Mathematic Slovaca

Ján Jakubík
 Torsion classes and subdirect products of Carathéodory vector lattices

Mathematica Slovaca, Vol. 56 (2006), No. 1, 79--92

Persistent URL: http://dml.cz/dmlcz/129553

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

TORSION CLASSES AND SUBDIRECT PRODUCTS OF CARATHÉODORY VECTOR LATTICES

JÁn Jakubík
(Communicated by Anatolij Dvurečenskij)

Abstract

In this paper we prove that there exists a one-to-one correspondence between torsion classes of Carathéodory vector lattices and torsion classes of generalized Boolean algebras. Further, we deal with the relations between completely subdirect product decompositions of a Carathéodory vector lattice V and completely subdirect product decompositions of the generalized Boolean algebra B which generates V.

1. Introduction

The notion of torsion class of lattice ordered groups has been defined and investigated by Martinez [11]; it was dealt with in several papers (cf., e.g., Martinez [12], Conrad [3] and the author [7]). For the torsion classes of generalized Boolean algebras, cf. [8]. Analogously we define torsion classes of vector lattices.

Carathéodory vector lattices were investigated by Gofman [5] and by the author [9], [10].

Let \mathcal{C} be the class of all Carathéodory vector lattices. We show that \mathcal{C} is a torsion class of vector lattices. We denote by K_{1} the collection of all torsion classes of Carathéodory vector lattices. Further, let K_{2} be the collection of all torsion classes of generalized Boolean algebras. We prove that there exists a bijection $\varphi: K_{2} \rightarrow K_{1}$ such that for $X_{1}, X_{2} \in K_{2}$ we have

$$
X_{1} \subseteq X_{2} \Longleftrightarrow \varphi\left(X_{1}\right) \subseteq \varphi\left(X_{2}\right)
$$

2000 Mathematics Subject Classification: Primary 06F20, 46A40.
Keywords: Carathéodory vector lattice, generalized Boolean algebra, torsion class, completely subdirect product.
Supported by VEGA grant $1 / 9056 / 22$.

For the analogous result concerning Specker lattice ordered groups cf. the author's paper [8]. Earlier, Conrad and Darnel [4] proved that the system \mathcal{S} of all Specker lattice ordered groups is a torsion class.

The notion of a completely subdirect product decomposition of a partially ordered group is due to Šik [13]. Analogously we can define this notion for vector lattices and for generalized Boolean algebras.

Let B be a generalized Boolean algebra and let V be a Carathéodory vector lattice which is generated by B. We show that there is a one-to-one correspondence between internal completely subdirect product decompositions of B and those of V. (For direct product decompositions, the situation is different; cf. [10].)

2. Preliminaries

For lattices, lattice ordered groups and vector lattices we apply the terminology and the notation as in Birkhoff [1] and Conrad [2].

A generalized Boolean algebra is defined to be a lattice B having the least element 0 such that for each $b \in B$, the interval $[0, b]$ of B is a Boolean algebra.

A vector lattice V is called a Carathéodory vector lattice (cf. [9], [10]) if it satisfies the following conditions:
(i) there exists a generalized Boolean algebra B such that B is a sublattice of the underlying lattice $\ell(V)$ of V and the least element of B coincides with the neutral element of V;
(ii) for each $x \in V$, there exist elements b_{1}, \ldots, b_{n} of B and reals a_{1}, \ldots, a_{n} such that $x=a_{1} b_{1}+\cdots+a_{n} b_{n}$.

Under the conditions as above we say that the Carathéodory vector lattice I is generated by the generalized Boolean algebra B and we express this situation by writing $V=f(B)$.

According to [5] and [9], for each generalized Boolean algebra B there exists a Carathéodory vector lattice V such that $V=f(B)$.

We remark that we use the same symbol 0 for denoting the zero real, the neutral element of a vector lattice and the least element of a generalized Boolean algebra. From the context it will be always clear which is the meaning of this symbol. \mathbb{R} denotes the set of all reals.

Let B be a generalized Boolean algebra. We denote by $c(B)$ the system of all subsets X of B such that X is a convex sublattice of B and $0 \in X$.

For a vector lattice V we denote by $c(V)$ the set of all nonempty subsets Y of V such that
(i) Y is a convex sublattice of $\ell(V)$;
(ii) if $y_{1}, y_{2} \in Y$ and $r \in \mathbb{R}$, then $y_{1}+y_{2} \in Y$ and $r y_{1} \in Y$.

Both the systems $c(B)$ and $c(V)$ are partially ordered by the set-theoretical inclusion; then they are complete lattices.

Let \mathcal{B} and \mathcal{V} be the class of all generalized Boolean algebras, and the class of all vector lattices, respectively.

Assume that Z is a nonempty subclass of \mathcal{B} such that
(i_{1}) Z is closed with respect to homomorphisms;
(ii ${ }_{1}$) if $B_{1} \in Z, B_{2} \in c\left(B_{1}\right)$, then $B_{2} \in Z$;
(iii ${ }_{1}$) if $B \in \mathcal{B}$ and $B_{i} \in Z \cap c(B)$, then $\bigvee_{i \in I} B_{i} \in Z$.
Under these assumptions, Z is called a torsion class of generalized Boolean algebras; we also say that Z is a torsion class in \mathcal{B}.

By using analogous conditions (applying \mathcal{V} and $c(V)$ instead of \mathcal{B} and $c(B)$) we define the notion of torsion class in \mathcal{V}.

Further, let \mathcal{G} be the class of all lattice ordered groups. For $G \in \mathcal{G}$ we denote by $c(G)$ the system of all convex ℓ-subgroups of \mathcal{G}. By the conditions analogous to $\left(\mathrm{i}_{1}\right)$, (ii_{1}) and (iii_{1}) we define the notion of torsion class of lattice ordered groups.

For $V \in \mathcal{V}$, let $g(V)$ be the underlying lattice ordered group of V. If $Y \in c(V)$, then clearly $Y \in c(g(V))$. If, conversely, $Y_{1} \in c(g(V))$, then it is easy to verify that $Y_{1} \in c(V)$. Thus $c(V)=c(g(V))$.

The notion of internal completely subdirect product decomposition of a generalized Boolean algebra (or of a vector lattice, respectively), is defined in Section 4 below.

3. The class \mathcal{C}

In this section we prove that \mathcal{C} is a torsion class of vector lattices. We need some lemmas.

Let L be a distributive lattice with the least element 0 . Assume that I is a nonempty set of indices and that for each $i \in I, B_{i}$ is a generalized Boolean algebra such that B_{i} is an ideal of L. We denote by B the set of all $x \in L$ which can be expressed in the form $x=b_{1} \vee \cdots \vee b_{n}$, where $b_{1}, \ldots, b_{n} \in \bigcup_{i \in I} B_{i}$.

LEMMA 3.1.1. Let x and b_{1}, \ldots, b_{n} be as above. Then there are elements $b_{1}^{*}, \ldots, b_{n}^{*}$ of $\bigcup_{i \in I} B_{i}$ such that $x=b_{1}^{*} \vee \cdots \vee b_{n}^{*}, b_{1}^{*} \leqq b_{1}, \ldots, b_{n}^{*} \leqq b_{n}$ and $b_{i(1)}^{*} \wedge b_{i(2)}^{*}=0$ whenever $i(1), i(2) \in\{1,2, \ldots, n\}, i(1) \neq i(2)$.

Proof. We proceed by induction with respect to n. For $n=1$, the assertion is valid. Assume that $n>1$ and that the assertion holds for $n-1$. Put $b_{1}^{*}=b_{1}, b_{20}=b_{1} \wedge b_{2}, \ldots, b_{n 0}=b_{1} \wedge b_{n}$. Further, let b_{21} be the complement of b_{20} in the interval $\left[0, b_{2}\right.$] of B, and let $b_{31}, \ldots, b_{n 1}$ have an analogous meaning. Then

$$
\begin{aligned}
x & =b_{1}^{*} \vee\left(b_{1} \vee b_{2}\right) \vee \cdots \vee\left(b_{1} \vee b_{n}\right) \\
& =b_{1}^{*} \vee\left(b_{1} \vee b_{20} \vee b_{21}\right) \vee \cdots \vee\left(b_{1} \vee b_{n 0} \vee b_{n 1}\right) \\
& =b_{1}^{*} \vee\left(b_{1} \vee b_{21}\right) \vee \cdots \vee\left(b_{1} \vee b_{n 1}\right) \\
& =b_{1}^{*} \vee b_{21} \vee \cdots \vee b_{n 1} .
\end{aligned}
$$

We have $b_{1}^{*} \wedge\left(b_{21} \vee \cdots \vee b_{n 1}\right)=0$. Now it suffices to apply the induction assumption for the element $b_{21} \vee \cdots \vee b_{n 1}$.

LEMMA 3.1.2.

(i) B is an ideal of L;
(ii) B is a generalized Boolean algebra.

Proof. Put $D=\bigcup_{i \in I} B_{i}$. Let $x, x^{\prime} \in B, x=b_{1} \vee \cdots \vee b_{n}, x^{\prime}=b_{1}^{\prime} \vee \cdots \vee b_{m}^{\prime}$, where $b_{1}, \ldots, b_{n}, b_{1}^{\prime}, \ldots, b_{m}^{\prime} \in D$. Then, clearly, $x \vee x^{\prime} \in B$. In view of the distributivity of L, from $z \in L, z \leqq x$ we obtain $z=z \wedge x=\left(z \wedge b_{1}\right) \vee \cdots \vee\left(z \wedge b_{n}\right)$. Since $z \wedge b_{1}, \ldots, z \wedge b_{n} \in D$, we get $z \in B$. Hence (i) is valid.

Again, let x and z be as above. There are $i(1), \ldots, i(n) \in I$ such that $b_{1} \in B_{i(1)}, \ldots, b_{n} \in B_{i(n)}$. In view of 3.1.1 we can assume that $b_{k(1)} \wedge b_{k(2)}=0$ whenever $k(1), k(2) \in\{1,2, \ldots, n\}, k(1) \neq k(2)$. Then we have also $z \wedge b_{1} \in B_{i(1)}$, $\ldots, z \wedge b_{n} \in B_{i(n)}$. Hence there exist elements $c_{1} \in B_{i(1)}, \ldots, c_{n} \in B_{i(n)}$ such that c_{1} is the complement of $z \wedge b_{1}$ in the interval [$0, b_{1}$] of B_{1}, and analogously for c_{2}, \ldots, c_{n}. Put $c=c_{1} \vee \cdots \vee c_{n}$. Then c is a complement of the element z in the interval $[0, x]$ of B. Thus B is a generalized Boolean algebra.

Let $V \in \mathcal{V}$. Assume that I is a nonempty set and that for each $i \in I$, $X_{i} \in c(V)$. We denote by Y the set of all $y \in V$ such that there exist $u_{1}, \ldots, u_{n} \in \bigcup_{i \in I} X_{i}=D_{1}$ with $y=u_{1}+\cdots+u_{n}$.

TORSION CLASSES AND SUBDIRECT PRODUCTS OF CARATHÉODORY LATTICES

Lemma 3.2. We have $\bigvee_{i \in I} X_{i}=Y$.
Proof. For each $i \in I, X_{i}$ is an element of $c(g(V))$. It is well known that Y is the supremum of the system $\left\{X_{i}\right\}_{i \in I}$ in the lattice $c(g(V))$. Since $c(V)$ and $c(g(V))$ coincide, we conclude that Y is the supremum of the system $\left\{X_{i}\right\}_{i \in I}$ also in the lattice $c(V)$.
Lemma 3.3. Let V, X_{i} and Y be as above. Assume that $X_{i} \in \mathcal{C}$ for each $i \in I$. Then $Y \in \mathcal{C}$.

Proof. For each $i \in I$ there exists $B_{i} \in \mathcal{B}$ such that $X_{i}=f\left(B_{i}\right)$. Put $L=V^{+}$. Then B_{i} is an ideal of L. Let B be as in 3.1.

Let $b \in B$. There exist $i(1), \ldots, i(n) \in I$ and $b_{1} \in B_{i(1)}, \ldots, b_{n} \in B_{i(n)}$ with $b=b_{1} \vee \cdots \vee b_{n}$. Then $0 \leqq b_{1} \in X_{i(1)}, \ldots, 0 \leqq b_{n} \in X_{i(n)}$, hence $0 \leqq b \leqq b_{1}+\cdots+b_{n} \in Y$. Thus $B \subseteq Y$. By applying 3.1.2 we obtain that B is a convex sublattice of Y. Clearly $0 \in B$.

Let $y \in Y$. Then y is a linear combination of some elements of D_{1}. Further, if $i \in I$ and $x_{i} \in X_{i}$, then x_{i} is a linear combination of some elements of B_{i}. Therefore y is a linear combination of some elements of B. Thus we have $Y=$ $f(B)$ and hence $Y \in \mathcal{C}$.

For each $X \in K_{2}$ we put

$$
\varphi(X)=\{f(B): B \in X\}
$$

Hence we have $\varphi(X) \in \mathcal{C}$.
Lemma 3.4. Let $X \in K_{2}$. Then $\varphi(X)$ is a torsion class of vector lattices.
Proof. We consider the conditions (i_{1}), (ii_{1}) and (iii_{1}) from the definition of the torsion class.
(i_{1}) Let $V \in \varphi(X), V^{\prime} \in \mathcal{V}$ and let φ_{1} be a homomorphism of V onto V^{\prime}. There exists $B \in X$ such that $V=f(B)$. Put $B^{\prime}=\varphi_{1}(B)$. Then B^{\prime} is a generalized Boolean algebra and $V^{\prime}=f\left(B^{\prime}\right)$. Hence $V^{\prime} \in \varphi(X)$.
(ii i_{1} Let $V_{1} \in \varphi(X), V_{2} \in c\left(V_{1}\right)$. There exists $B_{1} \in X$ with $V_{1}=f\left(B_{1}\right)$. Put $B_{2}=V_{2} \cap B_{1}$. Then $B_{2} \in c\left(B_{1}\right)$, hence $B_{2} \in X$. Moreover, $V_{2}=f\left(B_{2}\right)$. Thus $V_{2} \in \varphi(X)$.
(iii ${ }_{1}$) Let $V \in \mathcal{V}, X_{i} \in c(V) \cap \varphi(X)$ for $i \in I$, where I is a nonempty set of indices. For each $i \in I$ there exists $B_{i} \in X$ with $X_{i}=f\left(B_{i}\right)$. Let B be as in the proof of 3.3 ; then we have $V=f(B)$. From the definition of B (cf. also 3.1.2) we conclude that in the lattice $c(B)$ we have $B=\bigvee_{i \in I} B_{i}$. Thus $B \in X$ and hence $V \in \varphi(X)$.

We have $\mathcal{B} \in K_{2}$ and $\varphi(\mathcal{B})=\mathcal{C}$. Thus from 3.4 we obtain as a corollary:

Proposition 3.5. \mathcal{C} is a torsion class of vector lattices.
If T is a nonempty collection of torsion classes of vector lattices, then the intersection of all torsion classes belonging to T is a torsion class again. This yields:

LEMMA 3.6. Let C_{0} be a nonempty subclass of \mathcal{V}. Then there exists a torsion class Y of vector lattices such that
(i) $C_{0} \subseteq Y$;
(ii) if Y_{1} is a torsion class of vector lattices with $C_{0} \subseteq Y_{1}$, then $Y \subseteq Y_{1}$.

If C_{0} and Y are as in 3.6, then we say that the torsion class Y is generated by C_{0}.

As a consequence of 3.5 and 3.6 we obtain:
Corollary 3.7. Let $\emptyset \neq C_{0} \subseteq \mathcal{C}$. Then the torsion class of vector lattices generated by C_{0} is a subclass of \mathcal{C}.

A torsion class Y of vector lattices will be called Carathéodory torsion class if $Y \subseteq \mathcal{C}$.

Lemma 3.8. (Cf. [10].) Let $B_{1}, B_{2} \in \mathcal{B}$. Then we have

$$
B_{1} \simeq B_{2} \Longleftrightarrow f\left(B_{1}\right) \simeq f\left(B_{2}\right)
$$

LEMMA 3.9. Let $B_{i}(i \in I)$ and B be elements of \mathcal{B} such that $B_{i} \in c(B)$ for each $i \in I$, and $\bigvee_{i \in I} B_{i}=B$. Then $\bigvee_{i \in I} f\left(B_{i}\right)=f(B)$.

Proof. Let us remark that, given $B \in \mathcal{B}$, the vector lattice $f(B)$ is determined up to isomorphisms leaving the elements of B fixed. From $B_{i} \in c(B)$ we conclude that there exists $f\left(B_{i}\right)$ with $f\left(B_{i}\right) \in c(f(B))$, hence, for these $f\left(B_{i}\right)$ we have $\bigvee_{i \in I} f\left(B_{i}\right) \in c(f(B))$. Let $x \in f(B)$. Thus x can be written in the form $x=a_{1} b_{1}+\cdots+a_{n} b_{n}$, where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ is an orthogonal subset of B (cf. [9]). Further, each $b_{k}(k=1,2, \ldots, n)$ is a join of a finite number of elements belonging to $\bigcup_{i \in I} B_{i}$. Since the interval $\left[0, b_{k}\right]$ of B is a Boolean algebra and $\left[0, b_{k}\right] \cap B_{i}$ are ideals of $\left[0, b_{k}\right]$, we conclude (cf. 3.1.1) that without loss of generality we can suppose that this join consists of an orthogonal system of elements. Then x is a linear combination of some elements of the set $\bigcup_{i \in I} B_{i}$. This yields that $x \in \bigvee_{i \in I} f(B)$.

For each $Y \in K_{1}$ we put

$$
\psi(Y)=\{B \in \mathcal{B}: f(B) \in Y\}
$$

Lemma 3.10. Let $Y \in K_{1}$. Then $\psi(Y) \in K_{2}$.
Proof. Let us consider the conditions $\left(\mathrm{i}_{1}\right)$, (ii ${ }_{1}$) and (iii_{1}) from the definition of torsion class.

Let $B \in \psi(Y)$; thus $f(B) \in Y$. Assume that B^{\prime} is a homomorphic image of B. Then in view of [10], $f\left(B^{\prime}\right)$ is a homomorphic image of $f(B)$. Hence $f\left(B^{\prime}\right) \in Y$ and so $B^{\prime} \in \psi(Y)$.

Let $B_{1} \in \psi(Y), B_{2} \in c\left(B_{1}\right)$. Then we have $f\left(B_{2}\right) \in c\left(f\left(B_{1}\right)\right)$, whence $f\left(B_{2}\right) \in Y$ and $B_{2} \in \psi(Y)$.

Further, assume that $B \in \mathcal{B}$ and $B_{i} \in \psi(Y) \cap c(B)$ for $i \in I$. Then $f\left(B_{i}\right) \in Y$ and $f\left(B_{i}\right) \in c(f(B))$. Since $Y \in K_{1}$, we obtain $\bigvee_{i} f\left(B_{i}\right) \in Y$. In view of 3.9 we get $\bigvee_{i \in I} f\left(B_{i}\right)=f\left(\bigvee_{i \in I} B_{i}\right)$. Hence $f\left(\bigvee_{i \in I} B_{i}\right) \stackrel{i \in I}{\in} Y$ and thus $\bigvee_{i \in I} B_{i} \in \psi(Y)$.

From the definitions of φ and ψ, and from 3.9 and 3.10 we conclude that $\psi=\varphi^{-1}$. Further, if $X_{1}, X_{2} \in K_{2}$ and $Y_{1}, Y_{2} \in K_{1}$, then

$$
\begin{align*}
X_{1} \subseteq X_{2} & \Longrightarrow \varphi\left(X_{1}\right) \subseteq \varphi\left(X_{2}\right) \tag{1}\\
Y_{1} \subseteq Y_{2} & \Longrightarrow \psi\left(Y_{1}\right) \subseteq \psi\left(X_{2}\right) \tag{2}
\end{align*}
$$

Thus we obtain:
Proposition 3.11. The mapping φ is a bijection of K_{2} onto K_{1}. Moreover, $\psi=\varphi^{-1}$ and the relations (1), (2) are valid.

We recall that in view of [8], K_{2} has many elements (in the sense that there exists a monomorphism of the class of all infinite cardinals into K_{2}); hence K_{1} has many elements as well.

4. Completely subdirect products

Assume that $\left(A_{i}\right)_{i \in I}$ is an indexed system of algebras of the same type having a nulary operation 0 . Further, let A be an algebra of the same type and suppose that φ is an isomorphism of A onto a subalgebra of the direct product $\prod_{i \in I} A_{i}$ such that, whenever $i \in I$ and $x^{i} \in A_{i}$, then there exists $a \in A$ with $(\varphi(a))_{i}=x^{i}$. In other words, φ is a subdirect decomposition of A. We call φ a completely subdirect decomposition if it satisfies the following condition:
(1) Whenever $i \in I$ and $x^{i} \in A_{i}$, then there exists $x \in A$ such that $(\varphi(x))_{i}=x^{i}$ and $(\varphi(x))_{j}=0$ for each $j \in I, j \neq i$.

For the case of partially ordered groups, the notion of completely subdirect decomposition was introduced by S ik [13].

We slightly strengthen the condition (1) as follows:
(2) Whenever $i \in I$, then A_{i} is a subalgebra of A and for each $x \in A_{i}$ we have $(\varphi(x))_{i}=x,(\varphi(x))_{j}=0$ if $j \in I, j \neq i$.
If (2) is valid, then φ will be called an internal completely subdirect decomposition.

To each completely subdirect decomposition φ there corresponds in a natural way an internal completely subdirect decomposition $\bar{\varphi}$. We construct $\bar{\varphi}$ as follows.

Let $i \in I$. We put

$$
\bar{A}_{i}=\left\{x \in A:(\varphi(x))_{j}=0 \text { for each } j \in I, j \neq i\right\}
$$

Then \bar{A}_{i} is a subalgebra of A. It is easy to verify that \bar{A}_{i} is isomorphic to A_{i}.
For each $y \in A$ consider the element x of \bar{A}_{i} which satisfies the relation

$$
(\varphi(x))_{i}=(\varphi(y))_{i} .
$$

We put $\bar{\varphi}_{i}(y)=x$ and

$$
\bar{\varphi}(y)=\left(\bar{\varphi}_{i}(y)\right)_{i \in I}
$$

Then $\bar{\varphi}(y) \in \prod_{i \in I} \bar{A}_{i}$ and $\bar{\varphi}$ is an internal completely subdirect decomposition
of A.
Below, when speaking about a completely subdirect decompostion, we suppose that the condition (2) is satisfied (i.e., completely subdirect decompositions under consideration are assumed to be internal). The algebras A_{i} are called completely subdirect factors of A. We also say that A is a completely subdirect product of the system $\left(A_{i}\right)_{i \in I}$.

If, in particular, $\varphi(A)=\prod_{i \in I} A_{i}$, then φ is a direct product decomposition of A; in view of (2), since A_{i} are subalgebras of A, we speak about an internal direct product decomposition and A_{i} are called internal direct factors of A.

Example 1. Let A_{0} be the Boolean algebra of all subsets of an infinite set M. For $m \in M$ let $A_{m}=\{\emptyset, m\}$ (we have now \emptyset instead of 0). For $a \in A_{0}$ and $m \in M$ we put $(\varphi(a))_{m}=m$ if $m \in a$, and $(\varphi(a))_{m}=\emptyset$ otherwise. Then φ is an isomorphism of A_{0} onto $\prod_{m \in M} A_{m}$; in fact, φ is an internal direct decomposition of A_{0} and each A_{m} is an internal direct factor of A_{0}.

Example 2. Under the notation as in Example 1, let A be the subsystem of A_{0} consisting of all $a \in A_{0}$ such that either $a=M$ or a is finite. The system A is a meet-semilattice. For $a \in A_{0}$ we define $\varphi(a)$ similarly as above. Then φ is a completely subdirect product of A_{0}. For each $m \in M, A_{m}$ is a completely subdirect factor of A, but it fails to be a direct factor of A.

Now let us consider completely subdirect decompositions of generalized Boolean algebras and of vector lattices.

Assume that B and $B_{i}(i \in I)$ are generalized Boolean algebras; let $\varphi: B \rightarrow \prod_{i \in I} B_{i}$ be a completely subdirect product decomposition of B. For $i \in I$ we put

$$
B_{i}^{\prime}=\left\{b \in B:(\varphi(b))_{i}=0\right\}
$$

It is easy to verify that $B_{i}^{\prime} \in c(B)$ and that $B_{i}^{\prime} \cap B_{i}=\{0\}$.
For $b \in B$ we denote $b_{i}=(\varphi(b))_{i}$. Then $b_{i} \leqq b$, hence there exists the complement b_{i}^{*} of b_{i} in the interval $[0, b]$ of B. Thus $b_{i} \wedge b_{i}^{*}=0$ and $b_{i} \vee b_{i}^{*}=b$. Then

$$
\left(b_{i}\right)_{i} \wedge\left(b_{i}^{*}\right)_{i}=0, \quad\left(b_{i}\right)_{i} \vee\left(b_{i}^{*}\right)_{i}=b_{i}
$$

Since $\left(b_{i}\right)_{i}=b_{i}$, we obtain $\left(b_{i}^{*}\right)_{i}=0$, whence $b_{i}^{*} \in B_{i}^{\prime}$. From this we get:
LEMMA 4.1. Under the notation as above, put $\varphi_{i}(b)=\left(b_{i}, b_{i}^{*}\right)$. Then φ_{i} : $B \rightarrow B_{i} \times B_{i}^{\prime}$ is an internal direct product decomposition of B.

Corollary 4.2. Each completely subdirect factor of a generalized Boolean algebra of B is an internal direct factor of B.

LEMMA 4.3. Under the notation as above we have
(i) if $i(1), i(2)$ are distinct elements of I and $b^{1} \in B_{i(1)}, b^{2} \in B_{i(2)}$, then $b^{1} \wedge b^{2}=0 ;$
(ii) if $b \in B$, then $b=\bigvee_{i \in I} b_{i}$.

Proof. Let $i(1), i(2), b^{1}$ and b^{2} be as in (i). From $b^{1} \in B_{i(1)}$ we obtain $\left(b^{1}\right)_{i(2)}=0$. By way of contradiction, suppose that $b^{1} \wedge b^{2}=c>0$. Then $c \in B_{i(2)}$, whence $c_{i(2)}=c>0$. At the same time, $\left(b^{1}\right)_{i(2)} \geqq c_{i(2)}>0$, which is a contradiction. Hence (i) is valid.

Let $b \in B$. We have $b_{i} \leqq b$ for each $i \in I$. Assume that there is $d \in B$ such that $b_{i} \leqq d<b$ for each $i \in I$. From $b_{i} \leqq d$ we obtain $\left(b_{i}\right)_{i} \leqq d_{i}$; since $\left(b_{i}\right)_{i}=b_{i}$, we get $b_{i} \leqq d_{i}$ for each $i \in I$. Therefore $b \leqq d$, which is a contradiction. Thus (ii) is valid.

Lemma 4.4. Let B be a generalized Boolean algebra and let J be a nonempty set of indices. Assume that for each $j \in J$ we have an internal direct product decomposition $\varphi_{j}: B \rightarrow B_{j} \times B_{j}^{\prime}$. For $b \in B$ let b_{j} be the component of b in the internal direct factor B_{j}. Assume that the conditions (i) and (ii) from 4.3 are satisfied (where $I, i(1)$ and $i(2)$ are replaced by $J, j(1)$ and $j(2)$). For $b \in B$ put $\varphi_{0}(b)=\left(b_{j}\right)_{j \in J}$. Then φ_{0} is a completely subdirect decomposition of B.

Proof. In view of the definition of φ_{0} we conclude that φ_{0} is a homomorphism of B into $\prod_{j \in J} B_{j}$. If $b, b^{\prime} \in B$ such that $\varphi_{0}(b)=\varphi_{0}\left(b^{\prime}\right)$, then in view of (ii) we obtain $b=b^{\prime}$. Thus φ_{0} is a monomorphism. Therefore φ_{0} is an isomorphism of B onto a subalgebra of $\prod_{j \in J} B_{j}$.

Let $j \in J$. In view of φ_{j}, B_{j} is a subalgebra of B and for $x \in B_{j}$ we have $\left(\varphi_{0}(x)\right)_{j}=x$. Further, let $j(1) \in J, j(1) \neq j$. According to (ii), $\left(\varphi_{0}(x)\right)_{j(1)}=$ $x_{j(1)} \leqq x$. On the other hand, (i) yields that $x_{j(1)} \wedge x=0$, whence $x_{j(1)}=0$.

Proposition 4.5. Let B be a generalized Boolean algebra and let $B_{i}(i \in I)$ be internal direct factors of B. Then B is a completely subdirect product of the system $\left(B_{i}\right)_{i \in I}$ if and only if the conditions (i) and (ii) from 4.3 are satisfied.

Proof. This is a consequence of 4.2, 4.3 and 4.4.
Let us assume that V is a vector lattice and that $\varphi: V \rightarrow \prod_{i \in I} V_{i}$ is a completely subdirect product decomposition of V. For $x \in V$ and $i \in I$ put $x_{i}=(\varphi(x))_{i}$. Further, we set

$$
V_{i}^{\prime}=\left\{y \in V: y_{i}=0\right\}, \quad V_{i}^{*}=\left\{x-x_{i}: x \in V\right\} .
$$

Then we have $V_{i}^{*} \subseteq V_{i}^{\prime}$. For $y \in V_{i}^{\prime}$ we get $y-y_{i}=y$, whence $y \in V_{i}^{*}$ and thus $V_{i}^{\prime}=V_{i}^{*}$. Also, $V_{i}^{\prime} \in c(V)$. If $y^{1} \in V_{i}$ and $y^{2} \in V_{i}^{\prime}$, then $\left|y^{1}\right| \wedge\left|y^{2}\right|=0$. Hence $V_{i} \cap V_{i}^{\prime}=\{0\}$. We obtain:
LEMMA 4.6. For each $i \in I$, the mapping $\varphi_{i}: V \rightarrow V_{i} \times V_{i}^{\prime}$ defined by $\varphi_{i}(x)=$ $\left(x_{i}, x-x_{i}\right)$ is an internal direct product decomposition of V.
Corollary 4.7. Each completely subdirect factor of a vector lattice V is an internal direct factor of V.

The proof of the following lemma is analogous to that of 4.3.
LEMMA 4.8. Under the assumptions as above we have:
(i) Let $i(1)$ and $i(2)$ be distinct elements of I and $x^{1} \in V_{i(1)}^{+}, x^{2} \in V_{i(2)}^{+}$. Then $x^{1} \wedge x^{2}=0$.
(ii) Let $0 \leqq x \in V$. Then $x=\bigvee_{i \in I} x_{i}$.

LEMMA 4.9. Let V be a vector lattice and let $\left(V_{j}\right)_{j \in J}$ be an indexed system of elements of $c(V)$ such that each V_{j} is an internal direct factor of V and the conditions (i), (ii) from 4.8 are satisfied (with $J, j(1)$ and $j(2)$ instead of I, $i(1), i(2)$; for $j \in J, x \in V$, the symbol x_{j} denotes the component of x in the direct factor V_{j}). Then V is a completely subdirect product of the system $\left(V_{j}\right)_{j \in J}$.

Proof. For each $x \in V$ we put $\varphi_{0}(x)=\left(x_{j}\right)_{j \in J}$. Hence φ_{0} is a homomorphism of V into $\prod_{j \in J} V_{j}$.

Let $x, x^{\prime} \in V$ and suppose that $\varphi_{0}(x)=\varphi_{0}\left(x^{\prime}\right)$; i.e., $x_{j}=x_{j}^{\prime}$ for each $j \in J$. Then $\left(x^{+}\right)_{j}=\left(x_{j}\right)^{+},\left(x^{++}\right)_{j}=\left(x_{j}^{\prime}\right)^{+}$, thus in view of (ii),

$$
x^{+}=\bigvee_{j \in J}\left(x_{j}\right)^{+}=\bigvee_{j \in J}\left(x_{j}^{\prime}\right)^{+}=x^{\prime+}
$$

Similarly we obtain $x^{-}=\left(x^{\prime}\right)^{-}$. This yields the relation $x=x^{\prime}$. Hence φ_{0} is a monomorphism.

Let $j \in J$ and $x \in V_{j}$. Since V_{j} is an internal direct factor of V, we get $x_{j}=x$. Further, let $j(1) \in J, j(1) \neq j$. We have $x^{+}, x^{-} \in V_{j}$. Analogously as in the proof of 4.4 we verify that $\left(x^{+}\right)_{j(1)}=0=\left(x^{-}\right)_{j(1)}$. Hence $x_{j(1)}=0$, completing the proof.

Proposition 4.10. Let $\left(V_{i}\right)_{i \in I}$ be an indexed system of elements of $c(V)$, where V is a vector lattice. Then the following conditions are equivalent:
(a) V is a completely subdirect product of the system $\left(V_{i}\right)_{i \in I}$.
(b) Each V_{i} is an internal direct factor of V and the conditions (i), (ii) from 4.8 are valid.

Proof. The assertion follows from 4.7, 4.8 and 4.9.

Now let us investigate the case when B is a generalized Boolean algebra and $V=f(B)$.

In view of [10], there is a one-to-one correspondence between internal direct factors of V and internal direct factors of B; if B_{0} is an internal direct factor of B and V_{0} is the corresponding internal direct factor of V, then we have $V_{0}=f\left(B_{0}\right)$.

Suppose that $\varphi: B \rightarrow \prod_{i \in I} B_{i}$ is a completely subdirect product decomposition

LEMMA 4.11. V is a completely subdirect product of the system $\left(f\left(B_{i}\right)\right)_{i \in I}$.
Proof. Let $i \in I$. In view of $4.2, B_{i}$ is an internal direct factor of B; hence $V_{i}=f\left(B_{i}\right)$ is an internal direct factor of V.

Let $i(1), i(2)$ be distinct elements of I. In view of 4.3 we have $b^{1} \wedge b^{2}=0$ whenever $b^{1} \in B_{i(1)}, b^{2} \in B_{i(2)}$. Assume that $0<x^{1} \in V_{i(1)}^{+}, 0<x^{2} \in V_{i(2)}^{+}$. Then there exist $b_{1}, \ldots, b_{n} \in B_{1}$ with $b_{1}>0, \ldots, b_{n}>0$ and reals $0<a_{1}$, $\ldots, 0<a_{n}$ such that the system $\left\{b_{1}, \ldots, b_{n}\right\}$ is orthogonal and $x^{1}=a_{1} b_{1}+$ $\cdots+a_{n} b_{n}$. Analogously we can express x^{2} in the form $x^{2}=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}$ with $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \in B_{i(2)}$. Thus the condition (i) from 4.8 is satisfied.

It remains to verify that the condition (ii) from 4.8 is valid. Let x^{1} be as above. In view of φ we obtain

$$
b_{1}=\bigvee_{i \in I}\left(b_{1}\right)_{i}, \ldots, \quad b_{n}=\bigvee_{i \in I}\left(b_{n}\right)_{i}
$$

According to [9], the symbol $\bigvee_{i \in I}\left(b_{1}\right)_{i}$ is, at the same time, the join of the system $\left(\left(b_{1}\right)_{i}\right)_{i \in I}$ in $f(B)$. Thus in $f(B)$ we have

$$
a_{1} b_{1}=\bigvee_{i \in I} a_{1}\left(b_{1}\right)_{i}, \ldots, a_{n} b_{n}=\bigvee_{i \in I} a_{n}\left(b_{n}\right)_{i}
$$

Also, the component of b_{1} in B_{i} coincides with the component of b_{1} in $f\left(B_{i}\right)$, and similarly for b_{2}, \ldots, b_{n}. We obtain

$$
\begin{aligned}
x^{1} & =a_{1} b_{1}+\cdots+a_{n} b_{n}=\bigvee_{i \in I}\left(a_{1} b_{1}\right)_{i}+\cdots+\bigvee_{i \in I}\left(a_{n} b_{n}\right)_{i} \\
& =\bigvee_{i \in I}\left(\left(a_{1} b_{1}\right)_{i}+\cdots+\left(a_{n} b_{n}\right)_{i}\right)=\bigvee_{i \in I}\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)_{i} \\
& =\bigvee_{i \in I}\left(x^{1}\right)_{i} .
\end{aligned}
$$

Assume that $V=f(B)$ and that V is a completely subdirect product of a $\operatorname{system}\left(V_{i}\right)_{i \in I}$. For each $i \in I$ we put $B_{i}=V_{i} \cap B$; then $V_{i}=f\left(B_{i}\right)$.
LEMMA 4.12. B is a completely subdirect product of the system $\left(B_{i}\right)_{i \in I}$.
Proof. Let $i \in I$. Since V_{i} is an internal direct factor of V, in view of [10] we obtain that B_{i} is an internal direct factor of B.

Let $i(1)$ and $i(2)$ be distinct elements of I and $b^{1} \in B_{i(1)}, b^{2} \in B_{i(2)}$. Then $b^{1} \in V_{i(1)}$ and $b^{2} \in V_{i(2)}$, hence in view of 4.8 we get $b^{1} \wedge b^{2}=0$. Thus the condition (i) from 4.3 is satisfied.

TORSION CLASSES AND SUBDIRECT PRODUCTS OF CARATHÉODORY LATTICES

Let $b \in B, i \in I$ and let b_{i} be the component of b in B_{i}. According to 4.8 we have $b=\bigvee_{i \in I} b_{i}$. Further, in view of [9], the last relation is valid also in B. Hence (ii) from 4.3 is valid. Therefore according to $4.5, B$ is a completely subdirect product of the system $\left(B_{i}\right)_{i \in I}$.

Summarizing, 4.11 and 4.12 yield:
Proposition 4.13. Let B be a generalized Boolean algebra and $V=f(B)$. There is a one-to-one correspondence between completely subdirect decompositions of V and completely subdirect decompositions of B.

For a generalized Boolean algebra B we denote by $S(B)$ the Specker lattice ordered group which is generated by B (cf. [4], [8]). The proof of the following result will be omitted; it can be performed by the same method as in the case of 4.13 .

Proposition 4.14. Let B be a generalized Boolean algebra. There is a one-to-one correspondence between completely subdirect decompositions of $S(B)$ and completely subdirect decompositions of B.

REFERENCES

[1] BIRKHOFF, G.: Lattice Theory (3rd ed.). Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1967.
[2] CONRAD, P.: Lattice Ordered Groups, Tulane University, Math. Res. Library, New Orleans, 1970.
[3] CONRAD, P.: Torsion radicals of lattice-ordered groups, Sympos. Math. 21 (1977), 479-513.
[4] CONRAD, P.-DARNEL, M. R.: Subgroups and hulls of Specker lattice-ordered groups, Czechoslovak Math. J. (To appear).
[5] GOFMAN, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions, Trans. Amer. Math. Soc. 88 (1958), 107-120.
[6] JAKUBÍK, J.: Cardinal properties of lattice ordered groups, Fund. Math. 74 (1972), 85-98.
[7] JAKUBÍK, J. : Prime selectors and torsion classes of lattice ordered groups, Czechoslovak Math. J. 31 (1981), 325-337.
[8] JAKUBÍK, J.: Torsion classes of Specker lattice ordered groups, Czechoslovak Math. J. 52 (2002), 469-482.
[9] JAKUBÍK, J.: On vector lattices of elementary Carathéodory functions, Czechoslovak Math. J. 55 (2005), 223-236.
[10] JAKUBÍK, J. : On Carathéodory vector lattices, Math. Slovaca 53 (2003), 479-503.

JÁN JAKUBÍK

[11] MARTINEZ, J.: Torsion theory for lattice ordered groups, Czechoslovak Math. J. 25 (1975), 284-299.
[12] MARTINEZ, J.: Torsion theory for lattice ordered groups II, Czechoslovak Math. J. 26 (1976), 93-100.
[13] ŠIK, F. : Über subdirekte Summen geordneter Gruppen, Czechoslovak Math. J. 10 (1960), 400-424.

Matematický ústav SAV Grešákova 6 SK-040 01 Košice SLOVAKIA

E-mail: kstefan@saske.sk

