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FIXED POINTS OF ASYMPTOTICALLY 

REGULAR MAPPINGS 

JAROSLAW GORNICKI 

(Communicated by Michal Zajac) 

ABSTRACT. In this paper we s tudy in Banach spaces the existence of fixed: 
points of asymptotically regular mappings. Specifically, we establish for these 
mappings some fixed point theorems in a Hilbert space, in Lp spaces, in Hardy 
spaces Hp and in Sobolev spaces Hp>k for 1 < p < +oo and k > 0 . We 
extended results from the paper [6]. 

1. Introduct ion 

Throughout this paper, E will always stand for a real Banach space with 
norm || • | |. 

The concept of asymptotic regularity is due to F . B r o w d e r and 
V . P e t r y s h y n (see [1]). 

A mapping T : E —> E into itself is said to be asymptotically regular if 

nn+ l 
II-* 

n—>oo 

lim | | T n + 1 x - T n x | | = 0 

for all x in E. 

It is known [5] that if T is nonexpansive, then Tt := t • I + (1 — t) • T is 
asymptotically regular for all 0 < t < 1. 

Recently, P . K . L i n in [10] has constructed a uniformly asymptotically 
regular Lipschitzian mapping acting on a weakly compact subset of I2 which 
has no fixed points. 

Let p > 1 and denote by A the number in [0,1] and by Wp(\) the function 
A • (1 - \)P + \P - (1 - A). 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 47H10. Secondary 54H25. 
K e y w o r d s : Asymptotically regular mapping, Asymp to t ic center, Fixed point. 
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The functional || • ||p is said to be uniformly convex [20] on the Banach space 
E if 

(*) there exists a positive constant cp such that for all A G [0,1] and 
x,y € E the following inequality holds: 

\\\x + (1 - X)y\\p < \\\x\\> + (1 - X)\\y\\p - WP(X) • cp • \\x - y\\p. 

H . K , X u [19] proved that the functional || • ||p is uniformly convex on the 
whole Banach space E if and only if E is p-uniformly convex, i.e. there exists 
a constant c > 0 such that the moduli of convexity (see [5]), 6E(Z) > c • ep for 
all 0 < e < 2 . 

In this note we show some theorems on fixed points of asymptotically regular 
mappings in p-uniformly convex Banach spaces. The main result generalizes 
fixed point theorems proved in [6]. 

2. Preliminaries 

Let A and B be a nonempty closed convex bounded subsets of E. Assume 
that $ is a real-valued lower semicontinuous functional defined on 

AQB= ( J a 9 B = | J { a - b : b G B} 
aEA a£A 

and bounded on a Q B for each a G A. We note that all functionals $ which 
will occur in the applications of the theorems, presented in this paper, have these 
properties. 

An element z in A is said to be an asymptotic center of the bounded sequence 
B = {bn} C E with respect to $ and A if 

tf (z) = inf * ( o ) , 
a£A 

where 
\P(a) = l imsup$(a - bn). 

n—+00 

R . S m a r z e w s k i in [15] (see [17]) has established the following: 

THEOREM 1. Let $ (a - bn) := $ ( a ) . ae A, such that for all bn G B : 

1) V A * ( < 0 > c , 
c>0 aEA 

2) A A *(a + t(h-a))-$(a)<t[*(h)-*{a)]-K(t,\\h-a\\), 
0<t<l h,a€A 

where 

K(t, s)=t- (p((l - t)s) + (l-t)- (p{ts), t, s > 0 , 

(p: [0, +oo) —> [0, +oo) is a continuous strictly increasing function 
with (p(0) = 0 . 
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and c is constant. Then there exists a unique asymptotic center z.G A of the 
sequence B = {bn} with respect to $ and A. Moreover, we have 

* ( ~ ) < * ( a ) - ¥ > ( | | z - a | | ) (1) 

for all a in A. D 

From (*), it follows that the functional $ : E —• R defined by $(y) = \\y\\p, 
satisfies the assumptions of Theorem 1 with ip(s) = c • sp. Thus we have the 
following: 

COROLLARY 1. Let p > 1 and let E be a p-uniformly convex Banach space, 
C a nonempty closed convex subset of E and let {xn} C E be a bounded 
sequence. Then there exists a unique point z in C such that 

limsup \\xk — z\\p < limsup \\xk — x\\p — cp • ||x — z\\p 

n—>oo n—>oo 

for every x in C, where cp > 0 is the constant given in (*). D 

The following lemma is crucial in the proof of the main result. 

LEMMA 1. Let C be a nonempty closed convex subset of a Banach space E and 
let {rii} be an increasing sequence of natural numbers. Assume that T: C —> C 
is an asymptotically regular mapping such that for some m G N ; Tm is contin­
uous. If 

*(x) := limsup ||x - Tniu\\ = 0 
n—• oo 

for some u G C and x G C, then Tx = x. 

P r o o f . If * (x ) = 0, then TUiu -•» x for i - • +oo . So 

| |Tn<+ mu - x|| < | | T n i + m u - Tniu\\ + \\Tniu - x\\ 

m—1 

< J2 ||Tni+^'+1u - T n i + ^ | | + \\Tniu - x|| 
3=0 

and from the asymptotic regularity of T , T n i + m w —> x as i —> +oo . 

Since T m is continuous, we have 

Tmx = Tm( lim Tniu) = lim Tni+mu = x. 
i—KX> i—>oo 

It is easily verified (by induction) that Tmsx = x for s = 1,2, . . . . 

Then 
\\Tx - x\\ = | | T m s + 1 x - T m s x | | -^ 0 

as s —> +oo , so Tx = x . D 
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3. Main result 

In this section, we prove a fixed point theorem for asymptotically regular 
mappings in p -uniformly convex Banach spaces by making use of the method 
of asymptotic centre. 

To prove it, we recall that the normal structure coefficient N(E) of E is 
defined (cf. [2]) by 

AT/T^ _ • f/ diam C C a bounded convex subset of E 1 
| rc(C) ' consisting of more than one point J ' 

where 
diamC = sup{\\x — y\\ : x, y G C} 

is the diameter of C and 

fC(C) = inf ( sup \\x — y\\) 
yec 

is the Chebyshev radius of C relative to itself. 

E is said to have uniformly normal structure if N(E) > 1. It is known that 

a uniformly convex Banach space has uniformly normal structure (cf. [4]) and 

for a Hilbert space « , N(H) = y/2. Recently, S . P i c h u g o v [11] (cf. [13]) 

calculated that 

N(Lp) = min{2 1/ p, 2^~^/p} , 1 < p < + oo . 

Some estimates for the normal structure coefficient in other Banach spaces may 
be found in [14]. 

THEOREM 2. Let p > 1 and let E be a p-uniformly convex Banach space, C 
a nonempty closed convex and bounded subset of E, T: C —> C an asymptoti­
cally regular mapping. If 

l i m i n f | | T n | | = k< 
n—юo L2 

Uí + y/l + 4-cp-NP) 
I/P 

(where \\Tn\\ is the Lipschitz constant (norm) of Tn , N is the normal structure 
coefficient of E and cp is the constant given in (*)), then T has a fixed point 
in C. 

P r o o f . If fc < 1, then T has a fixed point by Banach's theorem. Hence 
assume that k > 1 . Let {n^} be a sequence of natural numbers such that 

l iminf | |T n | | = lim | | T " Í | | = A ; < 
n—>-oo i—>-oo 

±(l+^l+4-cp-NP)] 
Í/P 
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Given an element zo £ C and by Lemma 1, we can inductively construct a 
sequence {zm} such that zm is the unique asymptotic center of the sequence 
{Tnizm-i}i>i with respect to the functional 

l i m s u p | | a : - T n ^ m _ i | | p 

over x in C. 

. Now for each m > 1, we set 

Dm = limsup \\zm - Tnizm\\, 
i—>-oo 

rm = limsup | |zm+i - T n i z m | | . 
i—»oo 

By the result of C a s i n i -M a 1 u t a [3] and the asymptotical regularity of T , 
we have 

rm < ± • ^ ( s u p ( | | T n ^ m - T n ^ m | | : ij > n ) ) 

< jj • l imsup(l imsup \\Tnizm - T n ^ m | | ) 
- * i—• o o ^ j—+oo ' 

< - 1 • l imsup(l imsup ( | | T " ^ m - T " i + " ^ m | | + \\Tni+n'zm - Tn*zm\\)) 
- v i—»oo ^ j—•oo 7 

< - 1 • l imsup( l imsup( | |T" i | | • \\zm -Tn*zm\\ 
- v z—•oo ^ j—+00 ^ 

n i —1 

+ ^ | | r B ' + » + 1 z m - r n i + « ' - m | | ) ) 
г>=0 

< -̂ - . l i m s u p | | T П i | | . l i m s u p l l ^ - T ^ ^ 
- * ѓ—•oo j—•oo 

= - | - l i m s u p | | 2 m - Г " ^ m | | , 
j — • o o 

i.e. 

k rm<-]y'Dm, m = 0 ,1,2, . . . , 

where IV is the normal structure coefficient of E. 
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For each fixed m > 1 and all n^, nj , we have from (*): 

| |Azm+1 + (1 - A)T n '~ m + 1 - Tnizm\\P + cp • WP(X) • \\zm+1 - Tn> ~m+1||t) 

< A • \\zm+1 - Tnizm\\P + (1 - A) • | | T n ^ m + 1 - Tnizm\\P 

< X • \\zm+1 - r n i ~ m | | P + (1 - A) • [ | | T n ^ m + 1 - Tni+n^zm || 

+ | |T n i + n ' ~ m -T n < z m | | ] p 

< A • ||~m+1 - Tn< ~ m f + (1 - A) • [||Tn' || • ||~m+1 - Tn< ~m|| 

rij — 1 

+ ___ \\Tni+v+1zm-Tni+vzn 
1P 

v=0 

Taking the limit superior as i - > +oo on each side, by definition of zm and by 
the asymptotical regularity of T, we get 

rm + cp • WP(X) • \\zm+1 - Tn^ ~ m + 1 f < (A + (1 - X)kP)rPm . 

It then follows that 

(l-X)(kP-l) ( i - A ) ( f e P - l ) _kP_ nP 

cp-Wp(X) 'Vm~ cp-Wp(X) 'NP'"m-

Letting A ] 1, we conclude that 

^ + i -

D m + 1 < 
kp(kP - 1) 

cP-NP 

- | І / Í > 

•Dm:=ADr m = 1,2, . . . , 

where 
kp(kp -1) 

cP-NP 

I/P 

< 1 

by assumption of the theorem. 

Since 

\\zm+1 - zm\\ <rrn + Drn<2Drn<---<2.Arn.D0^0 

as m —> +oo , it follows that {zm} is a Cauchy sequence. Let z = lim zm . 
ra—• oo 

Then we have 

||* - Tniz\\ < \\z - zm\\ + \\zm - T^Zrn\\ + ||Tn**m - Tn*z\\ 

< ( l + | | T ^ ) . | | z - z m | | + | | z m - T n ^ m | | . 

Taking the limit superior as i —> +00 on each side, we get 

lim sup || - - T n i z | | < (1 + k) • \\z -zm\\+ Dm 
i—• oo 

< ( l + A ; ) - | | z - z m | | + A m - o o ^ 0 

a s m - t +00 . Therefore T~ = z by Lemma 1. The proof is complete. D 
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4. The corollaries in Hilbert and LP -spaces 

In this section we give applications of the established inequalities analogous 
to (*) in some Banach spaces. Let us first begin with the following: 

L E M M A 2. 

(a) In a Hilbert space H, this equality holds: 

||Ax + (1 - A)y||2 = A||x||2 + (1 - A)||y||2 - A(l - A)||x - y\\2 

for all x, y in H and X G [0,1]. 

(b) If 1 < p <2, then we have for all x, y in LP and X G [0,1], 

||Ax + (1 - A)y||2 < A||x||2 + (1 - A)||y||2 - A(l - X)(p - l) | |x - y||2 . 

(The inequality (b) is contained in [18], [9].) 

(c) Assume 2 < p < + oo and tp is the unique zero of the function 

g(x) = —xp~x + (p — l)x +p — 2 in the interval (1, + o o ) . Let 

Cp = (P-i)(i + tpf-'> = (i + tP[-1)/((i + tpy-1) 

and we have the following inequality 

||Ax + (1 - A)y f < A | |x f + (1 - A) | |yf - cp • WP(X) • ||x - y f 

for all x, y in LP and X G [0,1] . 

(The inequality (c) is due essentially to L i m , see [8], [9] and [19].) • 

R e m a r k 1. All constants appearing in the inequalities of Lemma 2 
(e.g. the (p— 1) and cp) are the best possible, [9], [8]. 

By Lemma 2 we immediately obtain from Theorem 2 the following results: 

COROLLARY 2. ([7]) Let C be a nonempty bounded closed convex subset of a 
Hilbert space H. If T: C —> C is an asymptotically regular mapping such that 

liminf | |Tn | | < \ / 2 , 
n—>co 

then T has a fixed point in C . • 

COROLLARY 3. Let C be a nonempty bounded closed convex subset of LP 
(1 < P :__. 2 ) . If T: C —> C is an asymptotically regular mapping such that 

liminf ||T"|| < [ | ( l + v
/ l+4 (p - l ) -2 (p- i ) / J>) ] , 

then T has a fixed point in C . • 
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COROLLARY 4. Let C be a nonempty bounded closed convex subset of Lp 

(2 < p < +00 ) . If T: C —> C is an asymptotically regular mapping such that 

liminf||T"||< 
n—>oo 

^{l + y/l+8-Cp) 
I /P 

then T has a fixed point in C . D 

R e m a r k 2. A simple calculation shows that this result is essentially more 
general than that given in [6] for Lp spaces, 2 < p < + 0 0 . 

5. T h e corollaries in o t h e r B a n a c h spaces 

Using the results of P r u s , S m a r z e w s k i [12], [16] and X u [19] we 
can obtain from Theorem 2 the fixed point theorem for asymptotically regular 
mapping for Hardy and Sobolev spaces. 

Let Hp, 1 < p < +00 , denote the Hardy space of all functions x analytic 
in the unit disc \z\ < 1 of the complex plane, such that 

27T 1 / 

| | x | | = l imf-^-- / | x ( r e i e ) | P d 9 j < + 0 0 . 

Now, let ft be an open subset of W1. Denote by Hr'p(ft), r > 0, 
1 < p < +00 , the Sobolev space of distributions x such that D a x G LP(Q) 
for all |a | = a i + [- an < k equipped with the norm 

\\a\<ki ) 

I/P 

Let ( f i a , E a , / / a ) , a E A be a sequence of positive measure spaces, where 
the index set A is finite or countable. Given a sequence of linear subspaces Xa 

in Lp(f£a, !E a , /z a) , we denote by Lq ? p , 1 < p < +00 and q = max(2,p) , the 
linear space of all sequences 

equipped with the norm 

{xa Є Xa : aA} 

a Є Л 

1/9 
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where || • | |Pja denotes the norm in Lp(£la, S a , fia). 

Finally, let Lp = Lp(SlyE1,fi1) and Lq = Lq(S2, £2, M2), where 1 < p < +00 , 
q = max(2,p) and (S^E^, t^) are positive measure spaces. Denote by Lq(Lp) 
the Banach space of all measurable Lp-value functions x on S2 such that 

\\x\\=U(\\x(s)\\p)
q^(ds) 

S2 

1/9 

These spaces are ^-uniformly convex with q = max(2 ,p ) , [12], [16] and the 
norm in these spaces satisfies 

||Ax + (1 - \)y\\<> < \\\x\\" + (1 - X)\\y\\" - d • Wq(\) • \\x - y\\« 

with a constant given by 

r p - i 

d = dp = \ 8 
1 

if 1 < p < 2 , 

if 2 < p < +00 . 
K P'2p 

Hence, from Theorem 2, we have the following: 

COROLLARY 5. Let C be a nonempty bounded closed convex subset of the 
space X, where X = Hp, or X = Hr'p(fi), or X = Lq,p, or X = Lq(Lp), 
and 1 < p < + 0 0 , q = max(2,p) , r > 0 . If T: C —» C is an asymptotically 
regular mapping such that 

liminf||Tn | | < [ ^ ( l + \ / l + 4 . d . i V O l 1 \ 
n—>oo L -i J 

where q = max(2,L>). then T has a fixed point in C . • 

P r o b 1 e m . It is not known whether the estimate of the expression 
"liminf | |T n | | " is sharp. 

n—>oo 
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