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INEQUALITIES FOR THE LANDAU CONSTANTS 

D J U R D J E C V U O V I C — JACEK KLINOWSKI 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. A new expansion for the nth Landau constant Gn, involving the 
digamma function ip, leads to the sharp double inequality 

1.0663 < Gn - (l/7r)ip(n + 5/4) < 1.0724. 

1. Introduction 

The normalized binomial middle coefficients, fii, can be variously defined in 
terms of the familiar binomial coefficients and factorials as 

H-HD-tA-1/*)-^- '= 0^-- ™ 
or as 

(2i - IV1 

^o = 1 ' Vi = ,2i)\\ " ' * = 1
J 2 , 3 , . . . , ( lb) 

in terms of double factorials, which for n = 1, 2, 3 , . . . are given by 

(2n)!! = 2 • 4 • 6 • • • (2n), (2n - 1)!! = 1 • 3 • 5 • • • (2n - 1) 

with 0!! = 1. The sum 

G» = g ^ = - + ( 2 J + (2T4J + - - - + ( 2.4-6-(2n) ) (2) 

is known as the nth Landau constant ([2]-[3], [7]-[8]). It was proved ([7]) that, 
if a function / ( z ) , which is analytic throughout the interior of the unit circle 
and expandable in the Taylor series 

00 

i=0 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 11Y60; Secondary 33B15, 41A35. 
K e y w o r d s : Landau constant, d igamma function. 
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with \f{z)\ < 1 whenever \z\ < 1, then 

£«, 
i=0 

<Gn-

Moreover, if Tn(f) is a polynomial operator associated to f(z), then its norm 
is given by \\Tn\\ = Gn. 

An investigation of the asymptotic behaviour of Gn was begun by L a n d a u 
[7], who established that Gn ~ ( l /7r)logn . Further, W a t s o n [9] proved that 

G„ 
Ћ 

log(n + 1) + A - єn 

where 
i 

- 4 = —(7 + 4log2) « 1.0663 £ n - • 0 ( n - r o o ) 

(Зa) 

(Зb) 

and 7 ~ 0.5772 is Euler's constant. This expansion was used in obtaining the 
double inequality ([2]) 

1 + -i- log(n + 1) < Gn < 1.0663 + - log(n + 1), n = 0,1,2, . . . , (4a) 

which was sharpened [3] to 

1.0663 < Gn - - log(n + 0.75) < 1.0916, n = 0,1,2, . . . . (4b) 

In this note we give a new expansion of Gn which allows a new sharp estimate 
of the Landau constants. 

2. Expansion and inequalities for Gn 

In what follows, ^ a n d 2^1 designate the digamma function and the hyper-
geometric function, respectively. The digamma function is given by [1; p. 258, 
Eq. 6.3.1] 

«*) = £ l 0 6 r ( l ) = £M 
where V is the gamma function. The hypergeometric function has the following 
series representation ([1; p. 556, Eq. 15.1.1]) 

л 
a, b; 

= £ 
c; r = 0 

(a)r(b)rx
r 

(c)r r! 
(5a) 

160 



INEQUALITIES FOR THE LANDAU CONSTANTS 

where Pochhammer's symbol is defined by ([1; p. 256, Eq. 6.1.22]) 

(x) = / 1 , n = °' 
[X)n \x(x + l)---(x + n-l), n = l ,2,3, . . . 

_ T(x + n) { ' 

T(x) 
and where the denominator parameter c is not allowed to be zero or a negative 
integer. Then, the series concerned converges absolutely for \x\ < 1 for all values 
of its parameters, and also when x = 1, provided that c — a — b > 0. 

THEOREM 1. The Landau constants Gn have the following expansion 

Gn = ^i>(n+\)+A-an (6a) 

where A is a constant defined by (3b) and 
i °° 

an = zЦ 
(l/2) r (l/2) г 

*" fr{ r(n + 3/2)rr! 
(6b) 

P r o o f . Making use of the following relationship ([1; p. 256, Eq. 6.1.21]) 
between the binomial coefficients and the gamma function 

r(x + 1) (*)= —L 
\nj T(n -i + 1) T(x - n + 1) 

the duplication formula for the gamma function ([1; p. 256, Eq. 6.1.18]) 

2 2 x - l 

T(2x) 
^ 

•T(x)T(x + 1/2) 

it follows from the first expression in the definition (la) of \ii, that 

1 r(» + l/2) 
M i yfR T(i + T) ' 

Further, this result readily leads to 

"1/2, 1/2; 

0,1,2,.. . . 

lЛ = " 7 тr i + 1/2 - F l ѓ = 0,l,2,.. (7a) 
i + 3/2; 

which can be verified by Gauss's summation formula for the hypergeometric 
function of unit argument ([1; p. 556, Eq. 15.1.20]) 

2^1 

a, b; 

c; 

1 

c ^ 0 , - l , - 2 , . 

Г(c)Г(c -a-Ь) 
T(c - a)T(c - b) ' 

c-a-b> 0. 
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Equivalently, after replacing 2F1 with its series representation (5a) we have 

i i 
м ť = - E ( l / 2 ) r ( l / 2 ) r 1 1 1 

я"*' + l l 2 - Ъ í (г + 3/2) r r! тгг + 1/2 
r = 0 

i + E 
( l / 2 ) r ( l / 2 ) r 1 

=í (* + 3/2)r Г! 

(7b) 
Note that, in view of the convergence conditions mentioned above, the absolute 
convergence of the series in (7) is assured in the case under consideration (i.e. 
when i = 0,1, 2 , . . . ). Thus, in view of (2), we find that the nth Landau constant 
is given by 

Gn = i(S1+S2) 

where 

and 

n 1 oo 

1 = £ J T I 7 2 ' s' = ^ 
5 = 0 ' r = l 

( l / 2 ) r ( l / 2 ) r 
S(r) 

S(r) = £ 1 

5 = 0 
(s + l /2)(s + 3/2) r 

However, S(r) can be rewritten as 

sн = £ i 

(s + l /2 ) r ( s + l / 2 + r) 

1 

5 = 0 

n 

= £ (s + l/2)(« + 1/2 + 1) • • • (s + 1/2 + r) 

since the definition of Pochhammer's symbol (5b) allows us to conclude that 

X(X + l)n = (X)n(X + U) 

holds. After summing Sx and S(r) in closed-form by using [4; p. 945, Eq. 8.365.3] 

n 1 

Y^ -j—~ = ^(x + n + l) - ip(x) 
k=0 

k + x 

and [6; p. 114, 6.1.192] 

E 
k=0 

(k + x)(k + x + l)(k + x + 2) • • • (k + x + r) (x)r (x + n+l)r\ 

respectively, we have 

1 
GL = v ' J y ' J Z—/ TT! - ^ r(n + 3 /2 ) T! 

r=\ г = l v ' r 

(8) 
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Finally, since -0(1/2) = - ( 7 + 21og2) ([4; p. 945, 8.366.2]) and 

Г = l rr\ 

([6; p. 126, 6.6.34]), the result (6) follows from (8). D 

THEOREM 2. The sequence {5n} where 5n = Gn- (l/7r)ip(n + 5/4) - A and 
A is the constant defined by (3b) ; strictly decreases. Moreover, 

A < G n - ^ ( n + \ ) <A + S0, n-1,2,3,... (9a) 

where 50 = | — ^(4+log2) « 0.006125. In other words, the following inequalities 
hold 

1.0663 < Gn - ±il> (n + - | ) < 1.0724. (9b) 

P r o o f . First, observe that since ([1; p. 258, Eq. 6.3.5]) 

гþ(x + 1) = гþ(x) + -
x (ю) 

we have for n = 1, 2, 3 , . . . 

ф(n+\)-ф(n + \) 
4n+ 1 

while 

Gn - Gn-1 
(2n - 1)!! 

(2n)ü 

follows from (2). Thus, in order to prove that {5n} strictly decreases, i.e. 5n — 
5n_1 < 0, we need to verify that 

7Г < 
4n + l 

(2n)ü п 2 

L(2n-l)üJ ' 
n = 1,2,3,. 

To do that it is enough to appeal to the following stronger Wallis's formula 
established by G u r 1 a n d [5] 

4n + 3 

( 2 n + l ) 2 

(2n)ü 

(2n - 1)!! 
< 7Г < 

4n + l 

(2n)ü 

_ ( 2 n - l ) ü 
n = 1,2,3,. 

Finally, the value of 50 can be easily obtained from (3b) and (10) knowing that 
([4; p. 945, 8.366.4]) 

V>(l/4) = - ( 7 + TT/2 + 3 log2) . 

This completes the proof of the theorem. D 
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3. Concluding remarks 

Making use of the well-known Wallis's formula 

(2n)ü 
2rг + l |_(2n-l)ü 

1 
< 7Г < -

П 

(2n)H 

( 2 n - l ) ü n = 1,2,3,... 

it is not difficult to show that the sequence {&n} defined in (6a) strictly de
creases, and 

A - a0 < Gn - ±il> (n + | ) < A , n = 1, 2, 3 , . . . , 

where a0 = (2/TT)(1 + log2) - 1 « 0.07789. 
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