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ON THE ASYMPTOTIC BEHAVIOUR 
OF SOLUTIONS OF SOME 

FUNCTIONAL-DIFFERENTIAL EQUATIONS 

J A N CERMAK 

(Communicated by Milan Medved') 

ABSTRACT. The aim of the paper is to give asymptotic estimates of solutions of 
some retarded linear and sublinear differential equations. We give up conditions 
under which these estimates can be derived by means of solutions of certain linear 
differential and linear functional (nondifferential) equations. 

0. Introduction 

The question of the perturbation of the equation 

y'(x) = b(x)y(x), x G [ x 0 , o o ) , ( E J 

has been studied from many points of view. In the first part of this paper, we 
are going to discuss a similar problem which can be formulated as follows: Find 
conditions under which the functional-differential equations (FDE) of the form 
(E 3) , resp. (E 4 ) , given below admit solutions which can in a certain sense be 
compared with the solutions of (E-_). 

Similar questions were dealt with in many papers; let us at least mention 
the recent results given by M. P i t u k [10]. We obtain some results concern­
ing the problem posed as a result of the investigation of the FDE of the 
form (E2) . For discussions relating to this equation, wre refer to the paper 
of M. K. G r a m m a t i k o p o u l o s and M. R. K u l e n o v i c [2]. 

In the second part, we consider certain equations of the form (E4) such that 
the conditions derived in the first paragraph are not satisfied. Our aim is to 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34K15, 34K25; Secondary 39B99. 
K e y w o r d s : functional-differential equation, asymptotic behaviour, transformation, func­
tional equation. 

Research partially supported by the grant # 201/93/0452 of the Czech Republic. 
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JAN CERMAK 

describe the asymptotic behavior of solutions of such equations. This part can 
be viewed as an application of the results derived by F. N e u m a n [9] and 
generalizes some partial results obtained by T. K a t o and J. B. M c L e o d 
in [4]. 

Throughout this paper, we are going to deal with the scalar FDE 

771 

y'(x) = ]C ak(x)fk (y(Tk(x))). x G [x0, oo), (E2) 
k=i 

y'(x) = ^2ak(x)\y(Tk(x))\rk *&ny(Tk(x)) + b(x)y(x), (E
3) 

k=i 

where x G [x0 ,oo), rfc G (0,1), k = 1, 2 , . . . , ra , 
m 

y'(x) = Yl ak(x)y(Tk(x)) + b(x)y(x). x £ l>0, °°) , (E
4) 

* = i 

and 

y'(x) = a(x)2/(r(x)) + b(x)H(x), x G [x0, oo) . (E^) 

The assumptions we impose on afc , fk , Tfc and b can be summarize as follows: 

(Ax) afc G C°([x 0 ,oo)) , fc = l , . . . , r a ; 
(Aj) afc(x) > 0 (or ak(x) < 0) for every x G [x0, oo) and k = 1 , . . . , ra ; 
(A2) /fc G C°(R), | / f c ( y i ) | < |/ fc(y2)| for any pair Vl,y2 G R such that 

I2/1I < |y2l>
 fc = i , - - - ,™; 

(A3) Tfc G C°([x 0 ,oo)) , Tk(x) < x for every x G [x0,oo) and lim Tk(x) = 00, 

k = 1 , . . . , ra; 

(A4) b G C°([x0 , 00)), where xQ = min< inf T ^ X ) , . . . , inf Tm(aOf; 

(A4) b G C°([x0 ,oo)) and 6(x) < 0 for every x G [x0 ,oo); 
771 

(A5) (i) ]C laA;(x)l + ^(X) -̂  0 f° r a ^ ^ sufficiently large, 
k=l 

771 

(-0 _C lajt(x)l + K x ) -̂  0 for all x sufficiently large; 
k=i 

(A'5) there exists r G C1 ([x0, 00)), T(X) < x, T ' (X) > 0 for every x G [x0, 00), 
lim T(X) = 00 such that either 

x—>-oo 

(i) Tfc(̂ ) < T(x) i n c a s e (As) (0, 
or 
(ii) Tfc(x) > T(X) in case (A5) (ii) 

for arbitrary x G [x0, 00) and fc = 1 , . . . , ra. 

Let us remark that methods used below are applicable also for delays Tfc 

satisfying Tk(x) < x; sometimes small modifications in the proofs are necessary. 
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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

In order to describe the behavior, as x —> co, of the unknown function y(x) 
in terms of the known function g(x), we shall use the following notations: 

(a) If | j& | is bounded as x -» co, we write 

y(x) = 0{g(x)} as x -> co , 

in words, y is of order not exceeding g\ 
(b) If -4|j- tends to zero as x -> co, we write 

y(x) = o{g(x)} as x —> co , 

in words, y is of order less than g\ 

(c) If 4^1 tends to one as x -> co, we write 

y(x) ~ g(x) as x - > c o , 
in words, y is asymptotic to g. 

The main tools of the proof are based on the application of the Schauder fixed 
point theorem and on some results from the theory of functional (nondifferential) 
equations in a single variable. In this paper, we shall use the following version 
of this theorem. 

THE SCHAUDER THEOREM. If S is a convex closed subset of a Banach space 
B, and S* a relatively compact subset of S, then every continuous mapping of 
S into S* has a fixed point. 

As usual, for B we take the space of continuous and bounded functions on 
[:c0,oo) endowed with the sup-norm. Then it is enough to prove the uniform 
boundedness and equicontinuity of S* on [x0,co) instead of the relative com­
pactness. For this purpose, it may be useful to apply the following criterion 
(sec [8]). 

LEMMA 1. The family S* of functions is equicontinuous on [x0,co) if for any 
e > 0 there exists a decomposition of the interval [rc0,co) into a finite number 
of subintervals I-, j = 1 , . . . , n, such that 

\f(x1)-f(x2)\<e 

for every f E 5* . x1,x2elj, j = 1, . . . , n. 

1. FDE and linear differential equations 

Let fk , k = 1 , . . . , m , be functions defined on R. We denote 

Let us start with the following theorem. 
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THEOREM 1. Consider equation (E2) subject to conditions (Ax) , (A2) , (A3) , 
and let 

/ Žк(^ dx < Lţ (1) 

Xo * * = -

hold for some nonzero ( E K . Then there exists a solution y(x) of (E 2 ) satisfying 

limy(x) = Z. (2) 
x—j»oo 

Moreover, if we add condition (A[) and assume that there exists a solution y(x) 
of (E 2) satisfying (2) with £ G 1R such- £ha£ a// £he functions fk, k = 1 , . . . ,m , 
ha?;e £he same szan and nO zeros On a neighbourhood of £, £hen 

oo 

/ ' 
T n ^ = 1 

^ | a ^ ( x ) | d x < o o . 
.fc=l J 

P r o o f . By (1), we can choose r* > 0 such that 

°S f rn \ 

/(SKWIjdl-WT^ 
#0 

- - - • ' • ' л

 C O n-for every j = l , . . . , m . Put x 0 := mini inf ^ ( x ) , . . . , inf Tm(x) > and 
I X>XQ X>XO y 

sider the Banach space I?([x*, oo)) of continuous bounded functions on [x0, oo) 
with the sup-norm || | | . Further, let 

Sri ~{yeB([xloo))\ | | „ - e | | < r * } . 

Define the operator T : S£* -> F>([x*,oo)) by Ty = w, where 
, oo , m \ 

f - J EfljkW/jfe(ffM) d 5 for x G [ x * , x 0 ] , 
/ x I Xo Vfc = l ' 
v y oo/ m \ 

£ - / ( £ a*W/*(yKW))) d 5 for xG [x0 ,oo). 
v x V / c = l 7 

Now, we verify the assumptions of the Schauder theorem. Obviously, S£ is a 

convex and closed subset of H([x*,oo)). We show that T is a mapping of S^ 

into itself. Indeed, 

(x) - ^\ < I i^K(S)\\fMrkm\jás 

XQ 

<f(f:K(s)\\fM+n\)<ls<r* 
xo * f c = 1 
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for every x G [x0, co). 

To prove the continuity of T , we consider a convergent sequence yn G Sf 

with limit y G S£*, and let Tyn = wn, Ty = w. Then 

°r\ m 

\\wn-w\\< \Y,(ak(')(fk(yÁrM) ~ fMrkm)) 
«1 l i xo k=1 

ds. 

Since 
m 

,££, Y,(akW(fk{vM>))) - fMrk(s))))) = o 
k=l 

for every 5 G [x0, 00) and 
m I 77i 

Yl(*kW(fk{Vn(Tk(8))) - fMTki'))))) <2|/(|e|+r-)|X;i-**(*)l 
k=l k=l 

for every s G [x0 ,co), the assumptions of the Lebesgue dominated convergence 
theorem are satisfied. This implies that lim \\wn — w\\ = 0, hence T is con-

n->oo 

tinuous. 
Further, \\Ty\\ < |£| + r* for any y G S£* , i.e., TSf is uniformly bounded. 

To show that TSc is equicontinuous on [x0 ,00), we use Lemma 1, It is easy to 
see that for any e > 0 there exists x* G [a;0,co) such that the inequalities 

\Ty(Xl)-Ty(x2)\< f( £ |a f c(S) | | / f c(y(r. .(S))) | ) ds 

^ X / ( E K ( S ) | ) d5<£' 

where K = max j l / ^ l f l + r * ) | , . . . , | / m ( | £ | + r * ) | } , hold for any y G S£* and any 
x2 > xx > x*. Since the interval [x^,x*] is compact, by applying Lemma 1, we 
get that TS£* is equicontinuous on [x0 ,co), hence, TS£* is relatively compact. 
Then, by the Schauder theorem, there exists y G S£* such that y = Ty, in other 
words, there exists a solution y(x) of (E2) satisfying (2). 

Conversely, let (2) hold for a solution y(x) of (E 2 ) , and denote by [a,/?] an 
interval such that f G [a, /3], and the functions fk have the same sign and no 
zeros on [a, (5]. Further, take x3 G [x0, 00) sufficiently large such that y(rk(x)) G 
[a, /3] for every x G [x3, 00) and k = 1 , . . . , m and put 

7 : = m i n { | / 1 ( a ) | , . . . , | / m ( a ) | } . 
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Then, using (A^), we get 

< 

j(jb"k(s))ds 

J (f2%(s)fMrk(s)))) ds 
XЗ 

= -\y(x)-y(x3) 

Letting x -> oo we can see that 

# 3 ~~ 

D 

Remark 1. Theorem 1 also holds for FDE of some other types, e.g., for equa­
tions with an advanced argument. 

Now it may be useful to recall the following well-known result, which is 
stronger than the second part of Theorem 1 for equations (E 2 ) with ak(x) > 0. 

THEOREM 2. Consider equation (E 2 ) subject to conditions ( A J , (A 2 ) , (A 3 ) , 
and let ak(x) > 0 for every x E [x 0 ,oo), and yfk(y) > 0 for every nonzero 
y 6 R, k = 1 , . . . , ra . Then equation (E 2 ) has a bounded solution y(x) if and 
only if 

/ЙЧ dx < co. 

P r o o f . The proof is given in [2]. D 

LEMMA 2. Consider equation ( E 3 ) , resp. ( E 4 ) , and let conditions (A x ) , (A 3 ) , 
(A4) be satisfied. If 

resp. 

OO , s Tfc(x) X 

J ( z E lafc(x)l Є X P | rk J b(u) du- J Ь{ 
x0 ^ k=l V X Q X Q 

J (jГ\ak{x)\expL J Ь{u) 

XQ ~ тk(x) 

u) du > 1 dx < co , (3) 

du > ] dx < oo , (4) 
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then every solution y(x) of (E3). resp. (E4) ; satisfies the asymptotic relation 

lim I y(x) expi - / b(u) du I j = L G R. (5) 

— 0 

P r o o f . Take equation (E3) with rk G (0,1], i.e., at the same time we 

prove the assertion for equation (E4). Put z(x) = exp< — J b(u) du \y(x). Then 
x0 

equation (E3) becomes 

m , rk{x) x . 

z\x) = Ylak(x)exv\rk I b(u) du- I b(u) du\\z(rk(x))\rk sgnz(rk(x)) . 
k = l ^ x0 x0 ' 

Put d0 := x0 and d- := sup {x \ rk(x') < d-_x for every x1 G 
_ € [ d j _ i , o o ) 

[dj_1,x] and k = l , . . . , m } , j = 1,2,.... Now denote I- := [d^_l,d-\, 
m- := sup{|z(x)|} and M- := max{l ,m l 5 . . . , m } , j = 1,2,.... Notice that 

x£lj 

oo j 

IJ ^ = [x0, oo), and rk(Ij+1) C IJ ^j f o r e v e r y fc = 1 , . . . , m and j = 1, 2, 
j = i P = I 

Take £ G F+1 arbitrarily. Then 

z(t) - z(dj) 

= / __ afc(x)exP^ rk / K«) d u ~ / &(«) d « f KT fc( x ) )P sgnz(Tfe(x)) J dx, 

4 V*=1 ^ xo xo J 1 
and we can carry out the following estimates: 

1 ( m ( T k ^ x \ \ 

K O I f . l ^ O I + M j / f 53|a f c(x)|exp|r f c / 6(u) du - j b(u) du I j dx 
d, ^ f c = 1 ^ _o x0 ' ' 

( d i + i / m , rk{x) X \ \ \ 

l + I ( E K W | e x p { r f c j " 6 ( « ) d u - y 6 ( « ) d « l j dxj . 
—j ~ 0 -C 0 From here we obtain 
d i + i / ™ / r fc ( x ) 

m (
<ť> + l / m , Гfc(ï) X ì \ \ 

1 + / E K W | e x p r f c у 6 ( « ) d t i - у ò(u )du И d x j , 

flí .C 0 — 0 193 
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hence, 

Tfc(z) 
J Í r / "L i 

+i <m1f[(l + I í £ |ofc(x)| expi rfc j 6(«) du - j fc(u) d« i J dx j . 

Because of (3), resp. (4), we get m- < M for every j = 1 ,2 , . . . , what implies 
that z(x) is bounded on [x0 ,oo). 

Further, let x2 > xx > x0. Then it follows from the previous estimates that 

*2 / m ґ rk{x) 

\z(x2)-z(x1)\<M Jlj2\ak(x)\exJrk j b(u) du - j b(u) du I J da;. 

Xi \ f c = 1 ^ x0 x0 ' ' 

Condition (3), resp. (4), implies that the left side of this inequality tends to zero 
as x l 5 x 2 —> co. • 

Remark 2. By Lemma 2, every solution y(x) of ( E 3 ) , resp. ( E 4 ) , is either 

asymptotic to the function cexp<| J b(u) du L c G R, or it is of order less than 
x0 

expl J b(u) du >. 
XQ 

Remark 3. Putting 

z(x) = exp< — / b(u) du \y(x), 

equations (E 3 ) or (E 4 ) become the equation of the form ( E 2 ) , namely 

m s Tk(x) x x 

z'(x) = J2ak(x)exP\rk I Hu) du~ I b(v) du\\z(Tk(x))\rk sgnz(Tk(x)) , 
k = 1 ^ XQ XQ ' 

where rk G (0,1), or 

z'(x) = ^Zak(x)exp\ ~ / b(u) du\z(Tk(x)) , 
k=1 l rk(x) > 

respectively. Then Theorem 1 enables us to establish conditions ensuring the 
existence of a solution y(x) of (E 3) or ( E 4 ) , which is asymptotic to 

cexp< J b(u) du >, c being a real. 
x0 

Theorem 1, Lemma 2 and Remark 3 yield the following two assertions. 
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THEOREM 3. Consider equations ( E J and (E3) subject to conditions (Ax), 
(A 3) . (A 4 ) . and let inequality (3) hold. Then for every solution y(x) of (E3) 
there exists a solution y(x) of (Ex) such that either 

y(x) ~ y(x) Q5 x 4 o o , (6) 

y(x) = o{y(x)} as x -> oo. (7) 
or 

Conversely, for every solution y(x) of (Ex) there exists a solution y(x) of (E3) 
such that (6) holds. 

THEOREM 4. Consider equations (Ex) and (E4) subject to conditions (A-J, 
(A 3 ) . (A 4 ) ; and let inequality (4) /io/d. 27ien for every solution y(x) of (E4) 
there exists a solution y(x) of (Ex) such that (6) or (7) is fulfilled. Moreover, if 

| ( E K ( * ) | e x p j - J b(u)du\) d : r < l , (4') 

^ 0 ~~ Tk(x) 

then for every solution y(x) of (Ex) there exists a solution y(x) of (E4) such 
that (6) holds. 

Remark 4. A result similar to that of Theorem 4 was obtained, e.g., in [10], 
where a different approach was used. 

In the next statement, we show the strictness of condition (3) for the existence 
of a solution y(x) of (E3) asymptotic to a nonzero solution y(x) of (Ex). 

COROLLARY 1. Consider equations (Ex) and (E3) subject to conditions (A x ) . 
(A[), (A 3 ) ; (A 4 ) . If there exists a solution y(x) of (E3) asymptotic to a nonzero 
solution y(x) of (E 1 ) . then condition (3) follows. 

P r o o f . The statement follows from the second part of Theorem 1 according 
to Remark 3. • 

The following example shows that condition (4') in Theorem 4 cannot be 
improved. 

E X A M P L E 1. ([10; Example 1]) The equation 

y'(x) = a(x)y(x - 1), x G [0, oo), 

W n e r e . 2 r IV. m 

-2sm27rx for x G [2,3], 

otherwise, 

195 
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has every solution vanishing on the interval [3, oo). On the other hand, 

00 

i \a(x)\ dx = 1. 

Now we illustrate the above results by the following example. 

E X A M P L E 2. We investigate the asymptotic behavior of solutions of the retarded 
sublinear equation 

y'(x) = exp{ax}\y(xs)\r sgny(xs) + by(x), x G [2, 00), 

where a, b G E, r,s € (0,1). First assume that fl<6ora--6<0. Then 

00 

/ exp{ax + rb(xs - 2) - b(x - 2)} dx < 0 0 . 

Thus, according to Theorem 3, for every c G R there exists a solution y(x) of 
the equation investigated, which is asymptotic to cexp{6x}. Moreover, those 
solutions y(x) not having this property are of order less than exp{6x}. 

If a > b or a = b > 0, we get 

/ e x p { a x + r 6 ( x - - 2 ) - 6 ( x - 2 ) } d x = oo l 

2 

ing Theorem 2 and Remark 
solution y(x) of order not exceeding exp{bx}. 

2 

hence, by applying Theorem 2 and Remark 3, this equation has no nonzero 

2. Linear FDE and linear functional equations 

R e m a r k 5. The transformation 

V T/-V ' 

which has been used so far, makes the coefficient of the unknown function y(x) 
vanish. Now we consider a rather more general transformation also involving a 
change of the independent variable as well, namely, 

h(t) 

z(t) = exp{ - í b(u) ău }y(h(t)) , (8) 

ťo 

, Ht) 

)< — / Ъ(u) ău }i 
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where t0 = h~l(x0) and h is a C^diffeomorphism from [t0,oo) onto [x0 ,oo). 
Sometimes it may be useful to convert equation (E4) via (8) into an equation 

m 

z'(t) = J2 Ak(t)z(iik(t)), t G [t0, oo), (E5) 
k=i 

( h{t) 1 

where Ak(t) = ak(h(t))h'(t)exp\ - J b(u) du\ and fik(t) = h~l (rk(h(t))) 

for every t G [t0, oo). Notice that then 

lim z(t) = lim exp< — / b(u) du >y(h(t)) = lim exp< — / b(u) du \y(x). 
i->oo t—yoo I J I x->oo I J I 

Now consider equation (E 4 ) . There exist many results on global properties 
of equation (E5) (with m = 1) provided this equation has a constant delay, i.e., 
it is of the form 

z'(t) = A(t)z(t - c ) , te [t0, oo) , c > 0 (E^) 

(for references, see, e.g., [7]). The problem of the existence of a suitable transfor­
mation converting a given equation (E4) into equation (E5) was solved in [9]. 
Let us recall the most important facts. 

If fi(t) = t — c, then the relation between r and /i can be rewritten as 

h(t-c) = T(h(t)), t G [ t 0 , o o ) , c > 0 . (9) 

Putting cp := h~l, equation (9) becomes 

<P(T(X)) = <p(x) - c, x G [x0,oo) , c > 0. (9') 

This equation is called Abel equation and has been very deeply studied within 
the framework of the theory of functional (nondifferential) equations in a single 
variable (for more details, see, e.g., [5]). This theory implies that by assuming 
T G C 1 ([x0, oo)), T(X) < x and T'(X) > 0 for every x G [x0, oo), we obtain, e.g., 
by using the step method, a C1-solution ip(x) of (9') (and also a C1-solution 
h(t) of (9)) with a positive derivative on the interval of definition. 

Then the transformation (8), where the function h satisfies (9), converts every 
solution y(x) of equation (E4) with continuous coefficients a, b and delay r 
into a solution z(t) of equation (E 5 ) . 

Using this approach we can, among other things, get further information 
about the asymptotic behavior of (E4) with a(x) < 0 provided condition (4) is 
not fulfilled (notice that then, according to Theorem 1 and Remark 3, equation 
(E4) has no solution y(x) asymptotic to a nonzero solution y(x) of ( E ^ ) . 

We are going to generalize the following assertion proved in [6]. 
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THEOREM 5. Consider equation (E'5), where A is continuous on [tQ,oo), 
oo t 

A(t) < 0 for every t G [t0,oo), J \A(t)\ dt = oo and lim f \A(s)\ ds < f. 
t0

 t->°° t-c 
Then every solution z(t) of (E'5) tends to zero as t —r oo. 

Now it can be easily proved the following proposition. 

PROPOSITION 1. Consider equation (E'4). where the functions a or b are 
continuous on [;r0,oo) or [ T ( X 0 ) , O O ) , respectively, a(x) < 0 for every x G 
[x0, oo). and r is a continuously differentiate function with a positive derivative 
on [x0, oo) fulfilling T(X) < x for every x G [x0, oo). // 

J (\a(x)\expl- j b(u)du\\ dx = oo 

т(x) 

and 
X / f S -ч ч 

Ҡ 
X / ( 

I (\a(s)\exJ- I lim / I |a(ő)|exp< - / b(u) dгx > J ds < , 

T(X) N ^ T(S) 

then (7) is satisfied for any solution y(x) of (E'4) and any solution y(x) of (Ex). 

P r o o f . It is enough to show that the statement can be covered by Theo­
rem 5. Using (8) we get 

A(t) = a(h(t))tí(t)exp 

i.e., the integral conditions of Proposition 1 can be converted to those of Theo­
rem 5 using the integral substitution. • 

E X A M P L E 3. Consider the equation 

b 
x 

where a, b G R, a < 0, A G (0,1). Since 

y'(x) = ±y(\x) + ±y(x), x € [ ! , ( » ) , 

O O / s X -v \ OO 

/(JF-"{-/«d"})dl = WAl/ 
dx _ 
— = co. 

X 

there is no solution y(x) of this equation such that y(x) ~ xb as x —> oo. 
If a > 0, then with respect to Theorem 2 and Remark 3, we have no nonzero 

solution y(x) of this equation such that y(x) = 0{xb} as x —> oo. 

198 



ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS 

If a < 0, then we may apply Proposition 1. Since 

,/(ifЧ-A - 1 Urn / \f exp^ - / ± du } ) ds = |a|A&lnA 
Xx ^ ^ As 

we get that if — | < aA^lnA""1 < 0, then every solution y(x) of the equation 
investigated satisfies y(x) = o{xb} as x —> oo. 

Notice that the equation 

y'^ ~ ~^y{exp{~^}X) ' * € [l,oo), 

(i.e., a = — 1, b = 0, A = exp{ — ̂ }) has a solution y(x) = sinlnx, which is not 
of order less than one. In other words, the constant | in Proposition 1 cannot 
be improved. 

Now we turn our attention to equations (E4), resp. (E4) with b(x) < 0. 
Condition (4') or (4) is satisfied in such a case only for equations (E4) or (E4) 
with very small absolute value of ak(x) or a(x), respectively. Notice that certain 
cases of equations of the form (E4) with a(x), b(x) < 0 can be covered by Propo­
sition 1 (see Example 3). In what follows, we wish to derive estimates of solutions 
of (E4), resp. (E4) under assumptions different from those of Proposition 1. 

Suppose that assumptions (Ax), (A3), (A4), (A5) are satisfied, and let <p 
be an increasing C1-diffeomorphism fulfilling (9r). Then we denote 

\k(s) := expfafafa-^s))) - s} , se [v>(x0).oo), (10) 
and 

{ sup A^s) in case (A5)(i), 
«G[*(xo),oo) ( 1 Q ; ) 

inf ^ .̂(5) in case (A5)(ii). 
s£[(p(x0),oo) 

In the next theorem, we shall require the existence of a G R such that the 
inequality 

m 

X ) ( ^ K ( x ) | ) < a V ' ( x ) - 6 ( x ) (11) 
k = \ 

is satisfied for every x > xQ, x being sufficiently large. Therefore we denote 

A := {a G R | a satisfies (11) for all x sufficiently large} . 

If A is nonempty (notice that this holds, e.g., if ak(x) = 0{b(x)} as x —> 00), 
wre put 

a* := mi A. 
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Moreover, if a* > - c o , we introduce the function 

m 

£(*) ••= £ « K 0 - ) l ) -aV(*) + M*) 
k=l 

and 
e(x) := max{e(x), 0} , x G [x0, oo). 

Notice that then a* satisfies 

Y/(\
a

k'\ak(x)\)<a*iP'(x)-b(x) + e(x) ( i r ) 

fc = l 

for every x G [x0, oo). 
Using this notation we have: 

THEOREM 6. Consider equation (E4) subject to conditions ( A J . (A 3) , ( A ' ) , 
(A5)(i) , (A5)( i ) . I/ a G A, then every solution y(x) of (E4) satisfies 

y(x) = 0{exp{a(p(x)}} as x -> oo . 

oo 

Moreover, if J e(x) dx converges, then every solution y(x) of (E4) satisfies 
x0 

y(x) = 0{exp{a*(p(x)}} as x —r oo ; a* > 0 . 

THEOREM 7. Consider equation (E4) subject to conditions ( A J , (A 3 ) , (A 4 ) , 
(A5)(ii), (A5)(ii) . If a e A, then every solution y(x) of (E4) satisfies 

y(x) = 0{exp{a(/?(x)}} as x —r oo . 

oo 

Moreover, if a* > - c o , a*(/p'(x)—b(x) > 0 for every x G [x0 ,co), and J s(x) dx 
XQ 

converges, then every solution y(x) of (E4) satisfies 

y(x) = 0{exp{a*(f(x)}} as x -> oo ; a* < 0 . 

P r o o f . Since the technique of the proof does not depend on whether or 
not conditions (A5)(i), (A5)(i) or (A5)(ii), (A5)(ii) are assumed, we prove this 
statement under (Ax) , (A3) , (A4) , (A5) , (A5) . 

It is enough to prove the O-estimate with a* because the proof of the cor­
responding O-estimate with a G A is involved. 

We carry out the transformation 

z(t) = exv{-a*t}y(h(t)), 
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where h = <p~x is an increasing C^diffeomorphism fulfilling (9), converting 
equation (E4) into an equation 

^ W = E(%( / l W)^Wexp{a*(/z f c ( i)- i)}^(/i f c (0)) + (KM*))^W-«*)^(*), 
k=\ 

t G [tp(x0),oo), where Hk(t) = h~l (rk(h(t))), k = 1,... ,ra. Further, 

h(t) 

z'(t)exp^ a*t— / b(u) du 
XQ 

h(t) 

{-/ 
V XQ 

+ z(t) expJ a*t - í b(u) du \ (a* - b(h(t))h'(t)) 
^ XQ ' 

= _lUk(h(t))h'(t)exĄa*(џk(t)-t)}exJa*t- J b(u) du\z(џk(t))\ , 

l .C, 

d г r 7 ì 
— z(ť) exp< a*t — / b(u) du 

*- ^ XQ ' 

= _l{ak(h(t))ti(t)exp{a*(tik(t)-t)}expla*t- J b(u) du U(/ífc(ť)) 
XQ 

Now we denote by (cL), j = 1,2,..., an increasing consequence of reals, 
where d0 := (p(x0) and d- := sup {t \ /J>k(tf) < d-_1 for every tf G 

te[dj-i,oo) 

[dj_l,t] and k = l , . . . , r a } , j = 1,2, Further, let I. := [d^-pO^-], 
rrij := sup{\z(t)\} and M. :=max{m 1 , . . . ,m J .}, j = 1,2, 

Choose £ G _"•_!_! arbitrarily. Integrating the last relation we get 
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(
Һ(s) ч - , * 

« - . - / « « ) d . XQ ài 

m * / 

= E / [ak(h(s))h'(S)exp{a*(fik(S)-S)} • 
k=1 d ^ 

a3 

{
h(s) . . 

a*s- j b(u) du >z(fik(s)) J ds, 

hence, 

Mt) ÍMt) 1 

z(t) = exv<a*(dj-t)+ f 6(u) du L ^ . ) + exp l b(u) du-a*t\ • 

• £ / U f c ( / .W)^(a)exp{a*( / i f c W-s)} • 
* = 1 dj ^ 

í T i \ 
•exp<a*s — / b(u) du\z(fik(s)) ds. 

This implies 

aҶd^. - ť) + / b(гx) dгz > + M. exp < / ò(гz) du - a*t 

Һ(d3) ' [ xo 

h(s) 

)< a*s — / 6(гx) exp< as — l ü[u) du } I ds • (12) 

To estimate the last sum of integrals, we remark that (10) and (1CV) imply that 
exp{fik(s) - s} = Xk(s), Xk e (0,1), and Xf (s) < Xf for every s G [d0,oo) 
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and k = 1,..., m. Then using (II7) and the assumptions of Theorem we get 

E j(ak(h(s))ti(s)Xf(s)expL*s- j b(u) d u l J ds 
k = 1 dj ^ ^ XO ' ' 

< / E A f K (Ks)) \h'(s) exp a*s - j b(u) du\\ ds 
dj k = l ^ { xo > ' 

< f[(a*- b(h(s))h'(s)) expJ a*s - f b(u) du\) ds 
Xo 

h(s) 

< 

+ f(ě(h(s))ti(s)expla*s- í b(u) du l ] ds 

a*s - ( b(u) du l + expi a*t - í b(u) du l í ě(h(s))h'(s) ds . 
Vrt ' -I di >• T« ' A • 

dj v x xo 

h(s) ^ -, t f Ht) 

exp< cTs — I b(u) du 
Xo 

Substituting this into (12) we have 
h(t) 

h(dj) 

h(t) 

a*(dj-t)+ í b^dui+Mj 

h(dj) > 

Í
h(t) . «., + ! 

a*(^. - ť) + í b(u) du l + M- í ě(h(s))h'(s) ds 

1 + í ě(h(s))ti(s)ds\ . 

đt 

Since t E J- + 1 was arbitrary, we get 
h(dj + 1 ) 

1 + / є(гx) dгx J , 

hence 

h(dá) 

h(dp+1) 

m j+i - m i f l ( l + / ^ ^ á u ) 
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Thus, according to the convergence of the infinite product (as j —> co), we have 

\z(t)\ = exp{-a*t}\y{<p-1(t))\<M 

for every t > d0. 
As was remarked above, the proof of the first part of the assertion is quite 

similar to this one just presented (with a € A instead of a* and e(x) = 0 for 
every x G [x0 ,oo)) . • 

E X A M P L E 4. Consider the equation 

y,{x) = ̂ y ( f ) + y ( f ) _ y{x)' x € [ 3 > 0 0 ) • (13) 

Putting T(X) = | we can verify the validity of (A5)(i). Then equation (9;) 
becomes 

Kf) =v(x)~c 

having tp(x) = lnx as a required solution (with c = In2). Thus inequality (11) 
acquires the form 

\2J x l n f + \e) ~ x + i ' 

which implies that A = (0,oo) and a* = 0. Now, according to the first part of 
Theorem 6, every solution y(x) of (13) is of order not exceeding any positive 
power of x. On the other hand, the second part of Theorem 6 does not yield 
that every solution y(x) of (13) satisfies y(x) = 0{1} a s x - f o o (i.e., y(x) is 
bounded) because 

l + x 
<x) = TTTir x ln ^ 

oo 

and fs(x) dx = oo. Notice that (13) in fact admits unbounded solutions, 
3 

namely y(x) = chix. 

COROLLARY 2. Consider equation (E4) subject to conditions (A x ) , (A 3 ) , 
(A\), (A5) , (A'5). Then we have: 

m 
(0 */ S 1^(^)1 + Kx) < 0 /Or a// x sufficiently large, then every solution 

k=i 

y(-c) O/ (E4) is bounded; 
m 

(ii) */ S lafc(x)l + b(x) > 0 /Or all x sufficiently large and 
k=i 

/ (X>fc(x)I+ &(*)) dx<oo; 
* o * f c = 1 
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then every solution y(x) of (E4) is bounded; 
m 

(iii) if ^2 \ak(x)\ + Lb(x) < 0 for some L G (0,1) and every x E [x0,oo) 
k=i 

(p'(x) 
sufficiently large, and if the function —TV-4- is bounded for an increasing 

-b(x) 
C1-diffeomorphism ip fulfilling (9 ' ) . then every solution y(x) of (E4) 
tends to zero. 

P r o o f . The assumptions of (i), resp. (ii), implies that a* < 0. Further, 
put A := min fAj , . . . , A m } , and let ax < 0, L G (L, 1) be such that 

771 

AQ^|a f c (x) |<I(-6 (x)) 
k = l 

tp'(x) 
for every x G [z0,oo) sufficiently large. Assuming , , ' < M for every x G 

—o[x) 
[x0,co) we put 

L - \ 
a2 := ~T7~ 1 M 

From here we get 

< 0 . 

a2(p'(x) > (L-l) (-b(x)) , x G [x0, oo). 

If we denote a := ma x j a j , a2}, we have 

771 771 

J2 AIM*)I < A" E K(*)l < ~Lb(x) < a<p'(x) - b(x), 
k=l k=l 

x being sufficiently large, and this implies Q G A . 
Now all the assertions follow from Theorem 7 with the respect to the un-

boundedness of (p. • 

R e m a r k 6. Corollary 2 gives conditions under which the zero solution of (E4) 
is stable, resp. asymptotic stable. It might be interesting to compare these 
results with those obtained by the methods of the stability theory of FDE . 
These methods applied to equation (E4) yield that the zero solution of (E4) 
is uniformly asymptotic stable if ak(x), b(x) are continuous bounded functions 

n 
satisfying b(x) < — 5 < 0, ^2 \a>k(x)\ < ^6 for a suitable L G (0,1), and 

k=i 
Tk(x) = x — rk(x) are continuous delays with bounded rk(x) (see [3; p . 154]). 

Considering these delays, we can formulate the results of Corollary 2 in a very 
similar way. Indeed, if rk(x) = x — rk(x), 0 < rk(x) < r , then T(X) = x — r, and 
equation (9;) with c = r admits the identity function tp(x) = x as a solution. 

205 



JAN CERMAK 

Now Theorem 7 implies that every solution y(x) of (E4) is of order not exceeding 
e x p { - a x } , a < 0. 

In what follows, we consider equation (E4) with b(x) < 0. Using similar ideas 
as in the previous part we obtain conditions under which every solution y(x) of 
(E4) can be approximated by a solution of a certain functional equation. 

First we consider the equation 

a(h(t)) 
a(t) = a(t - 1) + In _ ^ > , t E [t0, oo), (14) 

where a, b E Cn([x0, oo)), a(x) ^ 0, b(x) < 0 for every x E [x0 ,oo), and h is 
a Cn-diffeomorphism from [tQ, oo) onto [x0, oo), n = 0 ,1 , 2 , . . . . This equation 
has a Cn-solution a(t) defined on [t0 — l,oo) which depends on an arbitrary 
function (see [5]). For 

ar(t) := Re a(t), rtr(t) := max{-cY;(£), 0} , t E [t0, oo), 

we have the following theorem: 

THEOREM 8. Consider equation (E 4 ) ; where a,b,T E Cn([x0, oo)), n being 
specified later, a(x) ^ 0. b(x) < 0, r (x) < x and T'(X) > 0 for every x E 
[x0 ,oo). Further, let <p be an ^ncreasing Cn-diffeomorphism fulfilling (9') (with 
c = 1), h := ip~l on [</?(x0), oo). and /e£ a be a Cn-function fulfilling (14). 
T/ien ufe /mve: 

(i) if n = 2. and t/iere exists £' E [(/?(x0), oo) such that 

a'r(t) - b(h(t))h'(t) > 0 /or even/ * > t', 

< W . . . , . ^./ 
—— \ , .—— ^s non^ncreas^nq tor every t > t , 
a'r(t)-b(h(t))h'(t) 

and 

0 0 

7 <(*) àt < oo, 
<(t)-60(t))/.'(t) 

£/ien every solution y(x) of (E4) satisfies 

y(x) = 0\exp{ar((p(x))}\ as x -> oo ; 
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(ii) if n = oo, and there exist t" G [(^(x0),co) and suitable real constants 
K > 0 . p > 1 such that 

-b(h(t))h'(t) 

a'(t) 

(m) 

(m) 

-ò(/ i( í ) ) /г '(ť) 

< 

< 

Km+\mm 

fm+p 

Km+\mm 

tm+P 

for every t > t" and m = 0,1,2, . . . , then no solution y(x) of (E^) 
satisfies 

y(x) = olexp{ar((p(x))} j as x -r oo , 

except the trivial one. 

P r o o f . The idea of the proof of part (i) is similar to that used in the proof 
of Theorem 6. The main difference consists in using a different technique in 
estimating the integral in (12). 

Using (9) and (14) we get that the transformation 

z(t) = exp{-a(t)}y{h(t)) 

converts equation (E4) into the form 

z'(t) = -b(h(t))h'(t)z(t - 1) + (b(h(t))h'(t) - a'(t))z(t), t e [<p(x0), o o ) . 

(15) 
This can be rewritten as 

Ш 
(t) exp< a(t) — / b(u) du 

^ x0

 J 

h(t) 

b(h(t))h'(t) expJ a(t) - f b(u) du \z(t - 1) . 

Denote by (d-), j = 0,1, 2 , . . . an increasing consequence of reals, where dQ := t' 

and d. := dQ+jd0, j = 1,2,... . Further, let I. := [dj^dj], Mj := s u p { | z ( t ) | } , 

j = l , 2 , . . . . 
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Choose t e / J + 1 arbitrarily. Then 

h(t) 

a(dj) - a(t) + / b(u) du \z(dj) + exp < / b(u) du - a(t) 

h(dj) ' [x0 

t , , h(s) . 

• í I -b(h(s))tí(s) exp i a(s) - í b(u) du \z(s - 1) ) ds 

which implies 

\z(t)\ < Mj expI a^dj) - ar(t) + I b{u) du 

h(t) 

h(dj) 

+ Mj exp < ľ b(u)du-ar(t) 
XQ 

t , , Һ{S) . . 

í í -b(h(s))tí(s) expJ ar(s) - ľ b(u) du \ ) 

(16) 

d s . 

To estimate this integral, we write 

t 

< 

jl-b{h(s))h'(S)exPL(s)- J b( 
ij 

(
h(s) v -, t 

ar(s) - / b(u) du > 

t , , *>{*) 

~ / ( < ( s ) e x p J a r ( s ) - / b(u 

dj ^ ^ 
• h(s) -. -, t 

exp I ar(s) - / b(u) du > 

u) du > ) ds 

h(s) 

XQ 

) du }\ ds 

XQ 

t , , Цs) . . 

+ / I < ( s ) exp^ ar(s) - / b(u) du > ) ds . 
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Then integrating by parts we have 

t , , h(s) . . 

/ I a' r(s)exp< ar(s) - \ b(u) du\\ ds 

dj XQ 

, h(s) . 

e x p | a r ( 5 ) - f b(u)du\- a'r{s) 

XQ 

(s)-b(h(s))h'(s) 

h(s) 

b(u) du 

ài 

<(*) 

< 

+ j í exp|ar(S) / „,.., _ , ̂  . _ b{h{s))hl{s) 

dj x v x0 ' x 

Í
h(s) . — 

a(s)- f b(u)du\ , x
 a^S} xx, / x A J y } a'r(s)-b(h(s))h'(s) 

XQ ' 

h(t) 
+ exp< ar(t) - l b(u) du 

ds 

XQ 

<(*) 

exp< 

h(s) N l ť 

ar(s) — / b(u) du 

XQ id} 

a'r(s)-b(h(s))h'(s)_ 

K(dj) 
a ^ - b ^ d ^ h ' ^ ) 

Substituting this into (16) we have 

\z(t)\<Mj(l + -
Қ(dj) 

hence, 

a ^ - b ^ d ^ h ' ^ ) ) ' 

<(dj) 

t Є Ij+1, 

Mj+1<MJ^1+ a,{dj)_b{h{dj))h,{dj)j 

TT ( <(d p ) \ 
-Mll\{1+ K(dp)-b(h(dp))h'(dp)) ' 

j = 1,2,... . Now applying Cauchy's integral criterion we see that the sequence 
(M-)?___ is bounded as j —r oo, and this proves (i). 

Let the assumptions of (ii) be fulfilled. Rewrite equation (15) as 

r(t)z'(t) = z(t - 1) - s(t)z(t), t Є [ф0), oo) (17) 

209 



JAN CERMAK 

where 

r("- - M M V M
 and s«> = 1-»'"«'>• 

This equation was investigated by N. G. de B r u i j n [1], and we recall here 
the statement relevant to the proof of (ii): 

Let r, 5 G C°°(\(p(x0),oo)), and let the positive real constants K, p, p > 1 
satisfy 

for every t sufficiently large and m = 0,1,2, . . . . Then equation (17) has no 
nontrivial solution z(t) tending to zero as t -> oo. 

The assertion of (ii) is now covered by this result. • 

Remark 7. If \a(x)\ > -b(x), then it is possible to choose a solution a(t) of 
(14) such that a'r(t) > 0. Then a'r(t) = 0, and we can omit the assumptions of 
Theorem 8(i) and only specify n = 1 in Theorem 8 (i). 

Remark 8. Putting tp(x) = exp{a(ip(x))} we get that the function ip(x) fulfils 
the linear functional equation 

^ ( x ) = r ^ y HT(X)) > x G -xo> °°) • 

Then Theorem 8 implies that, under certain assumptions, every solution y(x) 
of (E4) can be approximated by a solution ^(x) of this functional equation. 

EXAMPLE 5. Consider the equation 

y'(x) = axy(\x) + by(x), x e [1,00), (18) 

a, b e R, b < 0, A e (0,1). Since equation (97) (with c = 1) becomes 

<p(\x) = ¥>(-c) - 1, x e [1,00), 
1 

the function y?(x) = - is the required C°°-diffeomorphism, hence /i(t) = 
A_t is a C°°-diffeomorphism fulfilling (9). Then equation (14) becomes 

a\-t 
a(t) = a(t - 1) + In —— , t$ [0, 00), 

and admits an infinitely differentiable solution a(t) -= ftl _|_ i ) n n A
-1) + £ In — . 
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Now it is easy to verify that the assumptions of (i) and (ii) are valid. Indeed, 

ar(t) - bX~l > 0 for every t > 0, 

cV (t) r is nonincreasing for every t > 0, 
a'r(t) - b\ 

and 

J K 
0 

Similarly, 

r dt < oo. 
(t) - ъx-1 

o 

-b(h(t))h'(t) 

and 

1 V m ) _ I n " 1 " ^ t 

a'(í) ) (ra) \ ^ 

-b(/l(£))/v 

Since 

'AVn+ iQ < ifm + 1 

-6 
and 

Лŕ 

- ò 
(lnm Л) (t+l)+ (Ь" 1 " 1 Л) (m - ln - ^ ) ť m + " < Km+1mm 

for a suitable K > 0, p > 1, and for every £ > 1 and m = 0 , 1 , 2 , . . . , the 
assumptions of (ii) are valid as well. 

Summarizing this, every solution y(x) of (18) satisfies 

y(x) = O^exp j 2 1 ^ A _ i + -^FT + lnA"lbi l n ^ [ f as x -> oo , 

and no nontrivial solution H(x) of (18) satisfies 

I n M , , í f ln2x , lnx , l n ^ , 11 
y{x) = °{exp\2h^ + -T + hTA^ l n x j | 

as x —> co , 
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