Mathematica Slovaca

Jarmila Hedlikové; Tibor Katrinak
Lattice betweenness relation and a generalization of Konig's lemma

Mathematica Slovaca, Vol. 46 (1996), No. 4, 343--354

Persistent URL: http://dml.cz/dmlcz/129538

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/129538
http://project.dml.cz

Mathematica
Slovaca

© 1996
Mathernatical Institute

Math. Slovace, 46 (1996), No. 4, 343-354 Slovak Academy of Sciences

Dedicated to the memory
of Professor Milan Kolibiar

LATTICE BETWEENNESS RELATION AND
A GENERALIZATION OF KONIG’S LEMMA

JARMILA HEDLIKOVA* — TIBOR KATRINAK **

(Commaunicated by Anatolij Dvurecenskij )

ABSTRACT. A tree is a partially ordered set (T, <) such that for every z € T,
the set {y €T | y <z} is well-ordered. Equivalently, a tree is a transitive
«-partite Konig graph G for some ordinal «. Konig’s lemma states that ev-
cry transitive w-partite Konig graph G with finite parts contains an w-frame.
We present an extension of Konig’s lemma which has the origin in a character-
ization of lattices by a ternary relation (the lattice betweenness relation) given
by M. Kolibiar. Our generalization of Koénig’s lemma states that for every
up-directed partially ordered set S, each transitive S-partite Konig graph G
with sufficiently many finite parts contains an S-frame. As an example, we apply
this result in lattice theory.

0. Introduction and preliminaries

There are various attempts to generalize the famous K 6 nig’s lemma [5]. For
instance, E. C. Milner and N. Sauer [6] have proved two infinitary graph-
theoretical variants of this result. For the set-theoretical purposes, one needs gen-
cralizations given in B. Balcar and P. Stépanek [1]. A version of Kénig’s
lemma which is applicable in computer science is used by W. Wechler [7].

The aim of this note is to present an extension of Konig’s lemma as a theorem
which has the origin in M. Kolibiar’s [4] characterization of lattices in terms
of a ternary relation - the lattice betweenness relation. In the first part of this
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paper, our theorem is presented in a graph-theoretical form, which we regard
as a more convenient one. In the second part, we shall show how our version of
Konig’s lemma works in lattice theory (see [2], [3], [4]).

First we need some preliminary definitions and facts.

Let G be a graph with the vertex set V(G) =V, and the edge set E(G) =
ECV xV.If z, y are vertices in G and (z,y) € F, we write also simply
xEy. A graph G is called transitive if for all vertices z,y,z € V. rEy and yE:
implies zEz.

Let S be a partially ordered set. (We shall use two particular cases. when S
is an up-directed partially ordered set, or when S is a well-ordered set of type
a, where a is an ordinal.)

A graph G is called S-partite if there is a partition of the vertex set 17 into
S pairwise disjoint non-empty sets V,, ¢ € S, such that the edge set

EC|JV,xV,| i,j€S and i <j).

In what follows, G will always denote such an S-partite (or, a-partite) graph.
If i €S, the set V, is called the ith part of G. Let us observe that a transitive
S-partite graph G is a partially ordered set with E as a (strict) partial order
on the set V.

An S-partite graph G is called Kénig, or G is said to have the Kdnig property
if for all 4,7 € § with « < j and for every y € V, there exists a unique r € 1,
such that zEy. (Let us notice that in [6], the same name is used in an a-partite
graph G for the following weaker property. For every ordinal i with i + 1 < «a
and y € V; | there is some z € V; such that Ey. However, for our purposes it

(2
is necessary to use the above stronger condition.)

Let G be an S-partite graph. If J C S, a J-frame in G is a function
f:J — V such that for every i € J, f(i) € V., and for all 1,j € J. i < j
implies f(i)Ef(j). Let us observe that the J-frames f in G, where J C S
is a chain, are in one - one correspondence with the complete subgraphs of .
Namely, for every such a J-frame f in G, theset {f(i)| i € J} of vertices of
G induces a complete subgraph of G'. And conversely, if U is a set of vertices
of ¢ inducing a complete subgraph of G, then for every i € S there is at most
one e U with r € V, theset J ={ie S| reV forsome r e 7} isa
chain in S, and the function f:.J — V. such that f(i) is the unique vertex of
U7 belonging to V. is a J-frame in . (In [6]. for an a-partite graph ¢ and an
ordinal 3 with 3 < . a J-path in G is defined as a function /@ 3 — 1 such
that f(¢) € V. for every 7. ¢ < 3, and for all 7. j with /7 < j < 4 there exists
h such that + < b < j and f(A)Ef(j). Let us note that every S-frame in ¢ is
a A-path in G, but not conversely. However, every J-path in ¢/ is a J-frame in
¢ whenever Gis transitive,”
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LEMMA 1. Let G be a transitive S-partite Konig graph. Let 1,5,k € S, and
reV,yeV; and z € V. Assume that 1 <j <k in S. Then zEz and yEz
implies ©Ey .

Proof. Since G is Konig, ¢ < j and y € V,, there is a unique z;, € V,
such that x, Fy. By transitivity of G, z, Ey and yEz implies x, Ez. Because
G is Konig and i« < k, *Fz and x| Ez implies x = z,. Therefore zEy. O

LEMMA 2. Let G be a transitive S-partite Konig graph. If J C S, 1 € S,
r eV and j <i forall j € J, then there exists a unique J U {i}-frame f in
G with f(i) ==z.

Proof. Since G is Konig, for every j € J with j < 1, there exists a unique
T € V} such that sz:E. Thus the only way how to define f is the following

J
one:
_ z; if j € J\{i},
r={7 05
z if j=1.
To show that f is a JU {i}-frame in G, let j,k € J\ {i} with j < k. Then
from j < k <1, x; Ez and z, Ex, by Lemma 1, it follows that achack. O

COROLLARY. Let G be a transitive S-partite Konig graph. If i is o greatest
clement in S and x € V,, then there exists a unique S-frame f in G with

iy =z

Example.
A partially ordered set (T, <) is called a tree if for every ¢ € T, the set
{yeT| y<a} is well-ordered.

Let 'S be an up-directed partially ordered set, and let G be a lransitive
S-partite Konig graph. Then G is a tree if and only if S is well-ordered.

Indeed, it S is a well-ordered set, € V| and if U is a nonempty subset of
the set {y € V| yEx}, then « € V, for some i € S, for every y € U there is
i(y) € S with y € V; ), and the set J = {i(y) | y € U} has a smallest clement.
Let = € U be such that i(z) is the smallest element of J. For every y € U,
i(y) < i, heace by Lemma 2, there exists a unique

J U {i}-frame f in G with  f(i) ==x.

Since G is Konig, /(L(y)) =y for every y € U. It follows that z is the smallest
clement in U. Thus the set {y € V| yEx} is well-ordered in G, and therefore

(' 1s a tree.
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Conversely, assume that S is not well-ordered.

If S is not a chain, then there are non-comparable i,j € 5. and since S is
up-directed, there is k € S with ¢,j < k. Choose an arbitrary vertex r € 1, .
As G is Konig, there exist (unique)

yeV, and z eV, such that yFxr and zFEur.
(i is an S-partite graph, and 7, j are not comparable, hence neither yF':. nor
zFEy, which means that y, z are not comparable in G. Thus the set {t € 1" |
tEz} is not a chain in G, and therefore G is not a tree.

[f S is a chain, then there is a non-empty subset P of S which has not

a smallest element. Choose ¢ € P and x € V,, then, by Lemma 2. there is a
(unique)

{jeP| j<i}frame f in G with  f(i) = r.

The set

{f(j)| jeP and j <i}
has no smallest element, and thus the set {y € V | yEz} is not well-ordered
in (. Therefore G is not a tree. 0

From what is known about trees (cf. [1]), it is now clear that a tree can be
equivalently defined as a transitive a-partite Konig graph G for some ordinal a.

The well-known lemma of D. K6nig may be stated as follows.

KONIG’S LEMMA. If G = < UV E) s a transitive w-partite Kdonig graph.
i<w
and if each V, is finite, then G contains an w-frame.

We shall generalize this lemma in such a way that instead of the ordinal «.
an arbitrary up-directed partially ordered set S is assumed, and instead of the
assumption that each V, is finite, it suffices to suppose that sufficiently many
V.’s are finite in the sense that there exists a cofinal subset F? of .S such that for
every ¢ € P, the set V. is finite (see Theorem 1 below). In particular. Konig's
lemima is true if the ordinal w is replaced by an arbitrary ordinal a. and the
assumption that each V, is finite is replaced by the condition that there exists
a cofinal subset £ of « such that for every i € P, the set V, is finite.

Let us note that the generalizations of Konig’s lemma in [1]. [6] and [T}
in fact, with a-partite graphs, where « is an ordinal. In [1]. for instance. the
ordinal w is replaced by any limit ordinal «a, and the assumption that cach 1]
is finite is replaced by the condition that for each V., [V| < J. where 7 is a
fixed ordinal with 3 < cf(a). (Recall that cf(a) is the minimal ordinal which is
the order type of some cofinal subset of «.)

work.
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1. A generalization of Konig’s lemma

We begin by considering an up-directed partially ordered set S and an
S-partite graph G which is Konig and transitive.
LEMMA 3. Let g be a J-frame in G for some cofinal subset J of S. Then g
has a unique extension f to an S-frame in G.
Proof. First observe that the set .J itself is up-directed. Suppose that
i < j,where ¢ € S and j € J. Then there exists a unique vertex Ty € V. such
that .l'i(l-)Eg(j). Thus, the only possibility to define the function f is as follows:
) g(i) for i€ J,
1) = o . o
iy z;; foriesS \J and some j € J with ¢ <j.
We have to show that f is correctly defined. Let i € S\ J, and let j,k € J with
i < j and 7 < k. Then
. E9(i) and  x, Eg(k).
Since J is up-directed, there exists { € J with 7,k < [. Using the transitivity
of G we get
z,,E9(l) and  z,, Eg(l).
Therefore @, ;) = ;) , as G is Konig. Thus the value f(i) is correctly defined.
It remains to verify that f is an S-frame in G. Take i,7 € S with ¢ < j.
Two cases can occur: 1) jeJ, 2) j ¢ J.

Evidently,
(f(@),F(5)) = (f(i), 9(4)) € E

in the first event. In the second case, there exists k € J with 7 < k. By Lemma 1,

i<j<k, f)Ef(k) and f())Ef(k) = [fOES(),
which completes the proof. O
LEMMA 4. Let V; be finite for some i € S. Then there exists x € V. such that
for coery j €S with 1 < j there is y € V). with zEy .

Proof. Let V, = {x,,...,2,}. Assume to the contrary that for cvery k|
I <k < n. there exists j(k) € S with i < j(k) such that z; Ex forno = € V.
Since S is ap-directed, there is s € S with
Jj(1),...,j(n) <s.

Take y € V.. By Lemma 2, there exists a (unique)

{i,j(1),...,j(n),s}-frame f in G with  f(s) = y.
J(i) =&y for some k, 1 <k <n.Then z, Ef(j(k)), since i < j(k), which is a
contradiction. 0

347



JARMILA HEDLIKOVA — TIBOR KATRINAK

THEOREM 1. Let S be an up-directed partially ordered set, and let G be
transitive S-partite Konig graph. Suppose that there exists a cofinal subset P of
S such that for every i € P the set V, is finite. Then there exists an S-frame
m G.

Proof. By Lemma 3, it is enough to show that there exists a P-frame
in 7. First we introduce two new concepts.

Let g be a J-frame in G for some J C S. Let z € V, for some i € S
Then we say that « is assimilated by g if for every j € J with j < i, we have
g(j)Ex. Evidently, g(¢) is assimilated by g for every i € J. Let us observe that
ifi,ke S, k<i,zeV,yeV,, ybr and z is assimilated by g, then y is
assimilated by ¢, too. Indeed, if j € J and j < k, then by Lemma 1,

j<k<i, g(j)Er and yFz = g(j)Ey.

Let g be a J-frame in G for some J C P. Then g is said to be normal if
for every 7 € P there exists € V, such that g assimilates x.

Consider now the family N of all normal J-frames in G, where J C P.
Clearly, N is non-empty by Lemma 4. N is partially ordered by the set-inclusion.
We claim that N has a maximal element.

Really, let C' be a non-empty set, and let g, , k € C, be a normal .J,-frame
in G, where J, C P. Assume that {g, | k € C'} is a chain in N. Consider
g=Ul(g, | k € C). Clearly, g is a J-frame in G, where J = J(J, | k€ (") C P.
Assume to the contrary that g is not normal. Then there exists ¢ € P such that
for every x € V, there is j(x) € J with

j)y<i and (g(j(z)),z) ¢ E.

Since {g, | k€ C} is a chain, and V, is a finite set, there is & € " such that
9(j(x)) = g, (j(z)) for all z € V,. Because g, is a normal J,-frame in /. we
obtain that there exists z € V; with g, (j(z)) Ex, which is a contradiction. Thus,
g is a normal J-frame in G. By Zorn’s lemma, there exists a maximal element
of N, i.e., a maximal normal J-frame in G for some J C P, as claimed. Let us
denote it by g. We want to show that J = P.

Suppose to the contrary that there exists ¢ € P\ J. Since ¢ is normal. there
is an element in V, assimilated by ¢. Let {x,...,x, } be the set of all elements
of V, assimilated by g. For every », 1 <r < n, denote by g, the extension of
g defined as follows:

. g(]) fOl" /e'lv
9.(J) = .
T, for j=1.
No g,, 1 <7 <n,isanormal JU {i}-frame in G. If g, is not a J U {i}-frame
in ¢ for some r, 1 < r < n, then there exists i(r) € J with / < i(r) and

(.1' (](1(7))) ¢ E.1If g is a JU {i}-frame in G for some r. 1 < r < n.then

T
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g, is not normal by maximality of g, hence there exists i(r) € P such that
i <i(r),and (z,,y) ¢ E for every y € V() which is assimilated by g.

With respect to Corollary, we can assume that S has no greatest element.
Since P is up-directed, P has no greatest element, and therefore there is k € PP
with i(1),...,i(n) < k. Choose y € V,, which is assimilated by g. By Lemma 2,
there exists a (unique)

{i,i(1),...,i(n), k}-frame f in G with  f(k) =y.
Then f(i) = x, for some r, 1 <r < n. There exist
Y1 € Viys-- 14, € Vit assimilated by ¢

such that
Fi) =y, f(i(n) =y, -
The case (x,,y,.) ¢ E is not possible. Thus

W(ryed, (x,,g(i(r) ¢ E, z.Ey., and yFy.

Since y is assimilated by g, we get g(i(r))Ey. Since G is Kénig, g(i(r)) =y,
which is a contradiction. O

To find correlations between the properties used in [6; Theorem 2] and the
assumptions of our Theorem 1, it should be observed that Konig’s lemma is true
also in the following stronger form. Let S be a partially ordered set. Call an
S-partite graph G weakly Konig if for all 7,5 € S with ¢ < j and for every
yeV, there exists x € V, such that zEy. If G = ( uv, E) is a transitive

1<w
w-partite weakly Konig graph, and if each V, is finite, then G contains an
w-frame.

To generalize this form of Kénig’s lemma, the following definitions were in-
troduced ir. [6]. Let a be an ordinal, and let G = ( uv, E) be an a-partite

<o
graph. G is said to be “Kdnig” (here we use inverted commas to distinguish the
same name used for two different notions) if for every ordinal 7 with i + 1 < «
and y € V| thereis some x € V; such that xEy. Let us note that G is “Konig”
whenever ¢ is weakly Konig. G is said to be back-connected if for every i, ¢ < «,
and for every a € V, there exists an (i + 1)-path f in G such that f(i) = x.
This is stronger than being “Konig”. Let us observe that if G is an w-partite
eraph. then @ is “Konig” if and only if G is back-connected. Then Konig's
lemma may be formulated as follows. If G = ( UV E) is a back-connected
1<w

w-partite graph, and if cach V. is finite, then G contains an w-path.

An a-partite graph ¢ is said to be narrow if for every ordinal 7. 7 < «. there
exists an ordinal j with 7 < j < o such that cither \", is finite. or whenever
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UCV,, and [U] < max (||, |V;]), then there exists y € Vi with y x U C E

The generalization is as follows. If G = ( uv, E) is a back-connected. narrow.
1<
«-partite graph, then G contains an a-path.

The following simple examples show that Theorem 1 is not valid under some
weaker assumptions.

Examples.

(1) Let S = {0,1,2} be a three-clement partially ordered set given by the
relations 0 < 1 and 0 < 2. S is not up-directed. Let G be a graph with the
four-element vertex set V = {&,y,z,t} and the edge set F = {(\.1'. 7). ((,/.I‘;}.
Put

Vo =Ax,yr, V,={z}. V,={t}.
Then G is a transitive S-partite Konig graph. There is no S-frame in @',

(2) Let S = {0,1,2} be endowed with the natural order. Let G be a
graph with the four-element vertex set V= {u,y, z, ¢t} and the edge set F
{(x,2),(y. 1), (= t)} . Put

Vo = {z,y;, V= {z}, V, = {t}.

Then G is an S-partite Konig graph which is not transitive. There is no S-frame
in G.

(3) Let S ={0,1,2,3} be a four-element lattice with the smallest element 0.
the greatest element 3 and with 1 and 2 non-comparable. Let ¢ be a graph
with the five-element vertex set V = {r,y, z,t,u} and the edge set

E = {(z,2), (1, 0), (. u), (9.1). (g ), (t.0) }
Put the parts of GG as follows:
‘/’():{.’I’,y}.‘ ‘/71 :{2}, V_):{/’}, V:; :{11}.
Then G is a transitive S-partite graph with the following property. For everv
t,j €5 with ¢« < j and for every w € V; there exists v € V; such that ¢FEuwe.

This mcans that G is weakly Konig, but ' is not Konig. There is no S-frame
in G.

Let us note that in our paper [3], there is, in fact, an example of (7. a transitive
S-partite Konig graph, where S is an up-directed partially ordered set such that
there is no S-frame in GG. By Theorem 1, for every cofinal subsct 7 of S there is
i € I? such that the set ' V)ois not finite. This example is examined more detailed

in the next section.
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2. Lattices

As we nientioned earlier, the motivation for Theorem 1 came from Koli-
biar’s characterization of lattices by the (ternary) betweenness relation [4].
First, let us recall some concepts and results. We shall use the notation from [3].

A ternary relation R on a set M is a subset of M x M x M . For a,b,c € M,
we shall write abe instead of (a,b,c¢) € R. Also, we shall say that a ternary
relation abe on the set M is given. For a,b € M, we define (a,d) as the set
{¢ € M | acb}. This set will be called a segment on M. A subset K of A
is said to be closed if (a,b)y C K for every a,b € K. Since the intersection of
anv system of closed subsets of M is again closed, we can introduce a closure
operation — on the subsets of M as follows: K~ is the intersection of all closed
subsets of M containing K .

Now we can formulate the following Kolibiar’s conditions (cf. [4]):

(A) For any a,b,c € M there are d,e € M such that
{abyc} C(d,e) = (d,e)".

(B) For any elements a,b,c € M,

{a,b)" N(b,c)” N{c,a)” #0.

(C) If a.b,c € M, then abe if and only if
(a,b)” N {e, by = {b}.

(I7) The closed segments on A can be “oriented” in the following sensc:
There exists a mapping assigning to every closed segment H a pair
(ay;-by) € M x A such that H = (ay, by), and for all closed segments
H . K the following holds:

It H C K and (ay,by,) is closed, then aa, by, .

Having a lattice L, one can define a ternary relation abe (the betweenness

relation) on L as follows:

abe <= (aAb)V(bAc)=b=(aVb)A(bVe).

In [1]. it wes shown that the betweenness relation satisfies the conditions (A).
(B). (") and (F). Conversely, M. Kolibiar [4] proved that if there is a ternary
relation abe on a set M satisfying (A), (B), (C) and (F), then lattice operations
can be defined on M such that the corresponding betweenness relation on A/
and the given ternary relation abe on M coincide.

We are now in a position to formulate our goals in this section. Our first task
is to establish the fact that for every set Al with a ternary relation ebe satisfying
(\).(B) and ("), a partially ordered set C'S(M) and a C'S(M)-partite graph
(i can be assigned in a natural way, such that C'S(A/) is up-directed and @
is Wonig and transitive. This enables us to reformulate the main Kolibiar’s
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result from [4] in terms of graphs. Eventually, in accordance with this approach.
we shall apply Theorem 1.

Let us consider a ternary relation abc on a set M satisfying the conditions
(A), (B) and (C). Let CS(M) denote the set of all closed segments on A/
partially ordered by the set-inclusion. By virtue of condition (A), C'S(AM) is up-
directed. An ordered pair (a,b) € M x M is called a base of a closed segment I7
if {a,b) = H. The set of all bases of H will be denoted by Fund(H). In addition.
if H K € CS(M) with H C K and (a,b) € Fund(H), (¢,d) € Fund(A). then
the bases (a,b) and (c,d) are said to have the same orientation, whenever cab
is true.

Now we shall give the description of a C'S(M)-partite graph G assigned
to M. The vertex set V(G) =V of G is defined as follows:

V = J(Fund(H) | H € CS(M)) .

(It can be easily verified that the family {Fund(H)| H € ("S(M)} forms a
partition of V'.) Eventually, the edge set E(G) = E of G comprises all pairs of
distinct bases having the same orientation.

LEMMA 5. If M is a set with a ternary relation abe satisfying (A). (B) and
(C), then for all a,b,c,d € M the following is true:

(i) (a,b) = (b,a),

1 <(1, a>—— = {(1} ’

)
(iii) a,b € (a,b),
(iv) if abc and d € (a,b)", then dbe,
(v) if (a,c) ts closed and abc, then (a b) is closed,
(vi) if abc and acbh, then b= c.

Proof. A proof of the statements (i) - (v) can be found in [4]. Cf. [4: 1.3.2.
4.3.4-4.3.7]. Condition (vi) follows, e.g., by (C) and (iii). 0

THEOREM 2. Let M be a set with a ternary relation abe satisfying (A). (B)
and (C). Then the assigned C'S(M)-partite graph G is Konig and transitive.

Proof. First we prove that (¢ is Konig. Assume that H, K’ € C'S(A) with
H ¢ K. Let (x,y) € Fund(H) and (c¢,d) € Fund(K). We claim that there
exists (a,0) € }‘1111(1(H) such that (a,b) and (¢, d) have the same orientation.
Really. by (B) there exist elements

a€{c,e)y" N{e,y)y T H and be(dx)y Nidyy NH.

Thercfore, {a.b) € H. Morcover, dre and b€ (d.r)” implies bee by Lenima 5.
By the same argument, arb follows from crb and a € (c.r) . Similarly. we
obrain ayb. Now. {b.¢) is a closed segment by Lemma 5 and the fact that
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be (c,d). From z € (b,c) it follows that a € (c,z)” C (b, c), which implies cab.
Moreover, (a,b) is closed and z,y € (a,b), hence

H= <.r,y) - <a’b> CH,

which means that (a,b) = H. Evidently, the bases (a,b) and (¢,d) have the
same orientation, as claimed.

Suppose that there exists another base (u,v) € Fund(H) with the same
orientation as (c¢,d). Then by Lemma 5, we get successively:

bac and bua = uac; cuv and uav = auc.

By Lemma 5, cau and cua implies a = u, and then from abv and avb we

similarly obtain b = v. Thus (u,v) = (a,b), and therefore G is Konig,.

[t remains to prove that G is transitive. Let H, K, N € CS(M) with H C
N C N, and let (a,b) € Fund(H), (¢,d) € Fund(K) and (e, f) € Fund(N).
Let cab and ecd be true, ie., (a,b), (¢,d) and (c¢,d), (e, f) have the same
orientation. Since G is Konig, there exists (a’,b') € Fund(H) such that (a’,b")
and (e, f) have the same orientation, that means, ea’d’. Now, ecd and ca'd
implies eca’ by Lemma 5. It follows that ca’b’, again by Lemma 5, as ea’d’.
This means that (a’,b’) and (¢,d) have the same orientation. Because G is
Konig, (a,b) = (a/,b’), and thus (a,b), (e, f) have the same orientation. The
proof is complete. a

Let us observe that if M is a set with a ternary relation abc satisfying (A),
(B) and (C) containing more than one element, then C'S(M) is not a chain.
Even more is true, for every H € CS(M) containing more than one element,
the set {K eCS(M)| K C H} is not a chain. This is caused by the fact that
the set {(a,a) | a € M} is an anti-chain in CS(M).

COROLLARY. Let M be a set with a ternary relation abc satisfying the con-
ditions (A), (B) and (C). Then M satisfies condition (F) if and only if there is
a CS(M)-frame in the assigned graph G .

Proof. It suffices to observe that condition (F) can be formulated without
the assumption “(a,,by) is closed”. This follows from Lemma 5. O

In [3], it was proved that the conditions (A), (B), (C) and (F) are indepen-
dent. Thus, an example of a set M with a ternary relation abe satisfying (A),
(B) and (C), but not (F) (cf. [3; Example 4]) provides simultaneously an exam-
ple of a transitive C"S(Af)-partite Konig graph G which does not contain any
C('S(M)-frame. By Theorem 1, for every cofinal subset P of C'S(M) there is
I1 € P such that the set Fund(H) is not finite.

Now, as a consequence of Theorem 1 and 2 we have:
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THEOREM 3. Let M be a set with a ternary relation abe satisfying (A), (B)
and (C). If there exists a cofinal subset P of CS(M) such that for every H € P
the set Fund(H) is finite, then M satisfies condition (F).
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