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LATTICE BETWEENNESS RELATION AND 
A GENERALIZATION OF K Ó N I C S LEMMA 

J A R M I L A H E D L Í K O V Á * —• T I B O R K A T R I Ň Á K * * 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. A tree is a partially ordered set (T, < ) such t h a t for every x E T, 
the set {y G T | y < x} is well-ordered. Equivalently, a tree is a transitive 
o-part i te Kdnig graph G for some ordinal a . Konig's lemma states that ev­
ery transitive u> -partite Konig graph G with finite parts contains an uj-frame. 
We present an extension of Konig's lemma which has the origin in a character­
ization of lattices by a ternary relation (the lattice betweenness relation) given 
by M. K o l i b i a r . Our generalization of Konig's lemma states that for every 
up-directed partially ordered set S, each transitive S-partite Konig graph G 
with sufficiently many finite parts contains an S-frame. As an example, we apply 
tliis result in lattice theory 

0. Introduction and preliminaries 

There are various attempts to generalize the famous K 6 n i g 's lemma [5]. For 
instance, E. C. M i l n e r and N. S a u e r [6] have proved two infinitary graph-
theoretical variants of this result. For the set-theoretical purposes, one needs gen­
eralizations given in B. B a l c a r and P. S t e p a n e k [1], A version of Konig's 
lemma which is applicable in computer science is used by W. W e c h l e r [7]. 

The aim of this note is to present an extension of Konig's lemma as a theorem 
which has Vie origin in M. K o l i b i a r ' s [4] characterization of lattices in terms 
of a ternary relation the lattice betweenness relation. In the first part of this 
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paper, our theorem is presented in a graph-theoretical form, which we regard 
as a more convenient one. In the second part, we shall show how our version of 
Konig's lemma works in lattice theory (see [2], [3], [4]). 

First we need some preliminary definitions and facts. 

Let G be a graph with the vertex set V(G) — V, and the edge set E(G) --
E C V x V. If x, y are vertices in G and (x,y) G £ , we write also simply 
xEy. A graph G is called transitive if for all vertices x,y,z E V, xEy and yEz 
implies xEz. 

Let S be a partially ordered set. (We shall use two particular cases, when .S' 
is an up-directed partially ordered set, or when S is a well-ordered set of type 
at, where a is an ordinal.) 

A graph G is called S-partite if there is a partition of the vertex set V into 
S pairwise disjoint non-empty sets Vi, i E S, such that the edge set 

Ec\J(VlxV] I i,j€S and i < j). 

In what follows, G will always denote such an ^-partite (or, a-partite) graph. 
If i E 5 , the set Vi is called the ith part of G. Let us observe that a transitive 
S-partite graph G is a partially ordered set with E as a (strict) partial order 
on the set V. 

An 5-partite graph G is called Konig, or G is said to have the Konig property 
if for all i, j E S with i < j and for every y E V- there exists a unique x £ V̂  
such that xJ?H. (Let us notice that in [6], the same name is used in an a-partite 
graph G for the following weaker property. For every ordinal i with i -f 1 < a 
and y £ V i+1 there is some x £ V̂  such that xEy. However, for our purposes it 
is necessary to use the above stronger condition.) 

Let G be an iS-partite graph. If J C 5 , a J-frame in G is a function 
/ : J —» V such that for every i £ J , / ( i ) £ V{, and for all z,j £ J , / < j 
implies f(i)Ef(j). Let us observe that the J-frames / in G, where J C 5 
is a chain, are in one-one correspondence with the complete subgraphs of G. 
Namely, for every such a J-frame / in G, the set \f(i) \ i £ J } of vertices of 
G induces a complete subgraph of G . And conversely, if U is a set of vertices 
of G inducing a complete subgraph of G, then for every i £ S there is at most 
one x £ U with x £ V-:, the set J = {i £ S \ x £ V- for some ,r £ 1} is a 
chain in S, and the function / : J —> V, such that / ( / ) is the unique vertex of 
U belonging to V ,̂ is a J-frame1 in G . (In [6], for an a-partite graph G and an 
ordinal 3 with /J < o , a 3-path in G is defined as a function / : 3 — \ such 
that /(/') £ V- for every /, / < /?, and for all /, j with / < _y < J there exists 
A' such that / <k< j and f(k)Ef(j). Let tis note that every -i-lVame in G î> 
a d-path in G . but not conversely. However, every ^-pat.h in G is a A-frame in 
G whenever G is transitive.' 
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LEMMA 1. Let G be a transitive S-partite Konig graph. Let i<j, k G S, and 
x G Vi. y G V- and z G Vk . Assume that i < j < k in S. Then xEz and yEz 
implies xEy. 

P r o o f . Since G is Konig, i < j and y G V-;, there is a unique xx G Vi 

such that xxEy. By transitivity of G, x1Ey and yEz implies xxEz. Because 
G is Konig and i < k, .TF'z and xxEz implies x = x1. Therefore xFi/. • 

LEMMA 2. Del G be a transitive S-partite Konig graph. If J C S, i G S. 
j - G V; and j < i /OT all j G J . t/ien lbeTe exists a unique J U {i\-frame f in 
G with f(i) = x . 

P r o o f . Since G is Konig, for every j G J with j < i, there exists a unique 
x G V such that x-Ex. Thus the only way how to define / is the following 
one: 

/<.)={*' "iejm-
I x it j = i. 

To show that / is a J U {i}-frame in G, let j,k E J \ {i} with j < k. Then 
from j < k < i, x-Ex and xkEx, by Lemma 1, it follows that x-Exk. • 

COROLLARY. Le^ G be a transitive S-partite Konig graph. If i is a greatest 
element in S and x G Vi, then there exists a unique S-frame f in G with 
f(i)=x. 

Example. 
A partially ordered set (F, <) is called a tree if for every x G F, the set 

{// G T | y < x} is well-ordered. 

Let S be an up-directed partially ordered set, and let G be a transitive 
S-partite Konig graph. Then G is a tree if and only if S is well-ordered. 

Indeed, if S is a well-ordered set, x G V, and if U is a nonempty subset of 
the set {y E V \ yEx} , then x G Vt for some i G S, for every y G U there is 
/(//) G S with H G V̂ / N , and the set J = {?'(?/) | 2/ G U} has a smallest element. 
Let c G U be such that i(z) is the smallest element of J . For every y G U, 
/'(//) < /', hence by Lemma 2, there exists a unique 

J u { i } - f r a m e / in G with f(i) = x. 

Since G is Konig, f(i(y)) = 2/ for every y G U. It follows that z is the smallest 
element in U. Thus the set {y G V | yEx} is well-ordered in G, and therefore 
G is a tree. 
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Conversely, assume that S is not well-ordered. 
If S is not a chain, then there are non-comparable i,j £ 5 , and since S is 

up-directed, there is k £ S with i,j < k. Choose an arbitrary vertex x £ \\,. 
As G is Konig, there exist (unique) 

y £ Vi and z <G V- such that yEx and zEx . 

G is an S*-partite graph, and i, j are not comparable, hence neither yEz. nor 
zEy, which means that H, z are not comparable in G. Thus the set {t £ U j 
tEx} is not a chain in (7, and therefore G is not a tree. 

If S is a chain, then there is a non-empty subset P of S which has not 
a smallest element. Choose i £ P and x £ V-, then, by Lemma 2. there is a 
(unique) 

{] £ P \ 3 -\ 2}-frame f in G with /(z) = .r . 

The set 

{/(J) I J £ -P and j < i} 

has no smallest element, and thus the set {y £ V \ yEx} is not well-ordered 
in G. Therefore G is not a tree. • 

From what is known about trees (cf. [1]), it is now clear that a tree can be 
equivalents defined as a transitive a-partite Konig graph G for some ordinal o . 

The well-known lemma of E>. K o n i g may be stated as follows. 

KONIG'S LEMMA. If G = ( l j Vv Ej is a transitive w-partite Konig graph. 

and if each V% is finite, then G contains an LU-frame. 

We shall generalize this lemma in such a way that instead of the ordinal JJ . 
an arbitrary up-directed partially ordered set S is assumed, and instead of the 
assumption that each Vi is finite, it suffices to suppose that sufficiently many 
Vt 's are finite in the sense that there exists a cofinal subset P of S such that for 
every i £ P , the set V% is finite (see Theorem 1 below). In particular. Konig's 
lemma is true if the ordinal uo is replaced by an arbitrary ordinal a . and the 
assumption that each V% is finite is replaced by the condition that, there exists 
a cofinal subset P of a such that for every i £ P , the set V- is finite. 

Let us note that the generalizations of Konig's lemma in [1], [6] and [7] work. 
in fact, with cr-partite graphs, where a is an ordinal. In [1], for instance, the 
ordinal CO is replaced by any limit ordinal a , and the assumption that each L 
is finite is replaced by the condition that for each Vi, \V,\ < /i , where i is a 
fixed ordinal with (3 < cf (a ) . (Recall that cf (a) is the minimal ordinal which is 
the order type of some cofinal subset of a.) 
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1. A generalization of Konig's lemma 

We begin by considering an up-directed partially ordered set S and an 
*S'-partite graph G which is Konig and transitive. 

LEMMA 3. Let g be a J-frame in G for some cofinal subset J of S. Then g 
has a unique extension f to an S-frame in G. 

P r o o f . First observe that the set J itself is up-directed. Suppose that 
/ < j , where i £ S and j G J . Then there exists a unique vertex xi{ x G Vi such 
that x-f ̂ Eg(j). Thus, the only possibility to define the function / is as follows: 

g(i) for i G J , m 
x г{j) 

for i G S \ J and some j G J with i < j . 

We have to show that / is correctly defined. Let i G S\J, and let j , k G J with 
/ < j and i < k. Then 

xl{j)Eg(j) and xl(k)Eg(k) . 

Since J is up-directed, there exists / G J with j , k < I. Using the transitivity 
of G we get 

xi(j)E9(l) a n d xz{k)E9(1)-

Therefore x-t^ = ^u^), as G is Konig. Thus the value f(i) is correctly defined. 
It remains to verify that / is an £-frame in G. Take i,j G S with i < j . 

Two cases can occur: 1) j G J , 2) j £ J. 
Evidently, 

{f(i),f(3)) = {f(i),9(J))zE 

in the first event. In the second case, there exists k G J with j < k. By Lemma 1, 

i<j<k, f(i)Ef(k) znd f(j)Ef(k) = > f(i)Ef(j), 

which completes the proof. • 

LEMMA 4. Let V, be finite for some i G S. Then there exists x G V- such that 
for every j G S with i < j there is y G V- with xEy. 

P r o o f . Let V: — {x l7 . . . , x } . Assume to the contrary that for every A-, 
1 < A* < n. there exists j(k) G S with i < j(k) such that xkEx for no x G K-M.) • 
Since S is up-directed, there is s G 5' with 

j ( l ) , . . . , j ( n ) < . s . 

Take // G Vs. By Lemma 2, there exists a (unique) 

{hjW^-'J(n),s}-fmme f in G with f(s) = y. 

/ ( / ) = .rA. for some k, 1 < k < n. Then xkEf(j(k)) , since i < j(k), which is a 
contradiction. • 
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T H E O R E M 1. Let S be an up-directed partially ordered set, and let G be a 

transitive S-partite Konig graph. Suppose that there exists a cofinal subset P of 

S such that for every i £ P the set V{ is finite. Then there exists an S-frame 

in G. 

P r o o f . By L e m m a 3, it is enough to show that there exists a P-frame 

in G. First we in t roduce two new concepts. 

Let g be a J-frame in G for some J C S. Let x £ V% for some i £ S. 
Then we say t h a t x is assimilated by g if for every j £ J wi th j < i, we have 
g(j)Ex. Evidently, g(i) is assimilated by g for every i £ J. Let us observe that 
if i,/c £ 5 , k < i , x £ V%, y G Vkl yEx and x is assimilated by O, then O is 
assimilated by O, too. Indeed, if j £ J and j < k, then by L e m m a 1, 

j <k <i1 g(j)Ex and HFx ==> g(j)Ey. 

Let O be a J-frame in G for some J C P . Then O is said to be normal if 

for every i £ P there exists x £ V̂  such t h a t O assimilates x . 

Consider now the family jV of all normal J-frames in G, where J C P . 

Clearly, jV is non-empty by L e m m a 4. TV is part ial ly ordered by the set-inclusion. 

We claim t h a t N has a maximal element. 

Really, let C be a non-empty set, and let gk, k £ C , be a normal J^.-frame 

in G, where Jk C P . Assume t h a t {O .̂ | k £ C } is a chain in A r. Consider 

9 — LKgfc | & £ C ) - Clearly, O is a J-frame in G, where J = [j(Jk \ k E C) C P. 

Assume to the contrary t h a t O is not normal . T h e n there exists i £ P such that 

for every x £ V̂  there is j ( x ) £ J with 

j(x) < i and ( O ( j ( » ) , x ) ^ E . 

Since {gk \ k £ C } is a chain, and V{ is a finite set, the re is k £ C such that 

g(j(x)) = gk(j(x)) for all x £ V^. Because #fc is a normal J^.-frame in G . we 

obta in t h a t there exists x £ V{ wi th gk(j(x))Ex 1 which is a contradict ion. Thus, 

g is a normal J-frame in G . By Zorn's lemma, there exists a maximal element 

of /V, i.e., a maximal normal J-frame in G for some J C P , as claimed. Let us 

denote it by g. We want to show tha t J = P . 

Suppose to the contrary tha t there exists i £ P\J. Since g is normal , there 
is an element in Vi assimilated by g. Let { i p . . . , x } be the set of all elements 
of Vt assimilated by g. For every r , 1 < r < n, denote by <y . the extension of 
O defined as follows: 

, ., f 9(j) f o r .1 ^ j . 
9r(j) = I f • • 

I x r for j = z. 
No Or, 1 < r < 7Z, is a normal J U {z}-frame in G. If g is not a J U {/}-frame 
in G for some r , 1 < r < n , then there exists i(r) £ J with / < i(r) and 
( x r , g(i(r))) fi E. If Or. is a JU {i}-frame in G for some r , 1 < r < n . then 
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gr is not normal by maximal i ty of a, hence there exists i(r) E P such t h a t 

/ < i(r), and (xr,y) ^ E for every y E V^v which is cissimilated by g. 

W i t h respect to Corollary , we can assume t h a t S has no greates t element. 
Since P is up-directed, P has no greates t element, and therefore there is k E P 
with ?'(1),.. . , i(n) < k. Choose y E Vk which is assimilated by g. B y L e m m a 2, 
there exists a (unique) 

{i, i(l),..., i(n), fc}-frame / in G wi th f(k) = y . 

Then f(i) = x r for some r , 1 < r < n . There exist 

2/i G y i ( 1 ) , . • •, t/n G Vz(n) assimilated by O 

such t h a t 

/ ( z ( l ) ) = S / l / ( i ( n ) ) = y „ . 

T h e case (xr,yr) £ E is not possible. T h u s 

i(r) E J , (xr, g(i(r))) £ E , xrEyr, and yrEy . 

Since y is assimilated by # , we get g(i(r))Ey. Since C? is Konig, g(i(r)) = H, 

which is a contradict ion. • 

To find correlat ions between t h e proper t ies used in [6; Theorem 2] and the 
assumpt ions of our Theorem 1, it should be observed t h a t Konig 's l emma is t rue 
also in the following s t ronger form. Let S be a par t ia l ly ordered set. Call an 
5 -par t i t e graph G weakly Konig if for all i,j E S wi th i < j and for every 

y E V there exists x E Vi such t h a t xEy. If G = ( (J V-, FJ is a t ransi t ive 

u;-partite weakly Konig graph, and if each Vi is finite, t hen G contains an 

uj- frame. 

To generalize this form of Konig 's lemma, the following definitions were in­

t roduced in [6]. Let a be an ordinal, and let G = ( (J V ,̂ Ej be an cr-partite 
^ i<a ' 

graph. G is said to be "Konig" (here we use inverted commas to dist inguish the 

same name used for two different notions) if for every ordinal i with i -f- 1 < a 

and y E V/+[ there is some x E Vi such t h a t xEy. Let us note t ha t C7 is "Konig" 

whenever G is weakly Konig. G is said to be back-connected if for every i, i < ot, 

and for every &• E V% there exists an (i -f l ) - p a t h f in G such t h a t / ( i ) = :r. 

LI lis is s tronger t han being "Konig". Let us observe t h a t if G is an cj-partite 

graph, then G is "Konig" if and only if G is back-connected. Then Konig 's 

lemma may be formulated as follows. If G = ( (J V ,̂ F j is a back-connected 

a>par t i te graph, and if each V- is finite, then G contains an LO-paTh. 

An n -pa r t i t e graph (7 is said to be narrow if for every ordinal i. i < a. there 
(^xists an ordinal j with / < j < a such t ha t either V is finite, or whenever 
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U C V. + 1 and \U\ < m a x ( | a | , |V^|) , then there exists y G Vj with y x F C F. 

The generalization is as follows. If G = ( (J V{, E\ is a back-connected, narrow.. 

a -pa r t i t e graph, then G contains an cr-path. 

T h e following simple examples show t h a t Theorem 1 is not valid under some 
weaker assumpt ions . 

E x a m p l e s . 

(1) Let S = {0 ,1 ,2} be a three-element part ial ly ordered set given by the 

relations 0 < 1 and 0 < 2. S is not up-directed. Let G be a graph with the 

four-element vertex set V = {x,y,z,i} and the edge set E — {{x. z). (y. t)} . 

P u t 

V0 = {x,y}, Vx = {z}. V2 = {t}. 

Then G is a t ransi t ive 5-par t i t e Konig graph. There is no .S-frame in G. 

(2) Let S = {0 ,1 ,2} be endowed with the na tu ra l order. Let G be a 

graph with the four-element vertex set V = {xxy,z,t} and the edge set E =-

\(x,z),(y,t),(z,t)}. Put 

V0 = {x,y}, \\={z}, V2 = {t}. 

Then G is an 5-par t i t e Konig graph which is not t ransi t ive. There is no ,S-frame 

in G. 

(3) Let S = {0, 1, 2, 3} be a four-element lat t ice wi th the smallest element 0. 
the greatest element 3 and with 1 and 2 non-comparable . Let G be a graph 
with the five-element vertex set V = {x, H, 2, t, u} and the edge set 

E = { (x ,z) , (x ,H ) , (2 : ,H ) , (H , f ) , (H ,H ) , ( l ,H )} . 

Pu t the pa r t s of G as follows: 

V0 = {x,y}, Vl={z}, V2 = {t}, V, = {u}. 

Tlien G is a t ransi t ive /S-partite graph with the following property. For every 
i-,j G >S with i < j and for every w G V- there exists v G V such tha t rEw. 
This means tha t G is weakly Konig, but G is not Konig. There is no .S-frame 
in G. 

Let us note t ha t in our paper [3], there is, in fact, an example of G. a t ransi t ive 

kS-partite Konig graph, where S is an up-directed part ial ly ordered set such thai 
there is no 5-frame in G. By Theorem 1, for every cofinal subset P of S there is 
/ G P such tha t the set \] is not finite. This example is examined more detailed 
in i.he next section. 
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2. Lattices 

As we men t ioned earlier, the mo t iva t ion for T h e o r e m 1 came from K o 1 i -
b i a r ' s charac ter iza t ion of la t t ices by the ( ternary ) be tweenness rela t ion [4]. 
Kirst, let us recall some concep ts and resul ts. We shall use the no ta t ion from [3]. 

A ternary relation R on a set M is a subse t of M x 11/ x M. For O, b, c ~ 11/, 
we shall wri te abc ins tead of (O, b, c) ~ R. Also, we shall say that a ternary 

relation abc on the set M is given. For O, b ~ A/ , we define (a, 6) as the set 

{c ~ M | acb}. This set will be called a segment on M. A subse t K of 11/ 
is said to be closed if (O, b) C K for every O, b ~ K. Since the in tersec t ion of 
any system of closed subse ts of M is again closed, we can in t roduce a closure 
operat ion ~ on the subse ts of 11/ as follows: K~ is the in tersec t ion of all closed 
subsets of M con taining K. 

Now we can formula te the following K o 1 i b i a r 's condi t ions (cf. [4]): 

(A) For any O,b, c ' M there are O7, e £ M such that 

{a,b,c} C (d,e) = (d,e)-. 

(B) For any elemen ts O, b, c <E A/ , 

(O,b)-'n(b,c)~ n(c,a)~ ^ 0 . 

(C) If a. b, c G A/ , then Obc if and only if 

(a,b)-n{c,b)- = {b}. 

(F) The closed segmen ts on A/ can be "orien ted" in the following sense: 

There exists a mapp ing assigning to every closed segmen t / / a pair 

(O/y. bfI) G 11/ x M such that / / = (aH, bi{), and for all closed segmen ts 

/ / , K the following holds: 

If / / C K and ( O ^ , b ^ ) is closed, then ^xaH^H-

Having a la t t ice L, one can define a ternary rela t ion abc ( the betweenness 

relation) on L as follows: 

Obc 4 = > (O A b) V (b A c) = b = (O V b) A (b V c) . 

In [•!]. it wr.s shown that the be tweenness rela t ion satisfies the condi t ions (A), 
(B). (C) and (F) . Conversely, M. K o 1 i b i a r [4] proved that if there is a ternary 

relation abc on a set 11/ satisfying (A), (B), (C) and (F) , then la t t ice opera t ions 
can be defined on 11/ such that the corresponding be tweenness rela t ion on 11/ 
and the given ternary rela t ion abc on M coincide. 

We are now in a posi t ion to formulate our goals in this section. Our first task 
is to establish the fact that for every set 11/ with a ternary rela t ion abc satisfying 
(A). (B) and (C), a part ial ly ordered set CS(M) and a CS(M)-p<irtitc graph 
G can be assigned in a na tura l way, such that CS(M) is up-direc ted and G 
is Konig and transitive. This enables us to reformula te the main K o 1 i b i a r ' s 
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result from [4] in t e rms of graphs . Eventually, in accordance with this approach . 

we shall apply Theorem 1 . 

Let us consider a t e rnary relation abc on a set M satisfying the condit ions 
(A), (B) and (C), Let CS(M) denote the set of all closed segments on M 

part ial ly ordered by the set-inclusion. By vir tue of condit ion (A), CS(M) is up-
directed. An ordered pair (a, b) G M x M is called a base of a closed segment H 

if (a, b) = H. T h e set of all bases of H will be denoted by F u n d ( I I ) . In addi t ion, 
if II, K G CS(M) with H C K and (a, b) G F u n d ( H ) , (c,d) G F u n d ( N ) , then 
the bases (a, b) and (c,d) are said to have the same orientation, whenever cab 

is t rue . 

Now we shall give the description of a (7S ' (M)-par t i te g raph G assigned 

to M. T h e vertex set V(G) = V of G is defined as follows: 

V = U ( F u n d ( H ) | H G CS(M)) . 

(It can be easily verified t h a t the family {Fund(iJ) | H G CS(M)} forms a 
par t i t ion of V . ) Eventually, the edge set E(G) = E of G comprises all pairs of 
dist inct bases having the same or ientat ion . 

L E M M A 5. If M is a set with a ternary relation abc satisfying (A), (EL) and 

(C) , then for all a,b,c,d G M the following is true: 

( i) (a, 6) = (6, a), 
(ii) (a, a)~ = {a}, 

(iii) a,b E (a, b) . 
(iv) if abc and d G (a, 6)~ . then dbc, 
(v) if (a, c) is closed and abc, then (a, b) is closed, 

(vi) if abc and acb, then b = c. 

P r o o f . A proof of the s t a t emen t s (i) - (v) can be found in [4]. Cf. [4; 4.3.2. 

4.3.4-4.3.7]. Condi t ion (vi) follows, e.g., by (C) and (iii). • 

T H E O R E M 2 . Let M be a set with a ternary relation abc satisfying (A) . (B) 
and (C) . Then the assigned CS(M)-partite graph G is Konig and transitive. 

P r o o f . First we prove t h a t G is Konig. Assume t h a t II, K G CS(M) with 
II C K- Let (x,y) G F u n d ( i i ) and (c,d) G Fund (A"). We claim that there 
exists (a, b) G Fund( /7) such tha t (a, b) and (c.d) have the same orientat ion. 
Really, by (B) there exist e lements 

a G (c, x)~ n (c, y)~ C H and b G (d, x)~ H (d. y)~ H II . 

Therefore, (a, b) C / / . Moreover, (/./'c and b G (d,x)~ implies b.rr by Lemma •"">. 
By the same argument , axb follows from cxb and a G (c, ./•)" . Similarly, we 
obtain ayb. Now . (b.c) is a closed segment by Lemma 5 and the fact that 
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b G (c, d ) . From x G (b, c) it follows that a G (c, x)~ C (b, c), which implies cab. 
Moreover, (a, b) is closed and x,y G (a,b), hence 

H = ( x , H ) C ( a , b ) C H , 

which means that (a, b) = H. Evidently, the bases (a, b) and (c,d) have the 
same orientation, as claimed. 

Suppose that there exists another base (H, v) G Fund(H) with the same 
orientation as (c,d). Then by Lemma 5, we get successively: 

bac and bua => uac; cuv and uav => auc. 

By Lemma 5, cau and cua implies a = H, and then from abv and aUb we 
similarly obtain b = v. Thus (H,U) = (a, b), and therefore G is Konig. 

It remains to prove that G is transitive. Let H, IT, jV G CS(M) with H C 
Iv C IV, and let (a, b) G Fund(H) , (c,d) G Fund(IV) and (e, / ) G Fund(IV). 
Let cab and ecd be true, i.e., (a, b), (c, d) and (c, d ) , (e, / ) have the same 
orientation. Since G is Konig, there exists (a',bf) G Fund(H) such that (a',bf) 
and (e, / ) have the same orientation, that means, ea'b'. Now, ecd and ca'd 
implies ecu' by Lemma 5. It follows that ca'b', again by Lemma 5, as ea'b'. 
This means that (a',bf) and (c, d) have the same orientation. Because G is 
Konig, (a,b) = (a ' ,b ' ) , and thus (a,b), (e, / ) have the same orientation. The 
proof is complete. • 

Let us observe that if M is a set with a ternary relcition abc satisfying (A), 
(B) and (C) containing more than one element, then CS(M) is not a chain. 
Even more is true, for every H G CS(M) containing more than one element, 
the set [K G CS(M) \ K C H} is not a chain. This is caused by the fact that 
the set {(a, a) | a G M } is an anti-chain in CS(M). 

COROLLARY. Let M be a set with a ternary relation abc satisfying the con­
ditions (A). (B) and (C). Then M satisfies condition (F) if and only if there is 
a CS(M)-frame in the assigned graph G. 

P r o o f . It suffices to observe that condition (F) can be formulated without 
the assumption u(aX'^IT) 1S c - o s e d" . This follows from Lemma 5. • 

In [3], it was proved that the conditions (A), (B), (C) and (F) are indepen­
dent. Thus, an example of a set M with a ternary relation abc satisfying (A), 
(B) and (C), but not (F) (cf. [3; Example 4]) provides simultaneously an exam­
ple of a transitive C5(M)-par t i te Konig graph G which does not contain any 
C5(M)-frame. By Theorem 1, for every cofinal subset P of CS(M) there is 
// G P such that the set Fund(H) is not finite. 

Now, as a consequence of Theorem 1 and 2 we have: 
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THEOREM 3. Let M be a set with a ternary relation abc satisfying (A), (B) 
and (C). If there exists a cofinal subset P of CS(M) such that for every H £ P 
the set Fund(iI) is finite, then M satisfies condition (F). 
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