Mathematica Slovaca

Milan Kolibiar; Judita Lihová

Convex automorphisms of a lattice

Mathematica Slovaca, Vol. 43 (1993), No. 4, 417--425
Persistent URL: http://dml.cz/dmlcz/129147

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

CONVEX AUTOMORPHISMS OF A LATTICE

MILAN KOLIBIAR*) - JUDITA LIHOVÁ**)
(Communicated by Tibor Katriñák)

Abstract

Let L be a lattice which can be decomposed into a direct product of finitely many directly indecomposable factors. There are described bijections f of L onto itself preserving convex sublattices in the sense that A is a convex sublattice of L if and only if so is $f(A)$.

V.I.Marmazeev investigated the lattice $C(L)$ of convex sublattices of a lattice L. Let $L=(L ; \wedge, \vee)$ and $L^{\prime}=\left(L^{\prime} ; \wedge, \vee\right)$ be lattices and $f: L \rightarrow L^{\prime}$ a bijection. In [2] there is proved that f has the property

$$
A \in C(L) \Longleftrightarrow f(A)=\{f(a): a \in A\} \in C\left(L^{\prime}\right)
$$

if and only if for any $a, b \in L$

$$
\begin{equation*}
f([a \wedge b, a \vee b])=[f(a) \wedge f(b), f(a) \vee f(b)] \tag{*}
\end{equation*}
$$

holds.
Marmazeev calls bijections having this property convex isomorphisms. The aim of Marmazeev's paper [3] was to describe convex automorphisms of a lattice L (i.e. convex isomorphisms of L onto L) provided that
(α) any bounded chain in L is finite, and
(β) L can be decomposed into a direct product $L=L_{1} \times \cdots \times L_{n}$ such that all L_{i} are directly indecomposable.
However, the author uses non-explained (non-standard) terms in the formulation of results and there are only short sketches of proofs there. Hence it is not possible to find out what the author's description says.

In the present paper we give a description of convex automorphisms of a lattice L supposing only (β). This is done in Theorem 10 .

To prove the main theorem the following two lemmas are useful.

[^0]1. Lemma. Let a lattice $L=(L ; \wedge, \vee)$ be a direct product of lattices $L_{1}, \ldots, L_{n}, L=L_{1} \times \cdots \times L_{n} . A$ subset A of L forms a convex sublattice of L if and only if A is a direct product $A=A_{1} \times \cdots \times A_{n}$ of convex sublattices $A_{i}(i \in\{1, \ldots, n\})$ of L_{i}.

Proof. It is easy to see that if A_{i} is a convex sublattice of L_{i} $(i \in\{1, \ldots, n\})$, then $A_{1} \times \cdots \times A_{n}$ is a convex sublattice of $L_{1} \times \cdots \times L_{n}$.

To prove the converse let A be a convex sublattice of $L_{1} \times \cdots \times L_{n}$. Denote $A_{i}=\left\{x \in L_{i}:\right.$ there exists $\left(y_{1}, \ldots, y_{n}\right) \in A$ with $\left.y_{i}=x\right\}$. Evidently A_{i} is a sublattice of L_{i}. Obviously $A \subseteq A_{1} \times \cdots \times A_{n}$. To prove the opposite inclusion let $b=\left(b_{1}, \ldots, b_{n}\right) \in A_{1} \times \cdots \times A_{n}$. For any $i \in\{1, \ldots, n\}$ there exists ${ }^{i} c=\left({ }^{i} c_{1}, \ldots,{ }^{i} c_{n}\right) \in A$ with ${ }^{i} c_{i}=b_{i}$. Set $u={ }^{1} c \wedge \cdots \wedge{ }^{n} c, v={ }^{1} c \vee \cdots \vee{ }^{n} c$. Evidently $u, v \in A$ and $u \leq b \leq v$, hence $b \in A$. It remains to show that every A_{i} is a convex subset of L_{i}. Let $x, y \in A_{i}, z \in L_{i}, x \leq z \leq y$. Then there exist $\bar{x}, \bar{y} \in A, \bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right), \bar{y}=\left(\bar{y}_{1}, \ldots, \bar{y}_{n}\right)$ with $\bar{x}_{i}=x, \bar{y}_{i}=y$. Consider $\bar{z}=\left(\bar{x}_{1} \wedge \bar{y}_{1}, \ldots, \bar{x}_{i-1} \wedge \bar{y}_{i-1}, z, \bar{x}_{i+1} \wedge \bar{y}_{i+1}, \ldots, \bar{x}_{n} \wedge \bar{y}_{n}\right)$. Evidently $\bar{x} \wedge \bar{y} \leq \bar{z} \leq \bar{y}$, hence $\bar{z} \in A$ and $z \in A_{i}$.
2. Lemma. (cf. [1]) Let $L=(L ; \wedge, \vee)$ and $L^{\prime}=\left(L^{\prime} ; \wedge, \vee\right)$ be lattices and $f: L \rightarrow L^{\prime}$ a bijection. The following two conditions are equivalent.
(i) $A \in C(L) \Longleftrightarrow f(A) \in C\left(L^{\prime}\right)$.
(ii) There exist lattices $C=(C ; \wedge, \vee), D=(D ; \wedge, \vee)$ and bijections $g: L \rightarrow C \times D, h: L^{\prime} \rightarrow C \times D$ such that g is an isomorphism of L onto $C \times D, h$ is an isomorphism of L^{\prime} onto $C \times D^{d}$ and $g=f \circ h$ (D^{d} is the dual of D).
3. Theorem. Let L be a lattice which can be decomposed into a direct product of lattices $L_{i}, L=\Pi\left(L_{i} \mid i \in I\right)(I$ is any nonempty set). Further let π be a bijection of I onto I, f_{i} for each $i \in I$ an isomorphism or a dual isomorphism of L_{i} onto $L_{\pi(i)}$. Then the mapping $f: L \rightarrow L$ defined by

$$
f(x)_{\pi(i)}=f_{i}\left(x_{i}\right) \quad \text { for all } \quad x \in L, \quad i \in I
$$

is a convex automorphism of $L .\left(\right.$ For $y \in L$ and $j \in I$ by y_{j} the j th component of y is meant.)

CONVEX AUTOMORPHISMS OF A LATTICE

Proof. Evidently f is a bijection. By Marmazeev's theorem it is sufficient to prove that for any $a, b \in L$ the condition (*) holds.

Let $a, b \in L, f(a)=u, f(b)=v$. By the definition of f there is $u_{\pi(i)}=f_{i}\left(a_{i}\right), v_{\pi(i)}=f_{i}\left(b_{i}\right)$ for each $i \in I$.
a) To prove the inclusion $f([a \wedge b, a \vee b]) \subseteq[f(a) \wedge f(b), f(a) \vee f(b)]$ let $s \in f([a \wedge b, a \vee b])$. Then there exists $c \in[a \wedge b, a \vee b]$ with $s=f(c)$. As $a \wedge b \leq c \leq a \vee b$, we have $a_{i} \wedge b_{i} \leq c_{i} \leq a_{i} \vee b_{i}$ for each $i \in I$, from which there follows $f_{i}\left(a_{i}\right) \wedge f_{i}\left(b_{i}\right) \leq f_{i}\left(c_{i}\right) \leq f_{i}\left(a_{i}\right) \vee f_{i}\left(b_{i}\right)$ for each $i \in I$ (it does not matter, if f_{i} is an isomorphism or a dual isomorphism). Hence $u_{\pi(i)} \wedge v_{\pi(i)} \leq$ $s_{\pi(i)} \leq u_{\pi(i)} \vee v_{\pi(i)}$ for each $i \in I$, which means $s \in[f(a) \wedge f(b), f(a) \vee f(b)]$.
b) Now we are going to prove the inclusion $[f(a) \wedge f(b), f(a) \vee f(b)] \subseteq$ $f([a \wedge b, a \vee b])$. Let $s \in[f(a) \wedge f(b), f(a) \vee f(b)]$. Then $f(a)_{\pi(i)} \wedge f(b)_{\pi(i)} \leq$ $s_{\pi(i)} \leq f(a)_{\pi(i)} \vee f(b)_{\pi(i)}$ for all $i \in I$.

Since f is a bijection, there exists $c \in L$ such that $s=f(c)$ and the last inequalities can be rewritten as $f_{i}\left(a_{i}\right) \wedge f_{i}\left(b_{i}\right) \leq f_{i}\left(c_{i}\right) \leq f_{i}\left(a_{i}\right) \vee f_{i}\left(b_{i}\right)$. Applying f_{i}^{-1}, which is also an isomorphism or a dual isomorphism, we get $a_{i} \wedge b_{i} \leq c_{i} \leq a_{i} \vee b_{i}$ for each $i \in I$. Consequently $c \in[a \wedge b, a \vee b]$ and $s=f(c) \in f([a \wedge b, a \vee b])$.

In the sections $4-8$ we will suppose that f is a convex automorphism of a lattice $L=L_{1} \times \cdots \times L_{n}$, where L_{i} are directly indecomposable lattices. Without loss of generality we can also assume that every L_{i} has more than one element. The denotation \bar{n} will be used for the set $\{1, \ldots, n\}$.
4. Lemma. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be any fixed element of $L, f(a)=u$ $=\left(u_{1}, \ldots, u_{n}\right)$. For every $i \in \bar{n}$ there exists $k \in \bar{n}$ such that

$$
f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times U_{k} \times \cdots \times\left\{u_{n}\right\}
$$

for a convex sublattice U_{k} or L_{k}. Moreover the mapping $f_{i}: L_{i} \rightarrow U_{k}$ derived from

$$
f:\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\} \rightarrow\left\{u_{1}\right\} \times \cdots \times U_{k} \times \cdots \times\left\{u_{n}\right\}
$$

in a natural way is an isomorphism or a dual isomorphism.

MILAN KOLIBIAR — JUDITA LIHOVÁ

Proof. Let $L_{i}^{\prime}=\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}$. As L_{i}^{\prime} is a convex sublattice of $L, f\left(L_{i}^{\prime}\right)$ is a convex sublattice of L, too. By $1, f\left(L_{i}^{\prime}\right)=U_{1} \times \cdots \times U_{n}$, where U_{j} is a convex sublattice of L_{j} for each $j \in \bar{n}$. Evidently the restriction of f to $L_{i}^{\prime}, f_{i}^{\prime}=f \upharpoonright L_{i}^{\prime}$, is a convex isomorphism of L_{i}^{\prime} onto $f\left(L_{i}^{\prime}\right)$, hence there exist lattices C, D and isomorphisms $g: L_{i}^{\prime} \rightarrow C \times D, h: f\left(L_{i}^{\prime}\right) \rightarrow C \times D^{d}$ with $g=f_{i}^{\prime} \circ h$, by 2 . Since L_{i} is directly indecomposable, so is L_{i}^{\prime} and consequently either C or D is a one-element set.
a) Suppose C has only one element. Let \bar{g} and \bar{h} be mappings $L_{i}^{\prime} \rightarrow D$ and $f\left(L_{i}^{\prime}\right) \rightarrow D^{d}$, respectively, assigned to g and h. Evidently \bar{g}, \bar{h} are isomorphisms and $\bar{g}=f_{i}^{\prime} \circ \bar{h}$. Since \bar{g} is also an isomorphism of $L_{i}^{\prime d}$ onto D^{d} and \bar{h}^{-1} is an isomorphism of D^{d} onto $f\left(L_{i}^{\prime}\right)$, their composition $\bar{g} \circ \bar{h}^{-1}=f_{i}^{\prime}$ is an isomorphism of $L_{i}^{\prime d}$ onto $f\left(L_{i}^{\prime}\right)$ and a dual isomorphism of L_{i}^{\prime} onto $f\left(L_{i}^{\prime}\right)$. Using the fact that L_{i}^{\prime} is directly indecomposable and hence so is $f\left(L_{i}^{\prime}\right)$, we obtain that there is an index $k \in \bar{n}$ such that each U_{j} for $j \neq k$ is a one-element lattice. Because $a=\left(a_{1}, \ldots, a_{n}\right) \in L_{i}^{\prime}$, we have $f(a)=u=\left(u_{1}, \ldots, u_{n}\right) \in f\left(L_{i}^{\prime}\right)$, from which it follows that $f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times U_{k} \times \cdots \times\left\{u_{n}\right\}$. Moreover since f_{i}^{\prime} is a dual isomorphism of L_{i}^{\prime} onto $f\left(L_{i}^{\prime}\right), f_{i}$ is a dual isomorphism of L_{i} onto U_{k}.
b) Assume D is a one-element lattice. Analogously as in a) it can be proved that $f\left(L_{i}^{\prime}\right)=\left\{u_{1}\right\} \times \cdots \times U_{k} \times \cdots \times\left\{u_{n}\right\}$ for a $k \in \bar{n}$ the mapping $f_{i}: L_{i} \rightarrow U_{k}$ is an isomorphism.
5. Lemma. Under the assumptions and denotations as in the previous lemma there is $U_{k}=L_{k}$.

Proof. f^{-1} is also a convex automorphism of L and $f^{-1}(u)=a$, so using 4 for f^{-1} and elements u and $f^{-1}(u)=a$ we get

$$
f^{-1}\left(\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times\left\{u_{n}\right\}\right)=\left\{a_{1}\right\} \times \cdots \times B_{j} \times \cdots \times\left\{a_{n}\right\}
$$

for a $j \in \bar{n}$. Applying f^{-1} to

$$
\left\{u_{1}\right\} \times \cdots \times U_{k} \times \cdots \times\left\{u_{n}\right\} \subseteq\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times\left\{u_{n}\right\}
$$

we obtain

$$
\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\} \subseteq\left\{a_{1}\right\} \times \cdots \times B_{j} \times \cdots \times\left\{a_{n}\right\}
$$

Since L_{i} contains more than one element, it must be $i=j, L_{i}=B_{j}$. Hence $f\left(L_{i}^{\prime}\right)=f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=f\left(\left\{a_{1}\right\} \times \cdots \times B_{j} \times \cdots \times\left\{a_{n}\right\}\right)=$ $\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times\left\{u_{n}\right\}$, so that $U_{k}=L_{k}$.

CONVEX AUTOMORPHISMS OF A LATTICE

6. Corollary. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be any fixed element of $L, f(a)=u$ $=\left(u_{1}, \ldots, u_{n}\right)$. Then there exists a permutation π of the set \bar{n} such that for each $i \in \bar{n}$

$$
f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\}
$$

and moreover the mapping $f_{i}: L_{i} \rightarrow L_{\pi(i)}$ derived from

$$
f:\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\} \rightarrow\left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\}
$$

in a natural way is an isomorphism or a dual isomorphism.
Proof. Using denotation as in 4 , set $\pi(i)=k$. To verify that π is a permutation, it is sufficient to show that $\pi\left(i_{1}\right)=\pi\left(i_{2}\right)$ implies $i_{1}=i_{2}$. Now if $\pi\left(i_{1}\right)=\pi\left(i_{2}\right)=k$, then

$$
\begin{aligned}
f\left(\left\{a_{1}\right\} \times \cdots \times L_{i_{1}} \times \cdots \times\left\{a_{n}\right\}\right) & =\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times\left\{u_{n}\right\} \\
& =f\left(\left\{a_{1}\right\} \times \cdots \times L_{i_{2}} \times \cdots \times\left\{a_{n}\right\}\right)
\end{aligned}
$$

Recall that f is a bijection. Hence it must be

$$
\left\{a_{1}\right\} \times \cdots \times L_{i_{1}} \times \cdots \times\left\{a_{n}\right\}=\left\{a_{1}\right\} \times \cdots \times L_{i_{2}} \times \cdots \times\left\{a_{n}\right\}
$$

By assumption $L_{i_{1}}, L_{i_{2}}$ are not one-element sets, therefore $i_{1}=i_{2}$. In view of 4 and 5 the further assertions are evident.

We want to make clear if the permutation π and the mappings f_{i} depend on the choice of $a \in L$ or not.
7. Lemma. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be any fixed element of $L, f(a)=u$ $=\left(u_{1}, \ldots, u_{n}\right)$. Then for any $i, j \in \bar{n}, i<j$
$f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}$
holds, where $\{k, l\}=\{\pi(i), \pi(j)\}$.
Proof. Applying f to

$$
\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\} \subseteq\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}
$$

and to

$$
\left\{a_{1}\right\} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\} \subseteq\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}
$$

MILAN KOLIBIAR — JUDITA LIHOVÁ

we get

$$
\begin{align*}
& \left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\} \subseteq f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right), \tag{1}\\
& \left\{u_{1}\right\} \times \cdots \times L_{\pi(j)} \times \cdots \times\left\{u_{n}\right\} \subseteq f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right), \tag{2}
\end{align*}
$$

by 6. Since $\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}$ is a convex sublattice of L, so is $f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)$. Therefore by $1 f\left(\left\{a_{1}\right\} \times \cdots\right.$ $\left.\cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)=U_{1} \times \cdots \times U_{n}$, with U_{t} being a convex sublattice of L_{t} for each $t \in \bar{n}$.

Now $U_{1} \times \cdots \times U_{n} \supseteq\left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\}$ by (1) and $U_{1} \times \cdots \times U_{n} \supseteq$ $\left\{u_{1}\right\} \times \cdots \times L_{\pi(j)} \times \cdots \times\left\{u_{n}\right\}$ by (2). So $L_{\pi(i)}=U_{\pi(i)}$ and $L_{\pi(j)}=U_{\pi(j)}$ and we have
$f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)=U_{1} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times U_{n}$,
where $\{k, l\}=\{\pi(i), \pi(j)\}$.
Consider the mapping f^{-1}, which is also a convex automorphism of L, and elements u and $f^{-1}(u)=a$. Evidently there holds an analogous statement as in 6 , the belonging permutation is π^{-1}. Using analogous considerations as above we get
$f^{-1}\left(\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}\right)=V_{1} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times V_{n}$,
where V_{t} is a convex sublattice of L_{t}, for each $t \in \bar{n}-\{i, j\}$.
Applying f to

$$
\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\} \subseteq V_{1} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times V_{n}
$$

($a_{t} \in V_{t}$ for each $t \in \bar{n}-\{i, j\}$ because $a=f^{-1}(u) \in f^{-1}\left(\left\{u_{1}\right\} \times \cdots \times L_{k} \times\right.$ $\left.\left.\cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}\right)=V_{1} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times V_{n}\right)$, we get
$U_{1} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times U_{n} \subseteq\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}$,
so that $U_{1}=\left\{u_{1}\right\}, \ldots, U_{n}=\left\{u_{n}\right\}$. Hence
$f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}$
and the proof is finished.

CONVEX AUTOMORPHISMS OF A LATTICE

8. COROLLARY. The permutation π and the mappings $f_{i}: L_{i} \rightarrow L_{\pi(i)}$ mentioned in 6 do not depend on the choice of the element $a \in L$.

Proof. Obviously it is sufficient to prove that if elements a, a^{\prime} differ in one component, then the belonging permutations π and π^{\prime} and mappings $f_{t}: L_{t} \rightarrow L_{\pi(t)}, f_{t}^{\prime}: L_{t} \rightarrow L_{\pi^{\prime}(t)}(t \in \bar{n})$ are equal.

Let $a=\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right), a^{\prime}=\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right)$, hence a, a^{\prime} differ in the i th component. Further let $f(a)=u=\left(u_{1}, \ldots, u_{n}\right)$. First we show that $\pi=\pi^{\prime}$. Since $a^{\prime} \in\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}$, there is

$$
\begin{equation*}
f\left(a^{\prime}\right) \in f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\} \tag{3}
\end{equation*}
$$

by $4,5,6$. Therefore $f\left(a^{\prime}\right)$ differs from $u=f(a)$ only in the $\pi(i)$ th component, $f\left(a^{\prime}\right)=\left(u_{1}, \ldots, u_{\pi(i)}^{\prime}, \ldots, u_{n}\right)$. By $4,5,6$ used for a^{\prime} instead of a we obtain

$$
\begin{equation*}
f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times L_{\pi(i)} \times \cdots \times\left\{u_{n}\right\} \tag{4}
\end{equation*}
$$

and comparing (3) and (4) we have $\pi(i)=\pi^{\prime}(i)$. Now let $j \in \bar{n}, j \neq i$, e.g. $j>i$. Use 7 first for a, then for a^{\prime}. We get that the set $f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times\right.$ $\left.\cdots \times L_{j} \times \cdots \times\left\{a_{n}\right\}\right)$ is equal to $\left\{u_{1}\right\} \times \cdots \times L_{k} \times \cdots \times L_{l} \times \cdots \times\left\{u_{n}\right\}$ $(\{k, l\}=\{\pi(i), \pi(j)\})$ and also to $\left\{u_{1}\right\} \times \cdots \times L_{k^{\prime}} \times \cdots \times L_{l^{\prime}} \times \cdots \times\left\{u_{n}\right\}$ $\left(\left\{k^{\prime}, l^{\prime}\right\}=\left\{\pi^{\prime}(i), \pi^{\prime}(j)\right\}\right)$. Hence $\{k, l\}=\left\{k^{\prime}, l^{\prime}\right\}$ and as $\pi(i)=\pi^{\prime}(i)$, it must be also $\pi(j)=\pi^{\prime}(j)$. We have proved $\pi=\pi^{\prime}$.

If $x_{i} \in L_{i}$, then $f_{i}\left(x_{i}\right)$ is the $\pi(i)$ th component of $f\left(a_{1}, \ldots, x_{i}, \ldots, a_{n}\right)$ and $f_{i}^{\prime}\left(x_{i}\right)$ is the $\pi^{\prime}(i)$ th component of the same element $f\left(a_{1}, \ldots, x_{i}, \ldots, a_{n}\right)$. But we already know that $\pi(i)=\pi^{\prime}(i)$, so that $f_{i}\left(x_{i}\right)=f_{i}^{\prime}\left(x_{i}\right)$. We have proved that $f_{i}=f_{i}^{\prime}$. Now let $j \in \bar{n}, j \neq i$. Without loss of generality we can suppose that $j>i$. Take any $x_{j} \in L_{j}$. Using $4,5,6$ for the element a we get that $f\left(a_{1}, \ldots, a_{i}, \ldots, x_{j}, \ldots, a_{n}\right)$ has the same components as $f(a)$, with the exception of the $\pi(j)$ th component, which is $f_{j}\left(x_{j}\right)$. If we use $4,5,6$ for \boldsymbol{a}^{\prime}, we obtain that $f\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, x_{j}, \ldots, a_{n}\right)$ has such components as $f\left(a^{\prime}\right)$ besides the $\pi(j)$ th component, which is $f_{j}^{\prime}\left(x_{j}\right)$. Use once more 4 and 5 , now for $\left(a_{1}, \ldots, a_{i}, \ldots, x_{j}, \ldots, a_{n}\right)$. We get
$f\left(\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{x_{j}\right\} \times \cdots \times\left\{a_{n}\right\}\right)=\left\{u_{1}\right\} \times \cdots \times\left\{f_{j}\left(x_{j}\right)\right\} \times \cdots \times\left\{u_{n}\right\}$ (the $\pi(i)$ th factor is $L_{\pi(i)},\left\{f_{j}\left(x_{j}\right)\right\}$ is the $\pi(j)$ th factor).
Evidently $\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, x_{j}, \ldots, a_{n}\right) \in\left\{a_{1}\right\} \times \cdots \times L_{i} \times \cdots \times\left\{x_{j}\right\} \times \cdots \times\left\{a_{n}\right\}$, so $f\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, x_{j}, \ldots, a_{n}\right) \in\left\{u_{1}\right\} \times \cdots \times\left\{f_{j}\left(x_{j}\right)\right\} \times \cdots \times\left\{u_{n}\right\}$. We know that the $\pi(j)$ th component of $f\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, x_{j}, \ldots, a_{n}\right)$ is $f_{j}^{\prime}\left(x_{j}\right)$, therefore $f_{j}^{\prime}\left(x_{j}\right) \in\left\{f_{j}\left(x_{j}\right)\right\}$, which means $f_{j}^{\prime}\left(x_{j}\right)=f_{j}\left(x_{j}\right)$. We have proved also $f_{j}=f_{j}^{\prime}$ for each $j \in \bar{n}, j \neq i$.
9. Theorem. Let L be a lattice, that is a direct product of finitely many directly indecomposable lattices $L_{i}, L=L_{1} \times \cdots \times L_{n}$. Further let f be a convex automorphism of L. Then there exist a permutation π of \bar{n} and mappings $f_{i}: L_{i} \rightarrow L_{\pi(i)}$, all being isomorphisms or dual isomorphisms, such that for every $x \in L$

$$
f(x)_{\pi(i)}=f_{i}\left(x_{i}\right)
$$

holds.
Proof. First suppose that every L_{i} has more than one element. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ be any fixed element of L. Take the permutation π and the mappings $f_{i}: L_{i} \rightarrow L_{\pi(i)}$ belonging to the element a by 6 . Now let $x=\left(x_{1}, \ldots, x_{n}\right)$ be any element of L. It is sufficient to show that for each $i \in \bar{n}$ there holds $f(x)_{\pi(i)}=f_{i}\left(x_{i}\right)$. In view of 8 the permutation π and the mappings f_{i} belong also to x, so that if $f(x)=y=\left(y_{1}, \ldots, y_{n}\right)$, then for any $i \in \bar{n} y_{\pi(i)}=f_{i}\left(x_{i}\right)$, by 6 .

Now assume that some of L_{i} are one-element lattices. Without loss of generality we can suppose that one-element lattices are those for $i \in \bar{n}-\bar{k}$ ($k \in \bar{n}$, $k<n)$. Evidently f determines a convex automorphism f^{\prime} of $L^{\prime}=L_{1} \times \ldots$ $\cdots \times L_{k}$. Hence there exist a permutation π^{\prime} of \bar{k} and mappings $f_{i}: L_{i} \rightarrow L_{\pi^{\prime}(i)}$ for $i \in \bar{k}$, all being isomorphisms or dual isomorphisms, such that for every $x^{\prime} \in L^{\prime}$ there holds $f^{\prime}\left(x^{\prime}\right)_{\pi^{\prime}(i)}=f_{i}\left(x_{i}^{\prime}\right)$. Now extend π^{\prime} to a permutation π of \bar{n} and define $f_{i}: L_{i} \rightarrow L_{\pi(i)}$ for $i \in \bar{n}-\bar{k}$ in a natural way (i.e. if $L_{i}=\left\{a_{i}\right\}$, $L_{\pi(i)}=\left\{a_{\pi(i)}\right\}$, then $\left.f_{i}\left(a_{i}\right)=a_{\pi(i)}\right)$. It is easy to see that such a π and $f_{i}: L_{i} \rightarrow L_{\pi(i)}$ are as we need. The proof is complete.

The following theorem is obtained by combining the preceding one with 3 .
10. Theorem. Let L be a lattice which can be decomposed into a direct product $L=L_{1} \times \cdots \times L_{n}$, where all L_{i} are directly indecomposable. Convex automorphisms of L are just the mappings obtained as follows: we take a permutation π of the set \bar{n} such that there exist bijections $f_{i}: L_{i} \rightarrow L_{\pi(i)}$, each of them being either an isomorphism or a dual isomorphism, and we set for any $x \in L \quad f(x)_{\pi(i)}=f_{i}\left(x_{i}\right)$.

REFERENCES

[1] KOLIBIAR, M.: Intervals, convex sublattices and subdirect representations of lattices. In: Universal algebra and applications. Banach center publ. Vol. 9, PWN, Warszaw, 1980, pp. 335-339.
[2] MARMAZEEV, V. I.: The lattice of convex sublattices of a lattice. (Russian) In: Ordered sets and lattices. Vol. 9, Saratov. Gos. Univ., Saratov, 1986, pp. 50-58.

CONVEX AUTOMORPHISMS OF A LATTICE

[3] MARMAZEEV, V. I.: A group of automorphisms of the lattice of convex sublattices of a lattice. (Russian, English summary), Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 6 (1988), 110-112.

Received February 10, 1992
Revised July 9, 1992

*) Milan Kolibiar
Department of Algebra
and Number Theory
Komenský University
Mlynská dolina
84215 Bratislava

Slovakia
**) Judita Lihová
Department of Geometry and Algebra
P. J. Šafárik University

Jesenná 5
04154 Kos̆ice
Slovakia

[^0]: AMS Subject Classification (1991): Primary 06B99.
 Key words: Lattice, Convex sublattice, Convex automorphism, Direct product decomposition.

