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ON THE FAMILY OF FUNCTIONS WITH 
A CLOSURE OF ITS GRAPH OF MEASURE ZERO 

EWA STROŇSKA1) 

(Communicated by Ladislav Mišík) 

ABSTRACT. In this paper I consider the family S of all functions / : R —> R 
with a closure of its graph of Lebesgue measure zero. In the first part I make 
known a full characterization of the family S. In the second part of this paper I 
observe that in like manner it is possible to characterize the family Si of functions 
/ : R —> R with a closure of its graph of the first category. 

Let R be a real line. We will consider functions / : R —> R. Let G(f) be the 
graph of / and C1(H) be the closure of a set H. Symbols m and m 2 denote 
Lebesgue measure on R and R 2 , respectively. 

Denote by S the family {/: R -> R : m 2 ( C l (G(f))) = 0} . 

Let K+(f, x) and K~(f, x) be the right and the left cluster sets respectively 
for each x of the domain of / . Moreover, let 

K~*~(f, - c o ) = {y G R; there exists xn —> —oo such that lim f(xn) = #} 
n—•oo J 

and 

K~(f,oo) = { t / G R ; there exists xn —» oo such that lim f(xn) = y\ . 
^ n-->oo ' 

Put K(f,x) = K+(f,x)UK~(f,x) and S(f,x) = K(f,x) U {/(*)} . 

R e m a r k 1.1. S ( / , x ) \ { - o o ; + o c } = [CI {G(f))]x for each x € R, where 

[H]x denotes the section of a set ffcR2, i.e. the set 

{ y £ R : (x,y)eH}. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 26A30. 
Key words : Graph of function, Closure, Category. 
x) Supported by KBN 2 1144 9101. 
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Denote by C(f) and D(f) the set of all continuity points and the set of all 
discontinuity points of / , respectively. 

Let S(f) = { x 6 R : m(K(f, x)) > 0} . 

T H E O R E M l . l . f e S «==> m(S(f)) = 0 . 

P r o o f . If / E S , m 2 ( C l ( G ( / ) ) ) = 0 . Then from the Fubini theorem ([10, 
p. 142, Th. 4]), for almost each x G R there is 

"•([C1(G(/))1.)=0. 

Hence and from Remark 1.1, m(S(f)) = 0 . 

On the other hand, since Cl(G(/ ) ) is a measurable set and m(S(f)) = 0, 

almost each set [CI (G(f))]x is of the measure zero; from the Fubini theorem 

([10, p. 142, Th. 4]) f GS and the proof is finished. 

The family of all Darboux functions we will denote by D, and let D* be 
the family of all / such that for almost each x E D(f) the set 5 ( / , x) is some 
interval. It is clear that D* ^.D. 

Since x E C(f) if and only if [CI (G(f))]x = {f(x)} , we have at once 

R e m a r k 1.2. If / E D*, then / E S if and only if m(D(f)) = 0 . 

Denote by Cae the family of all almost everywhere continuous functions / . 
From Theorem 1.1 we have: 

COROLLARY 1.1. Cae C S . 

R e m a r k 1.3. There exist functions / E S \ Cae ; for example - a function 
of Dirichlet's. 

THEOREM 1.2. The set Cae is closed and nowhere dense in the family S with 
the uniform convergence metric 

p(f,g) = min{l , sup \f(x) - g(x)\} . 
x£R 

P r o o f . It is clear that in the sense of the metric p the family Cae is closed. 
We shall show that the set Cae is nowhere dense in S. To this effect fix / E Cae , 
e > 0 and let d be a function of Dirichlelt's. 

We put g(x) = f(x) + ird(x). Then g fulfils all required conditions. Really, 

g $L Cae and since 

[a(G(I7))].c{o,f} + [a(G(/))],, 
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m ( [ C l (G(g))] ) = 0 for almost every x G R, where for each set A, B we 

have A + B = {x + y : x G A and y G B}. Hence g € S. 

From Remark 1.2 and Corollary 1.1 we have 

COROLLARY 1.2. SnD* = CaenD* and SnD = CaenD. 

Poin twise convergence . 

Let A be a family of functions and let B\(A) be the set of all limits of 
sequences (fn)n%i of functions from A convergent at every point. 

Since every simple function s: R —• R belongs to S and every / : R —> R is 
the limit of sequence of simple functions s, Bi(S) is the family of all functions 
/ : R - > R . 

Denote by C the family of all continuous functions / . 

THEOREM 1.3. The following equality Bi(Cae) = B±(S n D) is true. 

P r o o f . Since S n D C Cae , -Bi(Cae) D B±(S D D). On the contrary, it is 
known that if / G Bi(Cae), then there exists g £ B\(C) and there is an FV-set 
A of the measure zero such that 

{xeR: f(x)^g(x)}cA (s. [11]). 

-OO 

Since A is an Fa, A = (J A n , where Ai C A2 C • • • C An C . . . and all sets 
n = l 

-4n ( n = 1,2, . . . ) are closed. 

Since g G J5i(C), there exists a sequence of continuous functions (^n)^=i 
such that lim gn = g and |(/n| < n for n = 1,2, . . . . 

n — • o o 

In the first step, for each component (a, b) of the complement of the set A\, 
there exists ([2], [6]) function h\b: (a,6) —> R such that: 

(ai) / ^ 6 £ . B i ( C ) n C a e n . D ; 

(bi) the set {x G (a, b) : /^&(#) ^ 0 } c R \ . 4 is of the first category and 
of measure zero; 

(ci) lhn hl
b(x) = lim h1

 b(x) = +oo , 
x—•a"*" x—->o~ 

lilS ha,b(X)= ^ !la,6(a;) = - 0 0 ; 
.r—>a+ x—*b~ 

(di) /4 ) 6 + #i | ^ ^ has Darboux property. 

Let 

(*) = j #i(x) + /ij 6(x) for x G (a, 6), where (a, 6) is a component of R\ .Ai, 
h(x) = \ 

f(x) for x G Ai. 
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Generally, in the n t h step, for each component (c, d) of the set R \ An we find 
([2], [6]) the function hn

d: (c,d) -> R such that: 

(an) hideB1(C)ncaenD-, 
(bn) the set {x G (c,d) : hn

d(x) ^ 0} C R \ A is of the first category 

of measure zero and disjoint with all sets of the form {x G (* ,# ) : 

h\^(x) ^-=0} for i < n , chosen before; 

(cn) lim" hn
d(x) = ImT hn

d(x) = +00 , 
ai—>c+ x—>d- ' 

1™ ft"d(x) = Mm !lc,rf(x) = - ° ° ; 
x—>c+ a—•d-

(dn) ^c,d + 9n I (c? ^ has Darboux property. 

Put 

( gn(x) + hn
d(x) for x G (c, d ) , 

where (c, d) is a component of R \ A n , 

/ ( x ) for x G A n . 

It is easy to verify that for each n = 1,2, . . . , fn G 5 n L) and lim fn = f. 
n—+00 

Uniform convergence . 

Since every bounded function is the limit of a uniformly convergent sequence 
of simple functions, the uniform closure of S contains all bounded functions. 

It is known that the limit of a uniformly convergent sequence of functions 
from DnBi(C) is a function from D(lBi(C) ([1]) and the limit of a uniformly 
convergent sequence of functions from Cae is a function from Cae. Hence the 
family of functions S n Bi(C) (ID = Dn Bi(C) n Cae is uniformly closed. It is 
known that the family B\ (B\(C))nD is not uniformly closed ([15]). Appropriate 
is then the question, are families S n D* and S f) D uniformly closed? 

THEOREM 1.4. The limit of a uniformly convergent sequence of functions from 
S n D* is a function from S n D * . 

P r o o f . Let ( / n ) n be some sequence of functions from SnD* uniformly 
convergent to / . Since S n D* C Cae and the limit of a uniformly convergent 
sequence of functions from Cae is a function from Cae , / G Cae C S. We prove 
that / eD*. 

Let x G R be any point such that S ( / n , x ) is some interval for each 
n -= 1,2, . . . . We will show that S(f, x) is some interval, too. 

Suppose that 5 ( / , x) is not any interval. Since 5 ( / , x) is closed, there exists 
an interval (a, b) such that 5 ( / , x) n (a, 6) = 0 and (—00, a) n S(f,x) 7-- 0, 
( 6 , o o ) n 5 ( / , x ) ^ 0 . 

462 



ON THE FAMILY OF FUNCTIONS ... 

Establish e > 0 such that (a + e, b — e) is an open interval. Since (/n)£Li is 
uniformly convergent, there exists fm such that \fm{u) — f{u)\ < •=- for each 

u € R. Then S{fm,x) n (a + e, 6 - e) = 0 and (-oo,a + e) n S(fm,x) ^ 0, 
( 6 - £ , o o ) n 5 ( / m , x ) ^ - 0 . 

This is impossible since S{fm,x) is some interval. Since the set 

{x € R : 5 ( / , x) is not any interval} 

is of the measure zero, / £ S (1 D* . 
THEOREM 1.5. There exists a sequence {fn)n of functions from S(lD uni
formly convergent to f £ S n D . 

P r o o f . The proof is a modification of J . S m i t a l ' s constructions 
from [16]. 

Let K C [0,1] be a Cantor ternary set of the measure zero. Let B be a set 
containing points 0, 1 and all points from K which are one-hand isolated in 
K. Then K\B is a G*-set. 

Let {Pn)n be a sequence of pairwise disjoint nowhere dense non-empty perfect 
sets such that for each n, Pn C K\B and for each open interval J , if InK ^ 0, 
then / contains some sets Pn. For each n, the set of component intervals of 
I\Pn with natural ordering is similar to the set of rational numbers contained 
in the closed unit interval J = [0,1]; let hn be a corresponding isomorphism. 
Define functions gn as follows: 

If G is some component of I\Pn and x € G, let gn{x) = hn{G); 
if x G Pn, let gn{x) = inf {gn{y) : y G J \ Pn and y > x} . 

Now put gn = gn\p . It is easy to see that each gn maps the set Pn con
tinuously onto J and that gn takes on each irrational value from J exactly at 
one point of Pn. 

Let £ be some irrational number in J; for each n, let an be the point of 
Pn for which gn{an) = f. Define functions fn and / as follows: 

/»(*) = < 

maxj£ ,0V i fx = am and m < n , 

#m(#) if x e Pm and x ^ a i , . . . , an , 
0 otherwise, 

maxj f , 0 > if x = am for some m, 

f\x) = ^ a™(x) if x € P m and a: ̂  ai, a2 , . . . , 

0 otherwise. 
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It is easy to verify that functions fn and / have all desired properties (for 
each x G J , f(x) 7-- £) . 

Transfinite convergence of t ype $1. 

The notion of the limit of transfinite sequence of real numbers and of the 
limit of transfinite sequence of real functions was introduced b y S i e r p i n s k i 
([14]). This idea and some results of [14] were developed in some further papers 
of K o s t y r k o [7], S a l a t [13] and L i p i n s k i [9]. 

Let £2 denote the first uncountable ordinal number. The transfinite sequence 
of real numbers {b^}^<n is said to be convergent and have the limit b if and only 
if for each e > 0 there exists an ordinal number a < Q such that \b — b$\ < e 
for each £ > a. If {b^} has a limit b we write lim b^=b. 

The transfinite sequence of functions /^ : R —> R, £ < ft is said to be 
convergent and have the limit function / if and only if for each point x we have 
Hm/ € ( . t ) = / ( * ) . 

THEOREM 1.6. If transfinite sequence {fz}z<n of functions from S is con-
vergent to f, then f G S. 

P r o o f . Since G(f) is a separable space contained in R2 , there exists a 
set { (x n , f(xn))}™=1 dense in G(f). For every n = 1,2, . . . there exists a 
countable transfinite number £n < Q such that ft(xn) = f(xn) for each £ > £n . 
Let £ < Q be a transfinite number such that £ > £n for every n = 1,2, . . . . 
Hence (x n , fz(xn)) = (xn, f(xn)) G G(f^) (n = 1,2, . . . ), and 

C1(G(/C)) D C\(G(f)) . 

If m 2 ( C l ( G ( / ) ) ) > 0, then m 2 (Cl (G(/ e ) ) ) > 0 and £ g S. This contradic
tion supplies the proof. 

It is known that the family Cae is transfinitely closed and every function 
/ G Bi(C) is the limit of a transfinite sequence of functions from D D B\(C) 
([3])-

We will show the folowing result: 

THEOREM 1.7. If f G Cae, then f is the limit of a transfinite sequence 
{/£j£<o of functions from Cae n D . 

P r o o f . Since D(f) is an FV-set of the first category and of measure 
zero, there exists (s. [6, the proof of Th. 3]) a function g\: R —> R such that 
gieDOBi(C) nCae, g\ + feD and B± = {x G R : g±(x) ^ 0} is an FV-set 
of measure zero disjoint with D(f). In the first step let /-. = g\ + f. 
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Generally (from [6, the proof of Th. 3]), in the £ th step (£ < fi) there exists 
a function g$: R —> R such that: 

ge eDnB1(C)nCae and f + g^eD; 
B% = {x E R : g$(x) 7-= 0} is an F^-set of measure zero and such that 

Let /^ = / + gt. 
Then we can observe easily that feeDn Cae for every £ < ft and 

l i m / € = / . 

Operations o n func t ions from S. 

THEOREM 1.8. Le£ f £ S be a locally bounded function. If g E C, and for 
every compact set F of the measure zero the set g(F) is of the measure zero, 
then the superposition g o f £ S. 

P r o o f . 

If./ £ S , then m 2 ( C l ( G ( / ) ) ) = 0 and consequently m ( [ C l (<?(/))] J = 0 
for almost everywhere x £ R. Since / is locally bounded, for every x E R the 
set [CI (G(f))]x = 5 ( / , x) is compact as a bounded and closed set. The function 
g is continuous, so 

[CHG(9of)))x = g([C\(G(f))]x), (1) 

and for x £ S(f) we have ra([Cl (G(g o f))]x) = 0. Hence and from Theo
rem 1.1, g o f € S. 

THEOREM 1.9. Let g E C and for every closed set F of the measure zero 
the set g(F) is of the measure zero and sets K+(g, —oo), K~(g, oo) are of the 
measure zero. Then g o f E S for each f E S. 

P r o o f . The proof of our theorem is similar to the proof of Theorem 1.8. 
Suffice to observe only that the condition (1) in the proof of Theorem 1.8 can 
be replaced by the condition 

. [C\(G(gof))]x(Zg([C\(G(f))]x)uK+(g,-cx>)uK-(g,cX>) (2) 

and the proof is finished. 

Now we will consider an algebraic structure of 5 . 
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THEOREM 1.10. Let the function g G S be such that the set 

E(g) = {# G K : S(g,x) is uncountable or containing oo or — 00} 

is of the measure zero. Then f + g £ S for each f G S. 

P r o o f . It will do to observe that for each x G K \ E(g) we have 

[G-(G(/ + ff))],C (J [Cl(G(/))], + t, 
te[C\(G(g))]x 

where A + t = {x + t: x G A}. The last set on the right-hand side is of the mea
sure zero as the set [CI (G(g))]x is countable and the measure of [CI (G(f))] 
is also zero. The proof is finished. 

THEOREM l . l l . If the Continuum-hypothesis is true, then there exist func
tions / , g G S such that f + g £ S. 

P r o o f . Let K C [0,1] be the ternary Cantor set. It is known that K is of 
the measure zero and K + K = [0,2] (s. [8, p. 50, ex. 13]). 

Let {-Af }£<f2 be a family of pairwise disjoint c-dense in K sets such that 
(J A% = K (s. [15]). If the Continuum-hypothesis is true, we can arrange all 

£<ft 
numbers from K in a transfinite sequence {c^}^<^ with ca 7-= c@ for a 7-= /?, 
a, P < Q . Define a function / : K —> K as f(x) = c$ for each x$ G A$ (£ < ft). 

Next, from S i e r p i r i s k i ' s theorem ([15]), each of the sets A$ (f < ft) 

can be decomposed into continuum of pairwise disjoint, c-dense in K sets A^ 

( •7<f t ) so that A$ = (J A\. 

For each £ < ft define a function gf. A$ —• K as ^ ( x ) = c^ for every 
xeA\ (n<n). 

For each x G K put g(x) = ^ ( x ) if # G ^ (f < ft). Then for each x G K 
we have 

[ C l ( G ( / ) ) ] . = [ C l ( G ( » ) ) ] , - = i r , 

what shows that f,g E S. Since [CI ( G ( / + g))]x = K + K = [0,2] for every 
x G K , jf + 0 £ 5 . 

THEOREM 1.12. If the Continuum-hypothesis is true, then there exist func
tions h,k G S such that h • k ^ S. 

P r o o f . Let / , g: K —• K be functions constructed in the proof of Theo
rem 1.11. Let ip: K —> K be the map of the form (f(x) = ex for every x G K. 
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Since pairs of functions (<£,/) and ((p,g) fulfil conditions of Theorem 1.9, func
tions h = (p o f and k = (p o g belong to S. If the function h • k, where 
(h-k)(x) = e^*)-^*) for each x G R, belongs to 5 , then from Theorem 1.9 the 
function f + g — ln(/i • k) belongs to S, what is not possible. This contradiction 
finishes the proof. 

R e m a r k 1.4. If functions / and g fulfil conditions of Theorem 1.10 and 
(p(x) = ex, x G R, then pairs of functions (<£,/) and ((p,g) fulfil assumptions 
of Theorem 1.9 and functions s = <po f, t = (pog belong to S and s-t belongs 
to S. 

THEOREM 1.13. If f,g e S then max( / ,#) G 5 and min(f,g) G 5 . 

P r o o f . Let A = {x G R : f(x) < g(x)} and B = {x G R : / ( x ) >flf(x)}. 
Then 

l f(x) foтxeB, l g(x, 

) for x Є A, 

) for æ Є B. 

Since 

C l ( G ( m a x ( L f l ) ) ) C Cl(G(/)) U C\(G(g)) and 

C l ( G ( m i n ( L f f ) ) ) C C1(G(/)) U C l ( G ( f f ) ) , 

for almost each x G R 

m ( [ C l ( G ( m a x ( / , f f ) ) ) ] J = m ( [ C l ( G ( m i n ( L ^ ) ) ) ] J = 0 , 

and hence max(L g) e S and min(/, g) € S. 

R e m a r k 1.5. (On the inverse function). If / e S has the inverse function 
/ - 1 then f-1 eS. 

Really, since G ( / - 1 ) is symmetrical to G(f) with respect to the graph of the 

function a(x) = x, so C l ( G ( / - 1 ) ) is symmetrical to Cl (G( / ) ) with respect to 

the graph of a. Hence, if / G 5 , then m 2 (Cl (G( / ) ) ) = 0 = m 2(Cl (G(f~1))) 

and f-1 eS. 

At the end it is worth making a note that there exists a function / : R —• R 
such that / = f-1 6 S (1 Cae \ C ([4]). 
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I I 

Let Si = {/: R —> R : Cl(G(/ ) ) is of the first category} and for a given 
function / : R - > R let 

Si(f) = {x G R : K(f, x) is of the second category set} . 

THEOREM 2 . 1 . / G Si <=> Sx(f) is of the first category set 

P r o o f . The proof is analogous to the proof of Theorem 1.1, where we make 
use of Ulam-Kuratovski's theorem ([12, p. 98, Th. 15.1]). 

Denote by Di the family of all functions / : R —> R for which the set 
{x G R : S ( / , x) is not connected} is of the first category. Obviously D C Di. 

Let P denote the family of all pointwise discontinuous functions / , i.e. such 
that D(f) is of the first category. 

It is evident: 

R e m a r k 2.1. P CSX. 

R e m a r k 2.2. If / G D±, then f E Si <=> f eP. 

R e m a r k 2.3. S i n D i = P n D 1 and Si n D = P n D. 

For the family Si there are true all analogical theorems to theorems about 
S from the first part of this paper. All these theorems, without an analogous 
with Theorem 1.3, have similar proofs to proofs of suitable theorems from the 
first part. 

THEOREM 2.2. (s. Th. 1.2) The family P is closed and nowhere dense in Si 
with the uniform convergence metric 

p(f,9) = m i n { l , sup\f(x)-g(x)\}. 
xeR 

THEOREM 2.4. (s. Th. 1.4) The limit of a uniformly convergent sequence of 
functions from Si n Di is a function from Si D Di. 

THEOREM 2.5. (s. Th. 1.5) There exists a sequence (fn)n of functions from 
Si n D uniformly convergent to f £ Si 0 D. 

THEOREM 2.6. (s. Th. 1.6) If a transfinite sequence {f^}^<n of functions 
from Si is convergent to f, then / G S i . 
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THEOREM 2.7. (s. Th. 1.7) If f e P, then f is the limit of a transfinite 
sequence {f^}^<n of functions from P(lD. 

THEOREM 2.8. (s. Th. 1.8) Let f e Si be a locally bounded function. If g G C 
and for every compact of the first category set F, g(F) is of the first category 
set, then g o f £ Si. 

THEOREM 2.9. (s. Th. 1.9) Let g £ C and for every closed of the first category 
set F, g(F) is of the first category and K+(g, —oo), K~(g, oo) are of the first 
category sets. Then g o / G Si for each / G S i . 

THEOREM 2.10. (s. Th. 1.10) Let g e S± be such that 

E(g) = {x G R : S(g,x) is uncountable or containing oo or — oo} 

is of the first category set. Then f + g G Si for each f G Si. 

THEOREM 2.11. (s. Th. 1.11) If the Continuum-hypothesis is true, then there 
exist functions / , g G Si such that f + g £ Si. 

THEOREM 2.12. (s. Th. 12) If the Continuum-hypothesis is true, then there 
exist functions h, k G Si such that h- k £ Si. 

R e m a r k 2.4. If function / and g fulfil conditions of Theorem 2.9 and 
ip(x) = ex , x G R, then pairs of functions (<£>, / ) and (</?, g) fulfil conditions of 
Theorem 2.8 and functions s = (po f, t = <po g belong to Si and s -1 G S i . 

THEOREM 2.13. (s. Th. 1.13) If f,g G S I , then max(f,g) G Sx and 
min(/ , g) eSi. 

R e m a r k 2.5. If / G Si has the inverse function / _ 1 , then / - 1 G S i . 

An analogical theorem to Theorem 1.3 is the following: 

T H E O R E M 2.3. BX(P) = Bi(Sx n D). 

(It was proved in [5].) 
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