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OF PARTIALLY ORDERED SETS 
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(Communicated by Pavol Zlatoš) 

ABSTRACT. This paper concerns direct and subdirect product decompositions 
of some types of partially ordered sets; in particular, we deal with certain forms 
of the cancellation rule for such decompositions. 

1. Introduction 

In the first part of the present paper (Sections 2-6), we characterize two-factor 
internal direct product decompositions of a lattice by means of the properties of 
pairs of convex sublattices. 

For the following results (A) and (B) cf. G r a t z e r [4; pp. 152,157, Chapt. III]. 

(A) The direct decompositions of a bounded lattice L into two factors are (up 
to isomorphism) in a one-to-one correspondence with the complemented 
neutral ideals of L. 

(B) Representations of a lattice L with 0 as a direct product of twro lattices 
are (up to isomorphism) in one-to-one correspondence with pairs of ideals 
(I, J) satisfying I n J = {0} and every element of L has exactly one 
representation of the form a = i V j , i E / , j G J. 

Let S be a directed set having the least element. Direct product decomposi
tions of S into two factors were investigated by Ha l as [5]. Similarly as in (A), 
H a 1 a s applied the notion of complemented neutral ideals of S. The main re
sults of [5] are Theorem 1 and Theorem 2. P r i n g e r o v a [12] generalized [5; 
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Theorem 1] to the case when S is a directed set which need not have the least 
element. 

We deal with the question in which way we have to modify (B) in the case 
when the existence of the least element of L is not assumed and when instead 
of a pair of ideals of L we have a pair of convex sublattices of L. 

In the second part of the article (Sections 7, 8) we investigate a cancellation 
rule for direct product decompositions of a directed set of finite length. 

A partially ordered set L will be said to satisfy the strong cancellation rule 
for direct product decompositions if, whenever 

L~AxB, L~C x D and _4 ~ C , 

then B ~ D. 
In the present paper we prove: 

(*) Each directed set of finite length satisfies the strong cancellation rule for 
direct product decompositions. 

Related results concerning the cancellation for internal direct product de
compositions of certain types of partially ordered sets have been proved by 
C s o n t o o v a and the author [9], [10]. 

The third part of the paper contains Sections 9 -11 . Here we define the notion 
of a regular subdirect decomposition of a semilattice S. 

The corresponding condition in this definition concerns the intervals of S; it 
is related to a condition dealt with by K o 1 i b i a r [11] for prime intervals of a 
semilattice. 

The well-known relation between subdirect decompositions of S (cf. B i r k -
h o f f [2; Chapter VI, §5] yields that to each subdirect decomposition tp of S 
there corresponds a subdirect decomposition Tp of S such that the underlying 
sets of the subdirect factors from Tp are certain partitions of the set S; we call 
Tp a p-subdirect decomposition. (For details, cf. Section 10 below.) 

We prove a cancellation rule for regular p-subdirect product decompositions 
of a semilattice. (In fact, we deal with slightly more general structures including 
semilattices.) 

2. Preliminaries 

Suppose that L is a lattice and c € L. For the notion of an internal direct 
product decomposition of L with the central element c, cf. [9]; the definition 
(for two factor decompositions) is recalled in Section 3 below. 

We remark that if I and J are as in (B), then, in fact, L is an internal direct 
product of / and J with the central element c = 0. 
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For AC L we put 

A+ = {a G A : a = c} , A~ = {a G A : a = c} . 

Let A and B be convex sublattices of L with A fl B = {c}. Consider the 
following conditions for A and B: 

(ax) Each element x e L+ has exactly one representation of the form x = 
xx V x2, xx G A+, x2 G B+. 

(a2) Each element y G L~ has exactly one representation of the form y = 
2/i A ?y2, ^ G A ~ , 7/2 G .B" . 

If (ax) and (a2) are valid, then for each z G L we denote 

zA = (xx Az)VVl, zB = (x2 Az)Wy2, 

where x = z\l c, y = z Ac and x{, yi (i = 1,2) are as in (ax) and (a2) . Then 
we can consider the condition: 

(a3) If z,z' eL and r 4
 = (z^^4, ^B = (^ ) B , then z = zf. 

Further, we shall deal with the condition: 
(a4) Let p G A, q G B. Then there is a sublattice Lx of L such that 

(i) Lx is a Boolean algebra; 
(ii) the Boolean algebra Lx is generated by its subset {p, q, c}; 

(iii) if x is the complement of c in Lx, then xA = p and xB = q. 
We prove: 
(C) Let A and B be convex sublattices of a lattice L such that _4fli? = {c}. 

Then L is an internal direct product of A and B with the central element 
c if and only if the conditions (a1)-(a4) are satisfied. 

3. Internal direct products 

Assume that L is a lattice and c e L. Let A and B be lattices and let us 
consider an isomorphism 

ip: L -> A x B (la) 

of L onto the direct product AxB. For x e L we denote 

tp(x) = (x(A),x(B)). 

Put 

A(c) = {x G L : z(.B) = c(B)} , B(c) = {x G L : x(A) = c(A)} . 

Further, for each x G L we set 

<pc(x) = (x°,y°), 
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where x° G A(c), y° G B(c) and 

x°(A)=x(A), y°(B) = y(B). 

Then (pc is an isomorphism of L onto A(c) x B(c)\ moreover, A(c) and B(c) 
are convex sublattices of L with yl(c) n B(c) = {c}. We express this situation 
by writing 

<pc : L = (int)A(c) x B(c) (1) 

and we say that (pc is an internal direct product decomposition of L with the 
central c. (Cf. [3].) 

It is obvious that the lattice A(c) is isomorphic to A and that B(c) is 
isomorphic to B. 

From this definition we immediately obtain: 

3 .1 . LEMMA. Let <p be as in ( la) . Suppose that A and B are convex sublattices 
of L with AD B = {c}. Then if is an internal direct product decomposition of 
L with the central element c if and only if the following conditions are satisfied: 

zeA <=> z(A) = z <=> z(B) = c\ 

z e B <==> z(B) = z <=> z(A) = c. 

In the remaining part of the present section we assume that (1) is valid. We 
write A and B instead of A(c) or 5 ( c ) , respectively. 

Suppose that Ax and B1 is a sublattice of A or of B, respectively. Denote 

L1 = {x G L : x(A) G Ax and x(B) G Bx} . (2) 

Consider the partial mapping if1 = <PC\L • Then (1) yields: 

3.2. LEMMA. </?* is an isomorphism of Lx onto A1 x J51 . If, moreover, c G 
A1 fl Bx, then we have 

(f1 : Lx = (intJAj x Bl . (3) 

Let p G A, q G B. Put 

ux = p Ac, vl = pW c, u2 = q Ac, v2 = q\/ c, 

Ax = { p - c , ^ , ^ } , Bx = {q,c,u2,v2}. 

Further, let L1 be as in (2). 

3.3. LEMMA. The relation (3) is valid and the conditions (\), (ii). (iii) from 
(a4) are satisfied. 

P r o o f . The validity of (3) is a consequence of 3.2. Since Ax and Bx are 
Boolean algebras, (3) yields that Lx is a Boolean algebra as well. 
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Put u = ux A u2, v = vx V v2. Hence u, u £ _-_. It is clear that u is least 
element of Lx and v is the greatest element of Lx. 

Let L\ be the subalgebra of the Boolean algebra Lx which is generated by 
the set {p,q,c]. Then we have ulJu2,v1,v2 £ L j , hence u,v £ LJ. 

Let x be the complement of the element c in Lx. Thus x £ L\; moreover, 
both the elements x l\vx and x A v2 belong to L\. 

Now, each element t £ L1 can be written in the form t = tx V t2, where 

£x £ {w,w2,i;2,c} , t 2 G{w, . rA i;15x A v2,x} . 

Hence t £ L\ and thus Lx = L\. Therefore (ii) from (a4) is valid. 

Finally, in view of (ii), each element of Lx has a unique complement in Lx. 
A simple calculation shows that the element ((rO1)~

1((p, q)) is a complement of 
c in _ ! . • 

4. Necessary condition 

In this section we assume that relation (1) from Section 3 is satisfied. Sim
ilarly as in the previous section we write A and B instead of A(c) or 5 ( c ) , 
respectively. 

4 . 1 . LEMMA. The condition (ax) is satisfied. 

P r o o f . Let x £ L+. Put x1 = x(A), x2 = x(B). Then xx £ _4+ , x2 £ £? + . 
Further, 

</>c(Zi) = tei- c ) , ^c(a:2) = (c, x 2 ) , 

(^c(c) = (c,c), (fc(x) = ( x 1 , x 2 ) , 

whence 
<pc(x) = <pc(x1)Vipc(x2). 

Thus x = xx V x 2 . Let x[ £ _4+ , x2 £ £?+ , x = x[ V x 2 . We obtain 

(pc(x[) = (x i , c ) , -ci S a 

lience (xi,c) _ (^1.^2) a n d ^ u s xi S ^ i - Similarly we get xx S x[ • Thus 

Xj = ^ i . Analogously, x2 = x2. D 

By a dual reasoning, we have 

4.2. LEMMA. The condition (a2) is valid. 

Moreover, when looking at the proof of 4.1 we conclude: 
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4.3. LEMMA. Let x e F+ and let xx, x2 be as in (ax) . Then x1 = x(A), 
x2 = x(B). 

Similarly, we have: 

4.4. LEMMA. Let y e L~ and let yx, y2 be as in (a2). Then yx = y(A), 

y2 = y(B)-

4.5. LEMMA. Let z e L and let zA, zB be as in Section 2. Then zA = z(A), 
zB = z(B). 

P r o o f . We have 
zA = (xx A z) V yx , 

where 

z V c = x = xx V x2 , xx e -4+ , x2 e F?+ , 

zAc = y = y1Ay2, yx G A~ , y2 e B~ . 

Thus in view of 4.3 and 4.4, 

zA(B) = (xx(B) A z(Bj) V Vl(B) = (c A z(B)) Wc = c. 

Therefore zA e A and hence zA(A) = zA. Further, 

zA(A) = (xx(A) A z(A)) V Vl(A) = (xx A z(A)) V Vl 

= (x(A) A z(A)) V y(4) = ((x Az)VV) (A) = z(A). 

Summarizing, we get zA = z(A). Analogously we obtain zB = z(B). D 

4.6. LEMMA. The condition (a3) is satisfied. 

P r o o f . It suffices to apply 4.1, 4.2, 4.6 and 3.3. D 

5. Sufficient condition 

In this section we assume that A and B are convex sublattices of a lattice L, 
c e L, An B = {c} and that the conditions (a1)-(a4) are satisfied. 

Let z e L and let zA, 2B be as in Section 2. Then zA e A and zB e B. 
Consider the mapping 

<p\z) = {z\zB) 

of L into A x B. 
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5.1. LEMMA. Let z and z' be elements of L. Then 

z = z
1 ^ <p°(z) = <p°(z'). 

P r o o f . The implication => is an immediate consequence of the definition 
of </?°. The converse implication follows from (a3). • 

5.2. LEMMA. We have ip°(L) = A x B. 

P r o o f . This is implied by 3.3. • 

5.3. COROLLARY. ip° is an isomorphism of L onto A x B. 

5.4. LEMMA. Let z G A, z' G B. Then 

<p\z) = (z,c), ip\z') = (c,z'). 

P r o o f . Let x, y, x{, yi (i = 1,2) be as in Section 2. From z G A we 
conclude that x and z also belong to A. Hence we must have 

X^ = X , # 2 = c > V\ ~ y J 2l2 = ^ • 

This yields 
Z

A = Z, zB = c, 

whence ip°(z) = (z, c). Analogously we obtain the relation <p°(z') = (c, z'). • 

Summarizing, from 3.1, 5.3 and 5.4 we obtain: 

5.5. LEMMA. The assertion "if" from (C) is valid. 

In view of 4.7 and 5.5, the assertion (C) holds. 

6. Additional remarks 

Again, let L be a lattice and c G L. Assume that A and B are convex 
sublattices of L with A d B = {c}. 

6.1. Suppose that the relation 

cp: L = (mt)A x B (6.1) 

is valid. Consider the partial mappings 

V>+ = <Hjr+ i v~ = <P\L- -
Then we have 

y>+ : L+ = (int)_4+ x £+ , (6.2) 

<p~ :L~ = (int)A" x B~ . (6.3) 
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6.2. If the relations 

(/?! : L+ = (int)_4+ x B+ , (6.4) 

(p2 : L~ = (int)i4" x B~ (6.5) 

are valid, then L need not be an internal direct product of A and B. Example: 
Let L be the lattice in Fig. 1. Put A = {p, c, 5}, B = {f/, c, r } . Then A and 
JB are convex sublattices of L with _4ni? = {c}. Moreover, (6.4) and (6.5) are 
valid (the meanings of tp1 and ip2 are obvious). But (6.1) does not hold; it is 
easy to verify that L is directly indecomposable. 

Figure 1. 

6.3. Suppose that the relations (6.1), (6.2) and (6.3) are satisfied. 
If t G L and ip(t) = (tA,tB), then we denote 

lA = V A ( * ) > *B = ( P B ( * ) ; 

thus 

¥>(*) = ( ^ ( * ) , V B ( * ) ) • 

Similarly, for x G L4" and y G L " we write 

c^+(x) = ((^+(x),(D+(x)) 

(for typographical reasons we write here A rather than -4 + ) ; analogously we 
put 

<p~(y) = (vu(i/),¥>i(y))-
The results of Section 4 above show that the mapping tp can be explicitly 

described if the mappings cp+ and (p~~ are given. Namely, according to 4.5, for 
each z G L we have 

¥>A(*) = (<?.!(* v c) A *) v VA(Z A C) > 

P B ( * ) = (<PB(Z V c) A z) V ^ ( z A c). 
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7. Connected partially ordered sets 

In this section we assume that L is a connected partially ordered set. We 
apply H a s h i m o t o ' s theorem ([6]) on direct product decompositions of L. 

The below investigation would be trivial in the case cardL = 1; thus we 
suppose that L has more than one element. 

A partially ordered set A is called directly indecomposable if, whenever 
.4-t5xC, then either cardf? = 1 or cardC = 1. 

7.1. NOTATION. Suppose that L possesses a direct product decomposition 

L^ULi C1) 
iei 

such that all L{ are directly indecomposable and cardL^ 7-= 1. For i G / we 
denote 

i = {j€l: Lj-Lt). 

7.2. LEMMA. Assume that there is i(0) £ I such that the set i(0) is infinite. 
Then L does not satisfy the strong cancellation rule for direct decompositions. 

P r o o f . Let X be a one-element partially ordered set. Then we have 

L ~ L x L^ , L ~ L x X 

and L^o) fails to be isomorphic to X. • 

7.3. LEMMA. Suppose that L has a direct product decomposition 

/ ^ I K (2) 
jeJ 

such that cardT ^ 1 for each j € J. Then there are subsets I(T,) of I such 
that 

a) {JI(Tj) = I; 
j£J 

b) I(Tj{1)) Dl(Tm) = 0 whenever j(l) # j ( 2 ) ; 
c) r . ~ rj Li for each je J. 

iei(Tj) 

P r o o f . This is a consequence of Hashimoto's theorem on the refinements 
of direct product decompositions of L; cf. [6]. • 
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7.4. COROLLARY. Let Tj (j e J) be as in 7.3. Suppose that all Tj are directly 
indecomposable. Then there is a bisection (p: I —J> J such that 

Li - T<p(i) for each l e I • 

Assume that 
L~AxB, L~CxD (3) 

such that each of the sets _4, _B, C and D has more than one element. 
Then in view of 7.3 there are subsets 1(A) and 1(B) with 

J(_4)nJ(£) = 0, J(_4)UJ(£) = J , 

Ac Y[Li, Be n v 
161(A) iel(B) 

Let 1(C) and 1(D) have analogous meanings. 
Denote 

A = П L < . л= П^' 
ŻЄI(A)ПI(C) ІЄI(A)ПI(D) 

*i = П ^ ' #2= П L І ' 
iЄI(B)ПI(C) ѓЄ/(B)П/(D) 

Cг — Ax ђ C2 — Bг , ^ = ^ 2 , o2 = ß 2 . 

Then we have 

_4 __ť Aг x _42 , B __ť Bг x Б 2 , C~CxxC2, D : D~DxxD2. (4) 

7.5. LEMMA. Suppose that for each i G J, £he se£ i is finite. Then L satisfies 
the strong cancellation rule for direct product decompositions. 

P r o o f . Assume that (3) holds and that A :__ C. We have to verify that 
B __t D. In view of (4) it suffices to show that the relation 

B, ~ A2 (+) 

is valid. 
For i G J we put i(A) = i(~)I(A), and analogously for J?, C and D. Further, 

we set 
i(A1) = in{i(A)ni(C)), 

and similarly for _42, B-, C-, D- (j = 1,2). 
Let i G J(-42). In view of the relation A__C we have 

card i(A) = cardi(C). 
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Moreover, (4) yields 
caidi(A) = cardz(.A1) + caidi(A2). 

Similarly, 
cardi(C) = cardi(Cx) + cardi(C2). 

Since the cardinalities under consideration are finite and Ax = Cx, Bx = C2, 
we obtain 

cardi(.A2) = card^Bj) . (5) 
Analogously, for each j G I(BX) = I(C2) we get 

card j(Bx) = card j(A2). (6) 
The relations (5) and (6) imply that there exists a bijection 

¥>: / (A,) ->/ (£ , ) 
such that for each i G I(A2) we have 

Li-L
V(n-

Therefore the relation (+) is valid. • 

Summarizing, from 7.4 and 7.5 we obtain: 

7.6. THEOREM. Let L be a connected partially ordered set possessing a direct 
product decomposition (1) with directly indecomposable factors L{. For i e I let 
i be as above. Then the following conditions are equivalent: 

(i) L satisfies the strong cancellation rule for direct product decompositions. 
(ii) For each i G / , the set i is finite. 

8. Weak produc t decompositions 

For the sake of completeness we recall the definitions of some relevant notions. 
Again, let L be a partially ordered set. 
L is said to be discrete (or locally finite) if each bounded chain in L is finite. 
If there is a positive integer n such that card C = n whenever C is a chain 

in L, then L is said to be a poset of finite length. 
Each partially ordered set of finite length is discrete. 
Let / be a nonempty set of indices and for each i G / let L{ be a partially 

ordered set. Put 

iei 
If p G P with p = (Pi)ieI, then we set p(Lt) = p{. For p,p ; G P we denote 

d(p,p') = {i e I: piLJ^p'iLj}. 
Let Q be a nonempty subset of P such that the following conditions are 

satisfied: 
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(i) If i e I and p{ e L{, then there is q € Q with q(L{) = pl. 
(ii) If q and q' are elements of Q, then the set d(q,q') is finite, 
(iii) If q e Q and p e P such that the set d(p, q) is finite, then p belongs 

to Q. 

Under these assumptions, Q is said to be a weak product of the partially ordered 
sets L. (iel). (Cf, e.g., [3].) 

If Q is as above and if the set J is finite, then Q is a direct product of 
partially ordered sets L{ (iel). 

Weak product decompositions of discrete partially ordered sets and, in par
ticular, of discrete lattices, were investigated in [7] and [8]. 

8.1. PROPOSITION. Assume that the partially ordered set L is directed and 
discrete. Then L is isomorphic to a weak product of directly indecomposable 
partially ordered sets. 

P r o o f . This is a consequence of [4; Theorem 4.1]. • 

8.2. PROPOSITION. Assume that L is a partially ordered set of finite length. 
Further, suppose that L is directed. Then L is isomorphic to a direct product of 
a finite number of directly indecomposable partially ordered sets. 

P r o o f . It suffices to consider the case when card J > 1. Then, in view 
of 8.1, we can suppose without loss of generality that L is a weak product of 
directly indecomposable partially ordered sets L{ (iel) such that cardL^ ^ 1 
for each i e I. It is obvious that all Li must be directed. 

Since L has finite length, it must possess the least element, which will be 
denoted by xQ. There exists a positive integer n ^ 2 such that, whenever C is 
a chain of L, then card C ^ n. 

We want to show that card J ^ n - 1. By way of contradiction, suppose that 
card J > n — 1. Thus there exist distinct elements z(l),i(2),.. .,i(n) in the set I. 

For each i e J, x0(L{) is the least element of L{. Hence there is yl e L{ 

such that yl > xQ(L{). 
Let j e {1,2, . . . , n } . In view of the definition of the weak product there 

exists Zj e L such that 

z.(L-) = l y i if - e {.(1),*(2) iC?)}, 
3 l I xQ(L{) otherwise. 

Put C = {x0,z1,z2,...1zn}. Then C is a chain of L with cardC = n + 1, 
which is a contradiction. 

Therefore the set J is finite and hence L is a direct product of the partially 
ordered sets L- (i e I). • 
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8.3. THEOREM. Let L be a directed set of finite length. Then L satisfies the 
strong cancellation rule for direct product decompositions. 

P r o o f . This is a consequence of 7.6 and 8.2. • 

9. Subdirect decompositions 

For elements x, y of a partially ordered set A we denote by (x,y)A the set 
of all lower bounds of {x, y}. Further, let x Am y be the system of all maximal 
elements of the set (x, y)A. 

9.1. DEFINITION. MA is defined to be the class of partially ordered sets A 
such that, whenever, x, y are elements of .A, then 

(i) ( x , y ) A ^ 0 ; 
(ii) for each z G (x, y)A there exists zx G x Am y such that z = zx. 

Recall that if the class My is defined in a dual way, then MA fl Mv is the 
class of all directed multilattices (in the sense defined by Ben a d o [1]). 

By a semilattice we always understand a A-semilattice. It is obvious that 
each semilattice belongs to the class MA. 

It is also clear that if A and B are elements of MA, then their direct product 
Ax B belongs to MA as well. 

Let A,B G MA and let / : A —> B be a mapping such that 

/ ( * Am y) = f(x) Am f(y) 

for each x,y G A. Then / is said to be a homomorphism of A into B\ if / is 
injective, then it is an isomorphism of A into B. 

Assume that A,B,C G MA and that 

(p.A^BxC (1) 

is an isomorphism of A into B x C such that for each b G B and c G C there 
exist Cj G C and bx € B with 

(b,c1),(61,c)G(^(A). 

Then </? is called a subdirect product decomposition of A. 
If ip is a fixed subdirect product decomposition of A and a G A, cp(a) = 

(6, c), then we often write 

a(B) = b, a(C) = c. 
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9.2. DEFINITION. The subdirect product decomposition (1) is called regu
lar if, whenever a and a1 are elements of A with a < a', then there are 
a0, a 1 ? . . . , a n G A with 

a = a0 ^ ax 5̂  a2 ^ • • • ^ an = a' 

such that for each i G {0 ,1 ,2 , . . . ,n - 1} we have either a{(B) = ai+l(B) or 

ai(C) = ai+1(C). 

If </? is a direct product decomposition, then it is regular. In fact, let a and a' 
be elements of A with a < a'. There exists ax G -4 with ^(a x ) = (a(B), a'(C)); 
then the system {a,ax,a'} satisfies the required conditions. 

9.3. E X A M P L E . This example shows that a subdirect decomposition of an 
element of MA need not be regular. 

Let X be a Boolean algebra, cardX = 8, with the least element 0, the 
greatest element 1 and with three atoms xx,x2,x3. Each subset of X is partially 
ordered by the partial order induced from X. Put 

B = {0,x1,x2,x1 V x2} , C = {0,x3} , A = {0,x1,x2,1} . 

Let the mapping <p: A —> B x C be defined by 

<p(0) = (0 ,0) , <p(xt) = (xv0), <p(x2) = (x2,0), <p(l) = (xxy x2,x3). 

Then <p is a subdirect product decomposition of A which fails to be regular. 

Let (1) be a subdirect decomposition of A and suppose that 

<p*:A->B*xC* (V) 

is also a subdirect decomposition of A. We consider (1) and (V) as equal if 
B = B*, C = C* and <p = <p*. Hence for each A e MA, the collection Sd(A) 
of all subdirect product decompositions of A is a proper class. 

Again, let (1) and (1') be subdirect decompositions of A. Under the notation 
as above we put 

<px(a) =a(B), <p2(a) = a(C) 

for each a G A. Similarly, we set 

<p*\a)=a(B*), <p*2(a) = a(C*). 
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9.4. DEFINITION. The subdirect decompositions (1) and (1') are called equiv
alent if there exist an isomorphism ^pl of B onto B* and an isomorphism ^p2 

of C onto C* such that both the diagrams 

B* 

are commutative. 

10. p-subdirect decompositions 

Let X, Y be elements of MA and let -0 be a homomorphism of X into Y. 
By the kernel of ty we mean the partition P(^) on the set X which is defined 
by 

xlP(^)x2 <=> ̂ p(x1) = ^p(x2) 

(in fact, we do not distinguish between a partition of X and the corresponding 
equivalence relation on X). 

The class of P(ip) containing an element x £ X will be denoted by x[P( /0)]. 
For x and x' from X we put 

x[P(^)]^x'[P(^)] 

if there are xx G x[P(^)] and x[ G xf[Pfy)] with xx ^ x[. Then the system 

X/i/>= {x[P(rl>)]: xeX} 

turns out to be a poset. The mapping 

i)x: x/il) -> Y 

defined by 

is an isomorphism of X/cp onto the poset ^(X). Hence X/^p is an element 
of.MA. 

Now consider the subdirect decomposition (1). As in the previous section, for 
each a G A we put 

<pҶa) = a(B), ip2(a) = a(C). 
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Then (D1 (or (p2) is a homomorphism of A onto B (or onto C, respectively). 
Hence we can define tp\ and (D̂  analogously as for ipx above. 
Thus A/(p\ is isomorphic to B; analogously, A/(p\ is isomorphic to C. 
It is obvious that the mapping 

Ip:A->(A/<p\)x(A/tf) (1") 

defined by 
V(a) = ( ( ¥ > 1 ) - 1 ( a ( B ) ) , ( ^ ) - 1 ( a ( C ) ) ) 

is a subdirect product decomposition of A. 
In another notation, for each a £ A we have 

^(a) = ( a [ P ( ^ ) ] , a [ P ( ^ 2 ) ] ) . 

The underlying sets of the posets A/ip\ (i = 1,2) are partitions of .A; we say 
that (1") is a p-subdirect decomposition of A. The collection of all p-subdirect 
decompositions of A will be denoted by Sd (A). 

From the above definitions wre obtain: 

10.1. L E M M A . 

1) The collection Sdp(A) is a set. 
2) To each (p € Sd(A) there corresponds an element Tp £ Sd (.A) such that 

(p and Tp are equivalent. 
3) IfXeSdp(A), thenx = X- _ 
4) Let (p, (p* G Sd(A); then (p and (p* are equivalent if and only ifTp = (p*. 
5) Let (p E Sd(A); then (p is regular if and only if Tp is regular. 

The above results show that by investigating subdirect product decomposi
tions of elements MA we can restrict our considerations, without loss of gener
ality, to the case of p-subdirect decompositions. 

Under the notation as above put 

B = A/V\, C = A/tp2, 

and let B*, C* be defined analogously. 

10.2. THEOREM. Let A e MA . Assume that (1) and (I*) are regular subdirect 

decompositions of A such that B = B*. Then C = C* and Tp = (p* . 

P r o o f . By applying the notation as above we put 

Ql=P(^), Q2 = P(<P2), Q3=P(^), 04 = P ( V 2 ) . 

Let g0 be the minimal partition on A. Then we have 

Q\ A ^2 = ^o = ^3 A 04 • ( 2 ) 
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The relation B = B* yields 
Q1 = Q3 . (3) 

Suppose that y,z G .A, y Q2z. There exists u £y Am z. Since y[Q2] = Z[Q2] , we 
obtain 

Z[Q2] = y[Q2] • (4) 
If t e A, u = t = y, then Z[Q2] = t[Q2] = y[Q2], whence 

*[e2] = y[Q2] • (5) 

Because <p* is regular, there exist xQ,xv...,xn in .4 such that u = x0 _ 
x1 _ x2 :_ • • • = xn = y and for each i G {0 ,1 , . . . , n — 1} we have either 
xi Qs xi+i o r xi 04 * i+ i • 

Let i G / and suppose that â  ^3 x i + 1 . Hence xi QX xi+1. But from (5) we 
infer that 

xi Q2 y Q2
 x

i+i • 

Hence, in view of (2), we get x{ = xi+1. Therefore u Q4y. Similarly, u Q4 Z. 
Hence y Q4 Z and so Q2 ̂  Q4. Analogously we obtain Q4 _ Q2. Thus Q2 = g4, 
yielding that C = C* and Tp = 7p*. • 

In particular, 10.2 is valid in the case when _4 is a semilattice. 

11. Examples 

11.1. This example shows that for each semilattice A with card_4 > 1 there 
exist subdirect decompositions (1) and (V) such that (under the notation as 
above) 

(i) the subdirect decomposition (1) is regular and (1') fails to be regular; 
(ii) B = B*~ but C ̂ C*~. 

We put B = A and let C be a one-element set, e.g., C = {c0}. For each 
a G A we set <p(a) = (a,c0). Then (1) is a regular subdirect decomposition 
of A. Moreover, P((pl) is the minimal partition on A and P(y>2) is the largest 
partition on A. 

Further, let us put B* = C* = A and for each a € A put <p*(a) = (a, b). 
Then (1') is a subdirect decomposition of A which fails to be regular. Also, both 
P(ip*1) and P((p*2) are equal to the minimal partition of A. Hence (ii) is valid. 

The following three examples present regular subdirect decompositions of 
semilattices. 

Whenever Y is a partially ordered set and B ^ - Z C i " , then Z is partially 
ordered (by the induced partial order). 
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11.2. Let B be a semilattice having more than one element. Put C = B, 
X = B xC. Put 

A= {{b)C)eX : b = c}. 

We consider the mapping 
tp: A-^B x C 

such that (f is the identity on A. 

11.3. Let A be a linearly ordered set and let a0 e A such that a0 is neither 
the least element nor the largest element of A. Put 

B = {aeA: a ^ a0} , C = {a e A : a^a0}. 

We consider the mapping ip: A —r B x C which is defined as 

(a\ _ J (a'ao) if aeB' 
\ (a0, a) if a G C. 

11.4. Let A be the set of all integers with natural linear order. Put 

B = {2a: a e A}, C = {b+1: b e B} . 

We consider the mapping ip: A -» B x C which is defined by 

J (a ,a+1) if aeB, 

^ a ' ~ \ ( a + l,a) i f a G C . 
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