v(^2Xn) > 0 implies that k > n. Moreover, if k > n , then 2gfc > 0, and, 
if k = n , then 2qfc — 1 > 0, hence #*. > 1 in both cases. If n > 1, then 
v(X7

n_l) = ( 0 , . . . ,0, — r, 0 , . . . ) , where — r is in the place (n — l) < k; if n = 1, 
then ^ ( X ^ . T ) = (0 ,0 ,0 , . . . ) and the claim follows. 

(ii) Apply (i) with ^/Xn in place of £. • 

2 .3 . T h e space . 
Recall the convention that X0 = 1. Consider 

E := < ( ^ e N o £ KNo \ _^ £2Xi converges in the valuation topology >. 
1 i=o > 

0 0 

Notice that a series Yl ZfXi converges if and only if v(£2Xi) —> 00 for i —> 00. 
i=0 

Let x := (&)<, y := (vi)i G £ . Since v(CiViX{) > mm{v(gXi), v(nfXi)} for 
0 0 0 0 

every i, it follows that both the series ^ CiViXi and ^ (& + Vi)2Xi are con-
2 = 0 2 = 0 

vergent. Hence £* is a vector space over K under componentwise operations. 
Moreover, we can define a symmetric, bilinear form $ : E x E —> if by 

0 0 

$(x, 2/) := ^T iiViXi for x = (&)ZEN0 , y = (r/i)i€N0 £ -E • 
2 = 0 

This completes the construction of the quadratic space (E, $ ) . 

2.4. Basic p r o p e r t i e s of (.£?,$). 

The most fundamental properties of the space constructed above are: 

THEOREM 2.2. E is an orthomodular space. 

THEOREM 2.3 . (E, $ ) is a definite space. 

Thus the assignment x —• ||x|| = v($(x,x)) G r u { o o } is a norm on E, and, 
if x±y, then ||x + 2/|| = min{||x||, | | y | | } . 
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T H E O R E M 2.4. 

(i) E is complete in the norm topology, i.e., a Banach space. 
(ii) A linear subspace of E is topologically closed if and only if it is orthog

onally closed. 

For proofs we refer to [Ke]. 

2.5. T y p e s . 
In the theory of non-classical orthomodular spaces, a device called types 

turned out to be crucial. The concept of types is developed in full generality in 
[G-Kii]; here we only explain it for the present space. Recall that the value group 
is T = Z® Z ® . . . . To each 7 = (qj)jeN G T we assign a type, denoted by T(7) , 
as follows. If 7 G 2T, then all the numbers qj are even and we put T(7) := 0; 
if 7 ^ 2V, then finitely many of the numbers qj are odd and we put 

T(7) := max{ j G N | qj is odd} . 

Evidently, T ( 7 ) = T(j + 2j') for all 7' G T. 
Next we define the type of a non-zero scalar 0 ^ £ G K by 

r(0:=r(v(0). 
Then T(A2£) = T(£) for all 0 ^ A G K, i.e., the type function T : K* -> N0 is 
constant on square classes. Observe that T(Xi) = i for all i = 0 , 1 , . . . . 

Since $ is anisotropic, we can assign a type to every non-zero vector O ^ x 
£ E by 

T(x):=T(*(x,x))=T(\\x\\). 

Clearly, T(\x) = T(x) for all 0 ^ A G K, thus there is a type attached to each 
straight line G in F, denoted also by T(G). 

For reference later on we need 

LEMMA 2.5. Let 7,6 G T. Then T(7+<5) < max{T( 7 ) , T(6)}; if T ( 7 ) / T(6), 
then T(j + 6) = max{T(7),T(<5)} . 

The proof is straightforward and will be omitted. 
The next theorem expresses one of the most outstanding geometric properties 

of non-classical orthomodular spaces, the so called invariance of types. 

THEOREM 2.6. ([Ke]) 

(i) Let x,y be two non-zero vectors in E. If x _L y, then T(x) ^ T(y). 
(ii) Let U be a topologically closed subspace of E. Then, in any two max

imal orthogonal families in U, there occur the same types. 

It follows that, in particular, E cannot be isomorphic to a proper (closed) 
subspace. 
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2.6. The standard basis. 
For every i G No we let 

ei := ( 0 , . . . , 0 ,0 ,1 ,0 , . . . ) G E, where 1 is in place i + 1. 

Then e^-Lej for i ^ j . Clearly, {e^ | i G No} is a maximal orthogonal family in 
E. Notice that ^ (e^e i ) = Xi\ in particular, T(e^) = i for all i G N 0 . 

Consider an arbitrary vector x = (^)^No £ K. The norm of x is given by 

\\x\\=v(f2gx)j. 

For i ^ j we have v(£fXi) ^ v(£?Xj) as types are different. Hence 

||x|| = mm{v(&Xi) | ieN0}. 

n 
For n G N0 we put xn := ^ ^ e ^ . Then, by the above formula, 

i=0 

x - xn\\ = mm{v(^Xi) | i > n + l } , 

which shows that \\x — xn\\ —> oc, hence xn —> x when n —> oo. This means 
that x can be expressed as 

oo 

^i.ei 

i=o 

Convergence of the series is, of course, in the norm topology on E. Notice that 

x = ^2ы 

| |x| | =min{| |eie . i | | | z G N 0 } . 

We shall refer to {e^ | i G N 0 } as the standard.base of E. 

2.7. Residual spaces. 

A proper subgroup A of the value group T is called isolated (or convex) if 

6 G A, 7 G V , 0 < 7 <8 ==> 7 G A . 

The isolated subgroups of T are easily described. For n G No we let 

An := {(Qj)jeN eT\ qj = 0 for j >n} -= V! 0 • • • 0 T n 0 {0} 0 {0} 0 ... . 

Every A n is an isolated subgroup of T and there are no others. To each A n 

there belongs, by general valuation theory, a valuation ring 

Rn'-= {Z^K \ v(£) > 8 for some 8 G A n } . 

Rn is a local ring, its unique maximal ideal is 

Jn := {£ G K | v ( 0 > 8 for all 8 G A n } . 
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We let Kn := Rn/Jn be the residue field and 6 n : Rn —• Kn the canonical 
epimorphism. It is easy to check that 

Kn — IR(-X"i, _K25 • • • j Xn). 

We have seen that the space (J?, _>) has the basic property of being definite. This 
entails that the above reduction of K to Kn carries over to a corresponding 
reduction of (J?, $ ) . A s a counterpart of the residue fields Kn, we shall obtain 
the residual spaces (_5 n ,$ n) . 

It follows from the triangle inequality that 

Mn:= {x e E\ _?(x,x) e Rn} = {x e E \ \\x\\ > 6 for some 6 e A n } 

is a module over the ring Rn, and 

Sn:={xeE\ - ( x , x ) G J n } 

is a submodule. Let En := Mn/Sn and let 7rn: M n —> En be the canonical 
epimorphism. Since Jn • M n C 5 n , the quotient En is turned into a vector space 
over the residue field Kn by putting 

© n ( 0 ' -*n(x) := 7Tn(£ • x) (where £ G Rn , x G M n ) . 

Moreover, En inherits a bilinear form $ n from (E, $ ) by 

5n(7Tn(x),7rn(t/)) := 6 n ( $ ( x , y ) ) (where x,y G M n ) . 

(_5n, _>n) is called the residual space of (_5, <_>) belonging to the isolated sub
group A n . 

Clearly, every subspace U C E is reduced under 7rn to a subspace 

Un := (7Tn(^) | x G U H M n } . 

By abuse of language we sometimes write "7rn(U)" instead of "Un". 

LEMMA 2.7. If the subspaces U, W C E are orthogonal, U1.W, then 
7rn(U)J_7rn(VV) and 7rn(U © W) = 7Tn(U) 0 7rn(VV). 

P r o o f . Clearly, 7rn(U)_l_7rn(FV). For the second assertion we have to show 
that (U 0 TV) n M n = (U n M n ) 0 (W n Mn). Let x G (U © W) n M n and 
decompose x = ix + w with u G U, iv G TV. Then ||x|| = min{||w||, ||u'||} 
since E is definite. So x G Mn implies that u,w G M n , and consequently, 
x = u + w G ( U n M n ) 0 (TV n Mn). The inverse inclusion is trivial. D 
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LEMMA 2.8. Let G be a one-dimensional subspace of E. Then Gn = {0} if 
and only if the type of G is greater than n , T(G) > n . 

P r o o f . Suppose first that i := T(G) > n. Let 0 ^ x £ G. Then ||x|| = 
(<11> <12, • • •,qi, • • •) G r with q{ odd. Hence k := max{j G N | qj ^ 0} > i > n. 
If f/fc < 0, then x £ M n ; if qk > 0, then x e S n , and therefore 7Tn(x) = 0. Thus 
Gn = 7Tn(G D Mn) = {0}. On the other hand, suppose that i = T(G) < n. It is 
easy to find a multiple x' = Ax G G such that ||x ; | | = (qx,... , qi-i, —1,0,0 , . . . ) . 
In that case, we have x' G M n , x' ^ S n , and therefore 7rn(x') 7-= 0. D 

From the above results we deduce 

THEOREM 2.9. The residual space En has dimension n +J- • -f^e vectors 
&i := Kni^i) (i — 0, . . . , n ) /orra an orthogonal basis for ( £ n $ n ) ; ^^^ ^n ~ 
d i a g ( l , X i , X 2 , . . . , X n ) . « • 

P r o o f . Let U := span{e0, e x , . . . , e n } . Then E = U 0 U1- by orthomodu-
larity, so En = nn(E) = 7rn(U) 0 ^ ( U 1 - ) . We have T(a) = i for all i. In view 
of Theorem 2.6.(i), U1- contains only vectors of types i > n , and therefore, by 
Lemma 2.8, ^ ( U - 1 ) = {0}. Thus En = 7rn(U) and the assertion follows by 
Lemma 2.7. • 

3 . B o u n d e d l inear o p e r a t o r s 

A linear operator B: E —• E is called bounded if there exists a 7 G T such 
that 

| |B(x)|| - ||x|| > 7 for all 0 ^ x £ E. 

The set B(E) of all bounded linear operators on E is closed under the usual 
addition and composition, i.e., B(E) is an algebra. A bounded linear operator 
B is determined by the images B(ei) of the vectors ê  of the standard basis, so 
B can be represented by a countably infinite matrix. 

R e m a r k 1. Clearly, a bounded linear, operator B is continuous in the 
norm topology, however, as shown in [Fa], continuous operators need not be 
bounded. 

R e m a r k 2. In general, a bounded linear operator cannot be assigned a 
norm in the usual way because norms are in the ordered group V where bounded 
subsets may fail to possess an infimum. 

There are two naturally arising topologies on B(E). Each of them turns B(E) 
into a topological algebra. The norm topology on B(E) has all sets 

U£(B0) := {B e B(E) | | | (5 - B0)(aO|| " IWI > e for a11 ° + x e E} > 
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where e ranges over T, as a neighbourhood base of Ho E B(E). The topology 
of pointwise convergence is defined by taking all sets 

!4,*(5o) := {B e B(E) \ \\(B - BQ)(x)\\ - \\x\\ > e} , 

where e ranges over Y and x ranges over E \ {0} as a neighbourhood subbase 

of H0. 
The norm topology is finer than the topology of pointwise convergence. As 

a matter of fact we mention that B(E) is complete in the norm topology, thus 
B(E) is a Banach algebra. 

R e m a r k . Given a linear map B: E —• E, the question whether B is 
bounded, or whether B has an inverse in B(E), can be settled by examining 
the set {||H(ej)|| — ||e^|| | i E No} as for upper and lower bounds. 

LEMMA 3 .1 . A map H0: {e; | i E No} —•> E extends to a bounded linear 
operator B: E —> E if (and only if) the set {||H0(e;)|| — ||e^|| | i E No} C T is 
bounded from below. 

P r o o f . Assume that there exists an element 7 E T such that ||Ho(ei)|| — 

|| e{ || > 7 for all i E N0 . Ho extends to a linear map Ho : Ho —• E, where 
H0 := span{e^ | i E N 0 } . We first show that Ho is bounded by 7 . Consider a 

n 
non-zero vector x = ^ &ei € ^0 • Let k E {0 , . . . , n} be such that ||Ho(6eefc)ll = 

i=0 

mm{\\B*(Ziei)\\ \ i = 0 , . . . , n } . Then 

\\Bi(x)\\ > ||H0*(6efc)|| = 2v{£k) + \\B0(ek)\\. 

We have ||x|| = min{| |^e i | | | i = 0 , . . .,n}, hence 

\\x\\ < Ukek\\=2v(£k) + \\ek\\. 

Subtracting these inequalities we get ||H0(x)|| - ||x|| > ||H0(efc)|| - ||efc||, thus 

ll^o(x)ll — \\x\\ > 7 a s claimed. Now H0 is dense in E in the norm topology, so 

the assertion follows by standard arguments. • 

R e m a r k . The above proof shows that any lower bound 7 of {||H(ei)|| — 
lie*|| I i E N0} is a lower bound for the operator H. In particular, if {||H(ej)|| — 
||ei|| I i E No} has an infimum 70, then 70 is a norm for H in the usual sense. 

LEMMA 3.2. Let U be a subspace of E and let B: U —> E be a linear map. 
Suppose that there is a closed subspace V C U with dim U/V < 00 such that 
the restriction of B to V is bounded. Then B is bounded on all of U. 

P r o o f . It is sufficient to consider the case where dim U/V = 1; the claim 
then follows by induction. So suppose that U = V 0 K(w). If H were not 
bounded on U, then there would exist a sequence (^)ZGN in V such that 

\\B(vi) + B(w)\\ - \\vi + w\\ -* - 0 0 for i -> 00 . 
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Since V is closed and w £ V, the set {||U; + w\\ \ i G N} is bounded from 
above. It follows that | | S ( ^ ) + -B(w)|| —> - o o . This can happen only when 
||-B(^i)|| —> - c o . Since B is bounded on V it follows that \\vi\\ —> - c o . Conse
quently, for all sufficiently large i G N we have \\B(vi) + B(w)\\ = ||-B(v»)|| and 
||Vi + w\\ = \\vi\\. But then {||B(U;) + -B(w)|| - \\vi + w\\ \ i G N} is bounded 
from below, which is a contradiction. • 

LEMMA 3.3. Let B: U —> U' be a linear, bijective map between huo subspaces 
U. U' of E. Suppose that there exists a closed subspace V C U with U/V < oo 
such that 

{||5(«)||-|H|| vev} 
has an upper and a lower bound in T. Then also the set 

{||B(«)||-HI ueu} 

is bounded from below and from above, in other words, both B and J?-1: U' —> U 
are bounded linear operators. 

P r o o f . Put V := B(V). V is closed, hence complete. By hypothesis, the 
restriction B\y. V —> V is a topological isomorphism. Hence V is complete 
and therefore closed. The claim now follows by applying Lemma 3.2 to B and 
to B~l. U 

THEOREM 3.4. Let B: E —+ E be an infective, bounded linear operator on E. 
If the set 

{115(^)11-11^111 ieN0} 

has an upper bound in T, then B maps E onto E and the algebraic inverse 
B~x: E —* E is bounded, that is, B~x belongs to B(E). 

P r o o f . Let 6 G T be such that 

-6 < \\B(ei)\\ - ||e.i|| < 6 for all i G N0 . (1) 

We have S G A n for some n G N 0 , where A n is the isolated subgroup of 
r belonging to n. Then ||B(ej)|| — ||ej|| G A n for all i. In particular, for all 
i G N0 , the type of ||F?(ej)|| — ||e;|| is one of 0 ,1 , . . . , n . Recall that T(||ef||) = i. 
Hence, if i > n, then T(||.B(e i)| | - ||e^||) < T( | |e i | | ) . By Lemma 2.5 (applied 
with 7 := ||L?(e^)||, 6 := | |ei||), this implies that 

r ( | | B ( e . i ) | | ) = T ( | | e i | | ) = i for all i>n. (2) 

Let U0 :-= span{e^ | i > n } , W := span{e^ | i < n} and let U := U0 

be the closure of Uo • By orthomodularity, E = U 0 W and, in particular, 
dim E/U = dim W = n + 1 < oo. 
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oo 

Consider any vector x e U and write x = Yl €iei- Then 
i=n+l 

\\x\\ = minlllfie.iH | i > n) = min{2t;(&) + \\ei\\ \ i > n) . (3) 

We have seen that, if i > n, then T{B(et)) = i, thus T{B{^iei)) = i. In 
particular, if i > j > n , then | J3(£;e;)|| ^ | |-8(0ei)ll • J t follows that 

(4) 
l|£(-0H = || S 5 ( ^ e . ) | | = m i n { 115(^)11 I i > n} 

i=n-\-l 

= min{2t;(^) + ||-5(ei)|| | i > n) . 

From (1), (3), (4), we deduce that 

-8 < \\B(x)\\ - \\x\\ <8 for all x E U. 

This means that the restriction of B to U is a topological isomorphism between 
U and U' := B(U), and consequently, U' is complete, so U' is closed. Hence 

E = U'®Uf±. 

If i > n , then T(B(ei)) = i and H(e^) E U', thus U' contains vectors of 
each of the types i > n. By Theorem 2.6.(i), U' can only contain vectors of 
types < n. It follows, again by that theorem, that dim U' < n + 1. Hence 
dim E/U' < n + 1. On the other hand, since B is one-to-one, we have 

dim E/U' = dim E/B(U) > dim B(E)/B(U) = dim £ / U = dim W = rz + 1. 

We conclude that dim E/U' = dim B(E)/U' = n + 1, hence £ ( £ ) = £ , i.e., 
B maps F1 onto E. The remaining assertion follows by Lemma 3.3. • 

4. The operator A 

oo ^ 

Let u := ]T ------- • e* E i? and define the map A 0 : {e^ | i E N0} —> F1 by 
z=0 "** 

j4o(e-.) := w + (1 - j^J • e». 

It is readily verified that ||-40(e0)|| - | |e0 | | = *>(-^-) > 0, llA)(e;)|| - ||e-.|| = 0 

for i > 0 . By Lemma 3.1, A0 extends to a linear operator A: E -+ E with 

| | A ( x ) | | - H > 0 for all xeE. (6) 

For i ^ j we have ^ ( ^ ( e ^ e j ) = $(u ,e j ) = 1 = {e^Afe)), thus A is selfad-
joint. 
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The matrix of A with respect to the standard basis {e^ | i G No} is 

\ / 1 
' _i_ 

1 
i 

Xг 

1 
1 

xi 
J _ J _ 1 J _ 
X<2 X.2 X"2, 

1 

x3 

1 
Xз 

1 
x3 ) 

We shall first prove that the operator A has no eigenvalues. Our reasonings 
rely on residual spaces and on types. 

It follows from (6) that A maps each valuation ring Rn and each ideal Jn 

into itself. Consequently, A induces an operator 

An : En -> En given by 7rn(x) h-> ?rn (A(x)) (x G Rn ) • 

Recall that the base field of En is Fn:= Kn= R(J_"i, __i, . . ., _ _ - ) . 

LEMMA 4 . 1 . If n> 1, then the equation 

n 
ү - _i 
+ І-P*І 
г=0 

(7) 

m tbe indeterminate p has no solution in Fn. 

P r o o f . Suppose, indirectly, that (7) had some solution p = po G Fn. 

Clearly p0 ^ 0. Write p 0 = /V\ , were (p(Xn), r ( X n ) are relatively prime 

polynomials in Fn_i[Xn]. Then 

у^ _ ( * n ) 

</?(Xn) • __"* 
= 1. (8) 

We interpret (8) as an equality in the field Fn_i(Kn), where Fn-i is the al
gebraic closure of Fn_i- If deg(p(Xn) > 0, then there exists a £ G Fn-i such 
that (/?(£) = 0 and r(£) 7- 0. Substitution X n = £ into (8) yields n + 1 = 1, a 
contradiction. If d e g r ( X n ) > 0, then we can find a £ G F^-i such that ip(£) ^ 0 
and r(£) = 0. Substituting into (8) we get 0 = 1, a contradiction. Thus there 
only remains the case where both (p(Xn) and T(XU) are constant, i.e., elements 
of Fn_i. But then (8) would entail that Xn G Fn-i, which is impossible. • 

LEMMA 4.2. If n > 1. then the operator An: En 

An, E P r o o f . For simplicity, we write A 
{ e 0 , . . . , e n } , and A is given by 

n 

En has no eigenvectors. 

= En. E has the base 

3=0 
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^ n 
Suppose that A admits an eigenvalue A and let x = J ] ^k^k £ E be a corre-

fc=0 
sponding eigenvector. Then 

A- ( ^tkek I =M ^ 6 , e f e I = $^^(eife + ^ — e 
\ k = 0 / \fc=0 / k=0 ^ i^k l 

Comparing the coefficients of ek we get 

A • & = & + — / J & , 
A f c 777 

from which we obtain 
n 

[1 + (A - 1) • Xfc] - a = J ^ 6 for all fc = 0 , l , . . . , n . (9) 
z=0 

n 

Put 77 := J ] ĉ z. If 77 = 0, then we easily deduce from (9) that all £& are 0, 

which is impossible. So 77 ^ 0 and [l + (A —1)-AT ]̂ •£& 7̂  0 for all k = 0 , 1 , . . . , n . 
Then 

& = 1 + ( A - 1 ) - * * f ° r fc = ° > 1 - - ^ -

Summing up these equations and dividing by 77 we obtain 

-Ei fc=o_ + ( A - l ) . ^ -

But this is excluded by Lemma 4.L D 

THEOREM 4.3. The operator A admits no closed invariant subspaces (except 
the trivial ones). 

P r o o f . Suppose, indirectly, that there is a closed subspace U ^ {0} in E 
that is invariant under A. Then E = U © U1- by orthomodularity. U1- is also 
invariant, for A is selfadjoint. We now look at the types of vectors in U and 
U1-. By Theorem 2.6.(i), no type can occur in both U and U1-. Hence there 
exists an integer n > 1 such that U contains vectors of each of types 0.. . . , n — 1 
and U1- contains a vector of type n. We examine the reduced operator An on 
the residual space 

En = 7rn(E) = ^n(U)®7rn(U±) = Un © U^ ; 

Un and U^ are invariant under An. Let G be a one-dimensional subspace of 

U1- spanned by a vector of type n. Then U1- = G&(U^ n G^) and nn(U
±) = 
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7rr i(G)07rn(U-LnG-L). By the choice of n and by Theorem 2.6.(i), U±nG± con
tains only vectors of types i > n , and therefore, by Lemma 2.8, 7rn(U-~ flC?1) = 
{0} . Hence T~n(U

L) = 7rn(G). Now 7rn(G) is one-dimensional (by Lemma 2.8) 
and is invariant under An. In other words, An has an eigenvalue. But this is 
impossible by Lemma 4.2. • 

COROLLARY 4 .4. The operator A has no eigenvalues. 

We proceed to determine the spectrum of A which is defined as usual by 

spec(A) := {X £ K \ (A — XI) has no inverse in B(E)} , 

where I is the identity operator. The main result is 

T H E O R E M 4 .5 . spec(A) = {l}. 

P r o o f . By Corollary 4.4, each operator A — XI is injective. In view of 
Theorem 3.4, A-XI is invertible in B(E) if and only if {\\(A- A/)(e i)| | - ||ei|| | 
i G No} C T has an upper bound. From the definition of A, we obtain 

(A - XI)(e{) =u+(l-±-yi-Xei = YJ ~^ek + (1 - X)e{. 
k^i 

Put Wi := ^2 ~Y~~ek:> ^ e n \\wo\\ = —v(Xi) and ||wi|| = 0 for i > 0. 
k^i "*k 

a) Suppose that A ̂  1. Then 

| | ( l_A)e i | | = 2 v ( l - A ) + ||ei|| = 2U(1 - A) + v(X{) -> - o o for i -> oo . 

Hence, for all sufficiently large i we have 

\\(A - XI)(ei)\\ - ||e<|| = \\wi + (1 - A)e,|| - ||e,|| 
= | | ( l - A ) e , | | - | | e , | | = 2 U ( l - A ) , 

so the set {\\(A - A/)(e i)| | - ||ei|| | i E N0} is bounded, as claimed. 
b) In case A = 1, we have (A - I)(ei) = Wi, thus \\(A - J)(ez)|| = 0 for 

i > 0. 
It follows that | | (_4-J) (e i ) | | - ||ei|| = - | | e i | | -> oo when i -> oc, so (A - I) 

is not invertible. • 

5. The algebra A 

We now turn to von Neumann subalgebras of B(E). The most straightfor
ward way to single out such algebras is by taking all elements in B(E) which 
commute with some specific selfadjoint operator. It turns out that the operator 
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A considered in Section 4 gives rise to a particularly interesting algebra. We 
therefore introduce 

A:={Be B(E) | AoB = BoA}. 

It is readily seen that A is a von Neumann algebra in the sense that 

(i) A is closed under taking adjoints, 
(ii) A coincides with its double centralizer. 

Notice that A is closed in the norm topology on B(E), hence also in the 
topology of pointwise convergence. 

The fact that A has no invariant closed subspaces entails that every non-zero 
vector is topologically cyclic which in turn has the rather peculiar consequence 
that two distinct operators B,C £ A differ on every non-zero vector in E. 

LEMMA 5.1 . For every vector x ^ 0 in E the linear subspace S := span{^4n(x) | 
n £ No} is topologically dense in E. 

P r o o f . Clearly S is invariant under A. Since A is continuous, the topo
logical closure S is also invariant, moreover 0 ^ x £ S. By Theorem 4.3, we 
conclude that S = E. D 

LEMMA 5.2. If two operators B,C £ A coincide on some vector x ^ O , then 
B = C. 

P r o o f . B(x) = C(x) implies that B(An(x)) = C(An(x)) for all n > 0. 
Thus B and C are equal o n S = span{An(x) | n £ N0} . By continuity, B and 
C are equal on S = E. D 

COROLLARY 5.3. Every non-zero operator B £ A is infective. 

The above Lemma 5.2 states that the operators B £ A are determined by 
their action on some fixed vector x y^ 0 and can therefore be represented by 
their image vectors B(x). For computational reasons it is convenient to take 
x := eo. Thus we introduce the linear, injective map 

^ : A -> E defined by 5 H ty(B) := B(e0). 

We are going to determine the range of \£, W := {B(e0) \ B £ .,4} . We first 
prove that all base vectors em belong to W, and then we establish the main 
result in this section, which provides a representation of the operators B £ A 
in terms of the matches Cm := ^ _ 1 ( e m ) . 

LEMMA 5.4. For m £ No let pm := 1 — 1/Xm, and put Cm := I + 
pm(A - pml)'1. Then 

(i) C m ( e 0 ) - = e m . 
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Г-Л П (» \ Xrn(Xk - 1) ^ Хк(Хш - 1) 
(n) Cm(ek) = —-r- Y ek 

Лк — У^т 
(ИІ) cm(em) = xm(i+ү: *ҷ Ł 

4 kфm ^ k ^ ™ 

e m for k фm, 

Xm 
kфm Xk — Xm 

Xk — -Kì 

Vem-(Xm-l). E Єfc-

In particular, em E VV and C m = ^ x ( e m ) . 

P r o o f . Notice that pm ^ spec(A), so Dm : = (-4 — pmJ) has an inverse in 
B(E). Clearly, D " 1 commutes with A, thus I}"1 G A 

If 77i = 0, then p 0 = 0, C 0 = J , and our formulas are trivially true. Assume 

m > 0. Recall that A(ek) = u + pkek, where u = ^ -=-e^. Thus 
ż=0 

Dm(ek) = (A - pmI)(ek) = u+(pk- pm)ek , 

A n ( e o ) = w - p m e 0 . 

Subtraction yields Dm(ek - e0) = (pk - pm)ek + p m e 0 , and applying D " 1 we 
obtain 

ek-e0 = (pk - pm)Dm(ek) + pmDm(e0). (10) 

In particular, putting k = m in (10) we get 

pm • Dm

1(e0) = e m - e 0 . (11) 

It follows that C m ( e 0 ) = (I + p m F> m
1 )(e 0 ) = e m , which proves (i). 

Next, substituting (11) into (10) yields 
ek - e m = (pk - pm)Dm

1(ek). 

In the case k ^ m, it follows that Dm

1(ek) = i 
Pfc — Pm 

(ek - e m ) , hence 

C m (e f c ) = (J + /9mF)m
1)(e f c) = fl + prn )ek - ^ — e m . After replacing 

V Pk — Pm / Pk - Pm 
Pm > Pfc by 1 — 1/Xm and 1 — 1/X^ respectively, we obtain (ii). 

Finally, to establish (hi), we start with 

Dm(em) =U+(pm- pm)em =U= ~-—Єm + ] P -ү 
Xn 

kфm 
Xk 

ek 

from which we obtain e m = Xm • Dm(em) - Yl -Y~ek\ ' n e n c e Dm
1(em) = 

Xn 
em _j y l ^m \em) 

kyém ^k 

kфm 

It follows that 

C m ( e m ) - e m + PmDm(em) = em+ pmX, em 2_/ Xu m ^ 
kфm 

ekj 

em + PrnXn 
^ Xu 

1 

kфm 
Xk Pk — Pr 

-(ek - em)\ 
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Gathering terms on the right hand side and replacing pm and Pk by 1 — 1/X, 
1 — 1/Xk we arrive at (iii). The proof is complete. • 

m 1 

Notice that along with A every operator Cm = I + pm(A ~ pmI) * is self-
adjoint, moreover, Cm commutes with all B £ A. 

COROLLARY 5.5. Every B e A is selfadjoint. 

P r o o f . Using Lemma 5.4.(i),(ii) we see that Cm(ek) = Ck(em) for all 
m, k G N0 . Consequently, for any 5 G . 4 , 

$(B(em),ek) = $(B(Cm(e0)),ek) = $ (C m (B(e 0 ) ) , e f c ) 

= $(B(e0),Cm(ek)) = $(B(e0),Ck(em)) 

= $(Ck(B(e0)),em) = $(B(Ck(e0)),em) 

= $(B(ek),em) = ®(em,B(ek)) 

as claimed. D 

We shall need the norm of the vectors Cm(ek). 

L E M M A 5 .6 . 

(i) ||Cm(efc)|| = 2v(Xk)+v(Xm) for k<m, 
(ii) ||Cm(efc)|| = 2v(Xm) + v(Xk) for k>m, 

(iii) \\Cm(em)\\ = 3v(Xm) formal, 
(iv) \\C1(e1)\\ = 2v(X1). 

P r o o f . This is established by a straightforward verification using formulae 
(i), (ii), (iii) in Lemma 5.4 and the definition of the non-archimedian valuation v. 

• 
oo 

Recall that a typical vector x G E has the shape x = 5^ &e2, where 
2 = 0 

v(£fxi) —> oo when i —> oo. It is convenient to put A; := &Xi and to write 

x as 
oo 

XІ 
= Y^ —ЄІ . 

i=0 

The numerators Xi are subject to the condition that v(Xf/Xi) —>• oo when 
i —> oo. This condition does of course not imply that the values v(Xi) G T are 
bounded from below. We now show that for vectors x in W = I m ( ^ ) the values 
v(Xi) must be bounded. 

oo \ 

LEMMA 5.7. Let B G A and write w : = B(e0) = V ~^ek. Then \v(Xk) \ 
k=o xk 

k G No} C T has a lower bound. 
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P r o o f . Replacing B by some scalar multiple r\B, if necessary, we may 
assume that | |JB(X)| | — ||x| | > 0 for all x e E. In particular, | |B(e 0 ) | | — ||en|| > 0, 
so 

w 
k=0 

Xk 
Xk \52^-ek = m i n { | | - ^ e f e | | | fceN0}>0. 

Thus for all k G No we have Лfc 
Xк 

ek \\=2v(Xk)-v(Xk)>0. 

(12) 

Now suppose, indirectly, that |U(Afc) | No} has no lower bound. Then we 
can pick an integer m > 1 such that 

v(\m) < 0 and v(\m) < v(\k) for all k < m. 

We compute the norm of the vector 

°° \ 
B(em) = B(Cm(eQ)) = Cm(B(e0)) = ^ £ C m ( e f c ) . 

k=0 

a) Using Corollary 5.6.(hi) we obtain 

A, 
XГÌ 

Cm(em)\\ = 2v(Xm) - 2v(Xm) + | |C m (e m ) | | = 2v(Xm)+v(Xn (13) 

b) If k < ra, then using Corollary 5.6.(i), we find ||-y^-Cm(eA:)|| = 'Zv(\k) + 

v(Xm). Since U(Am) < U(A^), it follows that 

Л, 
Xr 

c m ^ e m ) < y ^myek) 

Xk 

for all к < m . (14) 

c) Similarly, if k > m, then we find 

\k ^-Cm(ek) =2v(\k) + 2v(Xm)-v(Xk). 

Here 2v(\k) — v(Xk) > 0 and k > m, from which it follows by Lemma 2.1.(ii) 
that 2v(\k) — v(Xk) > —v(Xk-i) > —v(Xm). Hence 

A - C m ( e f e ) | | > MXm) ~ v(Xm) = v(Xm). 

Using (12) and (13) we see that 

A. 
m 

< Cш(Єk) 
Xk 

for all к > m. (15) 

From (14), (15) we conclude that 

Яm(Єm)|| = | | У ; - è í - C U e f e ) = - è m -C m ( e m ) =2v(Xm)+v(X; W,„ Лк Лm к=0 

Therefore \\Bm(er 
2U(Am), thus \\Bm(er> \em\\ < 0 bу (12). 

But this contradicts the assumption on B. The proof is complete. D 
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LEMMA 5.8. For every vector x G E we have 

1 

Xt 

-Cm(x) —> 0 when m —• oo . 

P r o o f . Write x = ^2 f̂cefc- We may assume that \\x\\ > 0, thus ||^fcefc|| = 
fc-0 

2^(£fc) + v(^k) __ 0 f° r a u &• Let 7Ti > 1. We estimate the norm of the vector 
oo 

^Cm(x) = 22 ~v~~ ' £k ' Cm(efc) • 
Xj\ 

fc-0 

(i) Suppose that k < m. Using Corollary 5.6.(i) we find 

4-ikCm(ek) = 2v(£k) + 2v(Xk) - v(Xm) 
^m 

= (2v(ik) + v(Xk)) + (v(Xk) - v(Xm)) 

> v(Xk) - v(Xm) > - U ( X m _ i ) . 

(ii) Suppose that k >m. Then Corollary 5.6.(ii) or (hi) yields 

-=—^kCm(ek) = 2v(£k) + v(Xk) • 

Now 2v(£k) +v(Xk) > 0 by assumption, so by Lemma 2.1.(i), we have 2v(£k) + 
v(Xk) > -v(Xk-i) > - U ( X m _ i ) , i.e., 

-XF— CkCm(ek) > —v(Xm-1). 
^m 

Combining the above inequalities we see that 

X. 
Һ-Cm(x)\\ > - v ( X m _ i ) foг all m > 1. 

hence 
x, 

?—Cm\x) oo when m —> oo, as claimed. D 

THEOREM 5.9. Let B e A and write w = B(e0) = 5_ - y ^ e m • Then B can 
m=0 ^m 

be represented as the limit of the series of operators 

m—0 
Xn 

in the topology of pointwise convergence. 

P r o o f . By Lemma 5.7, there exists a 7 E T such that U(Am) > 7 for all 
m E No . From Lemma 5.8, we deduce that, for every x E E, 

An 

Xr 
-Cm(x) —» 0 when m —» co . 
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oo \ 
Since the norm on E is non-archimedian, it follows that the series ~~~) -y^-Cm 

m=0 ^™ 

converges pointwise to some operator D: E —> E. Using Corollary 5.6. it is 
readily checked that 

\\D(ek)\\-\\ek\\>2<y for all k G N0 . 

Thus, by Theorem 3.4, D is bounded. Each Cm commutes with A, hence so 
does D. In other words, D € A. Now 

oo oo 

I>Oo) = J~ 4^om(eo) = Y] 4^e™ = B ^ ) > 
^o Xm ^o Xm 

and, by Lemma 5.2, we conclude that B = D. • 

From the above proof and from Lemma 5.7. we deduce 

O O A 

COROLLARY 5.10. W consists of all vectors J2 ~~f~~~em for which {v(Xm) | 
m=0 ^rn 

m G No } is bounded from below. 

A rather unexpected consequence of Theorem 5.9. is the following. 

COROLLARY 5.11. The algebra A is commutative. 

P r o o f . Any two elements B,D G A can be represented as B = 
oo \ oo .. 
~~~] -y^Cm, D = ~~~] Y~~Cm (limits are in the topology of pointwise con-

m=0 -*m m=o -*m 
vergence). Now C m o Cm> = Cm' o C m for all m,m' G N 0 , consequently B 
commutes with D. • 

We have established that A is a commutative algebra. In view of Corol
lary 5.3, it follows that A is in fact an integral domain. It seems now natural to 
study A along the line of concepts of ring theory such as factorization, prime 
ideals and others. This task will be pursued in another article. 
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