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Math. Slovaca 36,1986, No. 2,179—190 

A CONSTRUCTION OF REALIZATIONS 
OF PERTURBATIONS OF POINCARE MAPS 

MILAN MEDVED 

We present in this paper a construction of a Cr-vector field, the flow of which 
generates a Cr-perturbation of a given Cr-Poincare map by the first intersections 
of its trajectories with a given transversal. This vector field is called the ^-realizat
ion or simply realization of the Cr-perturbation of the Poincare map. The 
C-realizations are useful for the study of generic properties and generic bifurca
tions of vector fields (see, e.g., [5, 7]). 

D. B. Crespin [2] proved a result of the existence of a smooth realization of 
a given perturbation of a smooth Poincare map, which is C°-close to a given vector 
field. In the book of J. Palis and W. de Melo [7] there is a result (see Lemma 2.5) 
of the existence of a smooth realization of a special linear perturbation of a given 
Poincare map, which is sufficient for the study of generic properties of vector fields. 
One of the possible constructions of a ^-realization enclose to a given vector 
field can be obtained by applying the result of J. Palis and F. Takens (see [8, 
Appendic, Lemma]). This result is used here in the construction of a suspension of 
a C'-diffeomorphism (for the definition of the suspension, see, e.g., [7]). The 
suspensions are useful for the study of generic properties of vector fields near 
closed orbits (see, e.g., [7]), but they are not quite convenient for the study of 
generic bifurcations near closed orbits. A result of the existence of the C-realizat
ions of Cr-perturbations of a given parametrized Cr-Poincare map is given in [5], 
but unfortunately its proof is not quite correct. To correct this proof, it is necessary 
to use a special surjective mapping theorem for smooth maps instead of the 
ordinary one for Cr-maps (1 ^ r < oo). We apply here a surjective mapping theorem 
for mappings of Frechet spaces, which is a corollary of some new version of the 
Nash-Moser implicit function theorem (see, e.g., [9]) published by R. S. Hamilton 
[3] in 1982. We shall give a somewhat different formulation of the result from that 
given in [5, Lemma 6]. This result is also important in the construction of 
realizations of given perturbations of the Poincare maps in the space of paramet
rized second order ordinary differential equations on differentiate manifolds 
presented in the paper [6]. 

Let X be a compact Cr+1-manifold, F a compact Cr-manifold, ri^l and 
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Vr(P, X) be the set of all parametrized Cr-vector fields on X depending on 
a parameter in P. We denote the set of all Cr-vector field on X by Fr(X). If 
Fe Vr(P, X) and peP, then we define Fp e Fr(X) by Fp(x) = F(p, x), x e X . We 
denote by cpF(x, p, t) the parametrized flow of F e Vr(P, X) and by cpG(x, t) the 
flow of G e Fr(X). We can endow the sets Fr(X) and Vr(P, X) with the structure 
of a Banach space with norms induced by the Cr-norms of local representations 
(see, e.g., [4, Appendix A, III]). 

Using the implicit function theorem one can prove the following theorem (see, 
e.g., [10]). 

Theorem 1. Let X be a compact Cr+]-manifold, P a compact Cr-manifold, 
1 g r < o o and let Fe Vr(P, X). Suppose that the vector field FPoeFr(X), p0eP, 
has a periodic trajectory y through a point x0 with the prime period T0 and let Z be a 
local transversal to y at the pointx0. Then there exists a neighbourhood B0x U0x 
V0x Wo of the point (F, x0, p0, T0) in Vr(P, X)xlx Px R and a unique 
Cr-function T: B0X U0X V0—> W0 such that T(F, X0, p0) = T0 and q)G(x, p, t)el 
for (G, x, p)eB0xU0x V0 if and only if t = T(G, X, p). 

CoroUaryLet X be a compact Cr+l-manifold and FeFr(X) ( l^r<oo) . Suppose 
that Fhas a periodic trajectory y through a point x0 with the prime period T0 and let 
I be a local transversal to y atx0. Then there exists a neighbourhood D0x U0x W0 

of the point (F, x0, T0) in Fr(X) xlx R and a unique Cr-function r: D 0 x U0—> 
Wo such that T(F, X0) = T0 and cpG(x, t)el for (G, x)eD0x U0 if and only if 
I = T(G,X). 

Definition 1. Let the assumptions of Theorem 1 and its corollary be satisfied. 
Then for every G e D0cFr(X) the mappingicG: U0^I, JZG(X) = cpG(x, T(G, X)) 

is defined. This mapping is called the Poincare map and we shall also denote it by 
KG[F, y, I, x0, U0]. We shall often write n, om[F, y, I, x0, U0] instead ofjzF[F, y, 
I, x0, U0]. For every GeB0aVr(P,X) the mapping HG: U0xV0y^I, 
HG(x, p) = cpG(x, p, T(G, x, p)) is defined. This mapping is called the paramet
rized Poincare map and we shall denote it by HG[F, y, I, x0, p0, U0, V0]. We shall 
also write H, or H[F, y, I, x0, p0, U0, V0] instead ofHF[F, y, I, x0, p0, U0, V0]. 

The mappings HG and JTG are Cr-differentiable. Moreover, xG is a C-diff-
eomorphism onto its image (see [4], or [7]). 

Definition 2. Let X, P be as above, p0eP, GeVr(P,X), l ^ r ^ * > , y be a 
periodic trajectory of the vector field Gp0 through a point x0eX, let MPo a P be an 
open neighbourhood of p0 and NYczX be an open neighbourhood of y. Then we 
define the set: 

VG(P[MPo], X[NY]) ={Ge Vr(P, X): G(x, p) = G(x,p) for all 

(x,p)eXxP\(NYxMP0)}. 

Let I b e a local transversal to y at x0 and Uczl, V c P b e open sets such that 
x0e U, p0eP and the parametrized Poincare map H=H[G, y, X, x0, p0, U, V] is 
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defined. Let KczU, Icz V be such open sets that Ka U, LczV, x0eK, p0eL. 
Then we define the set: 

Zrj(U[K], V[L])={HeCr(Ux V,Z): H(x, p) = H(x, p) for all 

(x,p)eUx V\(KxL)}. 

Theorem 2, Let X be a compact C/+1-manifold, P a compact Cl-manifold, 
1 ^ / ^ oo, G e Vr(P, X), 1 ^ r ^ /, r < oo, p0e P, y be a periodic trajectory of the 
vector field GPo through x0eX. Then there exists a local transversal 1 to y at x0 

such that for the parametrized Poincare map H = H[G, y, Z, x0, p0, U, V] the 
following holds: There exists an open neighbourhood K of the point x0 in 1, 
KczU, open neighbourhoods MPo, L of p0 in P, LczMPocz V, an open neighbour
hood NyczXofy,a neighbourhood T(H) of the mapping H in Zr

H(U[K], V[L]) 
and a continuous map x- ^(H)—> VG(P[MPQ], X[Ny]) such that for every 
HeY(H) the parametrized vector field G = x(H) is such that the parametrized 
Poincare map HG = HG[G, y, Z, x0, U, V] is defined and HG = H. 
. Definition 3. Let X be as above, y be a periodic trajectory of the vector field 
Fe rr(X) through x0eX and let Ny be a neighbourhood of y. Then we define the 
set: 

rr
F(X[Ny])={Ferr(X):F(x) = F(x) for all xeX\Ny}. 

Let 1 be a local transversal toyatx0 and UczSbe an open neighbourhood of x0 

in Z such that the Poincare map JZ = JI[F, y, 1, x0, U] is defined. Let KczU be 
a neighbourhood of x0 in Z such that KczU. Then we define the set: 

Zr
n(U[K])={jzeCr(U,Z):ji(x) = Jz(x) for all xeU\K). 

As a consequence of Theorem 2 we have the following theorem. 
Theorem 3. Let X be a compact Cl+1-manifold, l ^ / ^ o o and y be a periodic 

trajectory of the vector field F e Tr(X), l ^ r S / , r < o o , through x0 e X. Then there 
exists a local transversal 1 toy at x0 such that for the Poincare map n = n[F, y, I, 
x0, U] the following holds: There exists an open neighbourhood KczU of the point 
x0 inl, KczU, an open neighbourhood NyczXofy, a neighbourhood T(n) of the 
mapping JZ in Zr

n(X[Ny]) and a continuous mapx' Y(n)-^> rr
F(X[Ny]) such that for 

each JT e T(JT) the vector field F = x(n) is such that the Poincare map JZF = JTF[F, y, 
1, x0, U] is defined and JTF = JZ. 

Now we recall some definitions from Hamilton's paper which are necessary for 
the formulation of his surjective mapping theorem. 

Similarly to the definition of the Gateaux derivative of mappings between 
Banach spaces, it is possible to define the derivative /'(JC) :F1»->F2 of a mapping 
/: l/—> F2 at x e U, where Fj, F2 are Frechet spaces U is an open set in F, (see e.g. 
[9], or [3]). For the Gateaux derivative we shall use the same notation. 
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Definition 4. We say that a Frechet space F is graded if its topology is defined by 
a countable collection of seminorms {||.||„}"=o satisfying \\x\\n ^ ||x||„ + i for each 
n^O, xeF. 

Definition5. Let F, G be graded Frechet spaces. We say that a linear map 
L: F»-> G is a tame map if there exists a natural number r and a number b such that 
| |L / | | n ^C | | / | | r t + r for all feF, n^b, where C is a positive constant which may 
depend on n. 

Let B be a Banach space with norm || .||B and let Z(B) denote the space of all 
dcf °° 

sequences {xk}k=()of elements in the B such that \\{xk} r=<||,. = 2 e"* I W U < 0 ° 

for all n i^O. The space 2(B) with the topology defined by the system of seminorms 
{..•||n}"=o is a graded Frechet space. 

Definition 6. We say that a graded Frechet space F is tame if there exists 
a Banach space B and linear tame mappings L: F—>Z(B), M: Z(B)—*Fsuch that 
MoL: F^>F is the identity. 

From [3, Lemma 1.3.4, Lemma 1.3.6] we have 
Proposition 1. If UaRn is an open set with compact closure, then Cx( U, Rm) is 

a tame Frechet space. 
Definition 7. Let F, G be graded Frechet spaces, UczF an open set and 

P: U—>G a nonlinear map. We say that the map P is tame if the following 
conditions are satisfied: 
(1) P is continuous 
(2) For each f0eU there exists its neighbourhood Vcz U, a natural number r and 

a number b such that \\P(f)\\n ^ C ( l + \\f\\H+r) for all f e V and alln^b, where 
C is a constant which may depend on n. 

Proposition 2 ([3, Theorem 2.L6]). The composition of two tame maps is a tame 
map. 

Theorem 4 (the Hamilton surj. mapping th.; [3, Th. 1.L3]). Let F, G be tame 
spaces, UczF an open set, P: U-* G a smooth tame map and let P:Ux F—> G, 
P'(Q,f) = P'(Q)f be 'd smooth tame map. Suppose that for each g eU the map 
P'(Q)*> F-+G is surjective and there exists a smooth tame map RP: Ux G-+F 
such that P'(g)oRP(g, / ) = / for all g eU and fe F. Then for any g0e U there 
exists its neighbourhood WczU such that the set P(W) is open in G. Moreover, 
there exists a smooth tame map Q: P(W)-*W such that PoQ(w) = w for all 
weP(W). 

Lemma 1. Lef E, F be Banach spaces, UczE a convex compact set and 
<PeCr(U, F), r^2. Then there exists a mapping H e Cr](U x LI, L(E, F)) such 
that 

<p(y) - 0(x) = (dx<P + H(x , y))(y - x) 

for all x, ye U, where \\H(x, y)| |, g | |0 | |2 | |y - J C | | , | | . | |k is the norm on Lk(E, F) 
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(Lk(E, F) denotes the set of continuous k-multilinear maps from E into F), 

| |0 | | 2 = max (||dJt<2>||,+ ||dj<2>||2, d[<P is the i-the Frechet derivative of <P atx. 
X € U 

Proof. Let <P'(z)eL(E, F) be the Gateaux derivative of 0 at z and g(t) = 
4>(x + t(y-x)) for x, yeU, O^t^l. Then 

<P(y) - 4>(x) = g(l) - 0(0) = (jf <P'(x + t(y - x)) dt\(y - x) 

= (4>'(x)+(j\<I>'(x + t(y-x))-<P'(x)]dt)(y-x). 

Let us define 

H: UXU-+ L(E, F), H(x, y) = P [*'(JC + t(y - x)) - <*>'(*))]) dr. 

Using the mean value theorem we obtain 

\\H(x,y)\\x^f\\<P'(x + t(y-x)) - 0'(x)\\xdt -5 ||4>||2||y - JC||. 
Jo 

Since <P'(x) = dx<P, our lemma is proved. 
Lemma 2. Let X be a Cr+1-manifold, r^ 1, dim X = n and x0eX be a regular 

point of the vector field Fe Tr(X). Then there exists a chart (U, a) on Xsuch that 

(1) xoeU,a(xo) = 0eRn,a(U)={(t,ZuZ2,..., zn-i) e R x R""1
: |t| < 1, |z,|< 1, 

i = l, 2, ..., n-l}. 
(2) If fa is the main part of the local representative of F with respect to the local 

chart (U,a), thenfa(t,z) = (1, 0, ..., 0) e Rn for all (t, z)ea(U). 

Using this so called flow box lemma one can easily prove the following lemma. 
Lemma 3. Let X, P be as above, dim X = n,d'\m P= k,letGe Vr(P, X), JC0 be 

a regular point of the vector field G^, p0eP. Then there exists a chart (W, h) on 
Xx P such that 

(1) (JC0,PO)GW, A(JCO,PO) = ( 0 , 0 ) e R " x R \ W=W,xW2, where W,cX, 
W2czPare open sets, h: WxxW2->Rn x R \ h(x,p) = (hx(x,p), h2(p)), 
ht: WiX W2-^Rn, h2: W2-*Rk. 

(2) Ifpe W2, then themaphXp: Wx-*Rn,hXp(x) = h\(x, p), is a Cr-diffeomorphi-
sm of W, onfo In, where I = ( - l , 1). 

(3) The map h2 is a Cr-diffeomorphism of W2 onto Ik. 
(4) The main part of the local representative of the parametrized vector field 

G with respect to the chart (W, h) has the form gh(t, z, fi) = (l, 0, ..., 0) 6 R" 
for all (t, z, /i) 6 I x p - ' x l * . 

Let us consider a parametrized vector field Ge Vr(P, X), where dim X = M, 
dim P= k. Suppose that y is a periodic trajectory of the vector field G^, p0eP. Let 
(W, h) be a chart on X x P having the properties (1)—(4) from Lemma 3. By the 
property (4) of this lemma the main part gh of the local representative of G has the 
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form gh(y, z, y) = (\, 0, ..., 0) for all (t, z^ pi)elx Inl x 7 \ which defines the 
system of 

£ - 1 . £ - 0 . K - ' . ( » 

Let Bm(r) = { i )eR m : | | t>| |<r}, where ||v|| = max |v,-|. The set W~ = 
i 

{feC~(Rn+\ Rn~l): f(v) = 0 for all v e R»+k\Bn+k(l/2)} is a Frechet space with 
the topology defined by the system of seminorms {|.|y}f=i, | / | , = 

max ( max Hdj/11^ and the set W% = {fe W00: | / | ; < 1/2, / = 0, 1, ..,} is its open 
0= i«Sj \ x 6 B n + k ( l / 2 ) / 

subset. 
Let us consider the following system of differential equations depending on the 

parameter iieRk: 

s 5 - ' - £-•<'•'•">• <2> 
where ge W°, ye R, zeRn~', / ie Rk. This system defines a parametrized flow 
cp»(y, z,n, t) = (Y»(y, z, fi, t), Z»(y, z, n, t)) on R", where Y»(y, z, fi, t) = y + t 
and Z" satisfies the following integral identity: 

Z»(y, z,n, t) = z+ [ g(y + s,Zg(y,z,^,s),n)ds. (3) 

Jo 

Let 0 < T < 1. For g e W" we define the mapping 
Q":{0}x J"-' x I l ^ ( T } x R - ' , 

Q9(0, z, pi) = (p9(0, z, pi, T) = (T, Z"(0, z, n, T)). 

Let Z - = {f teC-( /" + k - ' , R""1): h(w) = 0 for all w € R" + k - , \B„ + k _ 1 ( l /2 )} . 
Define the map 

.?: w~-+Z~, 9(g)(z, |u) = Z"(0, z, |U, T) - z . 

Lemma 4. 

(1) Q" e C", •?(#) e C" for e<ic/i 3 e W". 
(2) lf( ) eWo", f/ien Q " ( { 0 } x J " - 1 x r ) c { T } x I " - 1 . 
(3) . 3 K W S ) c : C - ( / " - , x / \ J""'). 

Proof. The assertion (1) follows from the smoothness of <p". Since a(i>) = 0 for 
all v e R»+k\Bn+k(V2) we have Z«(0, z, ju, f) = z lor all ( e R and ||(0, z , , n)ll = 
1/2. Therefore | |Z"(0, z, /1, T)\\ = \\z\\ = 1. If | | ( 0 , - , / i ) | | < 1/2, then 

||Z»(0, z, p. T)\\ = ||z|| + T \\g(s, Z»(0, z, n, s), n)\\ d.v ̂  1 for each g e WS and 

so the assertion (2) is proved. The assertion (3) is obvious. 
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Lemma 5. 

(1) 2F/WZ is a smooth tame map. 
(2) The derivative &'(g)f exists for each f,geW°° and &'(g)f(z, [i) = c0(T, z, y, 

g,f) for (z, \x) e In_1 x Ik, where c0(t, z, jtf, g, f) is a solution of the differential 
equation 

(4) ^j = A'(t,z,vt)w + b'-f(t9z,l*), 

~\ / \ 
satisfying the initial condition w(0) = 0, where A9(t, z, \i)= ~ , v=(t, 

Z9(0, z, fi, 0, /*)> &'''('> *> **) = /('* Z'(0, z, ji, 0, hi
proof. Let us denote B(t, v, z, /*, fif, /) = Z*+v/(0, z, ju, f) - Z«(0, z, jw, r) for 

fe[0, T], zer~\ jitel\ ve[0, e], e>0 and let Ki = |g|i (C'-norm of g), 

K2 = max ( max ||/(s, Z9+vf(0, z, /*, s), pt)\\ ds). The mean value theorem and 
v \(z,H, t) J 0 / 

the equality (3) imply ||B(t, v, z, (i, g, f)|| ^ P ||g(s, Z*+Vf(0, z, u., s), |i) - g(s, Zg(0, 
Jo 

z, n, s), n)|| ds + v P ||/(s, Z9+v'(0, z, / i , s), /i)|| ds =S K, P ||B(s, v, z, M, 0, 
Jo Jo 

/) | | ds + yK2. Applying the Gronwall lemma we obtain 

max||B(r,v,z,/i,fif,/)||-ivK, (5) 

where K = K2 exp Kx. If b(v, g, / )= max \\B(t, v, z, ju, g, /) | | , then from (5) we 
(z.H.t) 

obtain 
limfc(y,0,/) = O. (6) 
v—»0 

By Lemma 1 there exists a map H e CO"*' x /n+', L(Rn+\ R""1)) such that for 
any M, J> e /"+,( 

»(»') - g(u) = (d„« + H ( M , ..))(.- - M), (7) 

||H(M, , . ) | | , ^ R | | , . - M | | , (8) 

where R = |<3f|2. For each /, geW, te[0, T], ve[0, e], zeR"-1 and n e I" we 

have ^ B(r, v, z, /., a, /) = g(t, Z«+v'(0, z, //, t), M) - «(t, Z"(0, z, /x, 0, /.) 

+ vf(t, Z»+v'(0, z, /*, 0, /•) = (M(.«, z, /i, 0 + N(t, v, z, n, g, f))B(t, v, z, /., </, 
/) + v/(f, Z«+v'(0, z, /i, r), /*), where M(g, z, /., t) = dug, N(t, v, z, a, <?, /) 
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= H(u, v), u = (t, Z9(0, z, ft, t), ii), v = (t, Z°+Vf(0, z, V, t), fi). Using (8) we 
obtain the inequality 

||N(t, v, z, ii, g,f)\\ = R\\B(t,v,z,v,g,f)\\. (9) 

For C(t, v, z, 11, g, f) = v'lB(t, v, z, pi, g, f) we obtain 

*<M=(M(t) + N(t))C(t) + F(t)9 (10) 

where C(t)= C(t, v, z, pi, g, / ) , M(t) = M(g, z, [i, t), N(t) = N(t, v, z, fi, g, / ) , 
F(t) = f(t, Zg+Vf(0, z, V, t), pi), C(0, v, z, pi, g,f) = 0. The inequalities (5), (9) and 
(6) imply 

l i m a ( y , g , / ) = 0, (11) 

where a(v, g, f) = max | |N(t)C(t) | | . Let c0(t, z, pi, g, f) be the solution of the 
(t, z,n) 

linear differential equation (4) satisfying the initial condition c0(0, z, pi, g, f) = 0. 
From (10) and (4) we obtain ||C(t, v, z, pi, g, f) - c0(t, z, pi, g, f)\\ = o(v, g, f) 

+ M(g)\ \\C(s, v, z, ft, g, f) - c0(s, z, [i, g, f)\\ds, where M(g) = 
Jo 

max | |M(#, z, pi, t)\\. Applying the Gronwall lemma we have max ||C(t, v, z, pi, 
(z,ti,t) ' (t,z,n) 

g, f) - c0(t, z, pi, g, f)\\ = o(v, g, f) exp M(g) and therefore (11) implies 

lim max ||C(t, v, z, /x, g,f)-c0(t, z, ]U, g,/)|| = 0. (12) 
v ^ ° (t,z,ti) 

Let us define the maps: 

c0(g, f), In'1 x Ik^r~\ c0(g, f)(z, fi) = co(T, z, ^i, g, f), 

c(v, g, / ) : T- 1 x Ik-±I"\ c(v, g, f)(z, v) = C(T, v, z, pi, g, / ) . 

These mappings are obviously smooth and for any (z, pi)eln~x x lk we have 

\\v-l[Hg + vf)(z, v) - Hg)(z, v)} - c0(g, f)(z, /i)|| = 

= l l v - ^ Z ^ O , z, pi, T)-Z"(0, z, ti, T)]-Co(g, f)(z, /i)|| = 

= \\c(v, g,f)(z,^i)-Co(g,f)(z,ii) =o(v, g,/)exp M(g) 

and so the equality (11) yields 

lim v~l[Hg + v/) - Hg)] = c0(g, f) (13) 
v—»0 

(the limit with respect to the seminorm |. |0). It is necessary to prove the existence 
of the limit (13) with respect to every seminorm |. |m, m =0. However, this is not 
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difficult to prove now. The partial derivative of c0(g, /)(z, \i) with respect to z and 
JU, respectively, also the higher order one, is a solution of a linear differential 
equation in a corresponding Banach space, satisfying the zero initial condition, 
which can be obtained by differentiating the equation (4) with respect to z and ]U, 
respectively. Therefore one can use the same procedure as that we have used in the 
case of m = 0 . Since Lemma 1 is formulated for mappings of Banach spaces, we 
may also use it for m = 1. Therefore all estimations are analogous to these we have 
performed in the case of m = 0 and we omit them. It suffices to prove the asserrtion 
(1) of our lemma. From the form of the linear differential equation (4) there 
follows the smoothness of the map :>/W0. It remains to show that this map is 
tame. The assertion (3) of Lemma 4 implies that &(f)(I"~l x Ik)cz In~l for all 
fe Wo and so \2F(f)\0 = 1 == 1 + |/ | 0 . Applying the operator d/dz to the integral 
identity (3) and using the Gronwall inequality one can show that 

WdHMz, /i) max " 
(z,ł. )бГ- , xl ' k || ЭZ 

šexp l/l, 

Using the same procedure one can prove that for any natural number m and 
natural numbers i, /, i + j = m, there exists a continuous nonnegative function 
^r/wo, Mi, ..., um) defined for us^0, 5 = 0 , 1 m, nondecreasing in each 
variable and such that 

| | 3 ' + ' W ) ( z , ii)\\ 
max, 

( z , ř ^ ) e / ' , - , : Эť дџ* 
-Š4WI/U/I l/U) 

for all fe W0. Since | / | , < l / 2 for all fe Wo, / = 0, 1, ..., m, we obtain from the 
above inequality that for any natural number m there exists a positive constant Cm 

(independent o f / ) such that \&(f)\m = Cm = Cm(\ + \f\m) for all / e WS. Thus we 
have proved that the mapping ^ / W 0 is tame. 

R e m a r k . We have used the mean value theorem in the proof of the existence of 
the limit (13) with respect to the seminorm | . |0 and we needed the C^-differentiab-
ility of g. This means that the C-differentiability of g is not sufficient for the 
existence of the limit (13) with respect to the seminorm | . | r . Therefore it is 
necessary to work with the class C00. 

Lemma 6. 

(1) The mapping &': W0 x W°°—>Z°°, &'(g, / ) = &'(g)fis a smooth tame map. 
(2) There exists a smooth tame map R&: Z°°-*WoX W°° such that 

y7'(g)oR&(g)h = h for all g eWl,he Z00. 

Proof. The smoothness of &' follows from Lemma 5 ( 1 ) . From Lemma 4 (2) 
and the variation of constants formula we obtain 

^ ^ ) / U ^ ) = { V ( T - 5 , z , / i ) / ( s , Z - ( 0 , 2 , / l , sy , 4 ) d * (14) 
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for all ge W~, fe W~, (z,fi)el ~lxlk, where <Pg(t, s, z, JU) is the resolvent of 
the equation 

±jj = A'(t,z,n)w (15) 

(A° is defined in Lemma 5). The mapping s-+<P(T, s, z, l*) is a solution of the 
equation (15) and so by a procedure similar to that we have used in the proof of the 
inequality \3*(f)\m^Cm (see the proof of Lemma 5), one can prove that for any 
natural number m there exists a positive constant Lm such that 

\<Pg\m^Lm (16) 

for all geWo, where Lm is independent ofg . Let us define the mapping 
Z: Wo— C°(r~l x / k x l , JR"'1) Z(g)(z, v, t) = Zg(0, z, -u, t). From the definition 
of & and from (3) we have that Z(g)(z, /i, T )= ?F(g)(z, l*)-z and therefore 

\Z(g)\m=%\Cm + l for all geWZ. (17) 

Using the formula (14), the inequalities (16), (17), the Leibnitz formula and 
Proposition 2, one can easily prove that there exists a sequence {.Rw}w=i of such 
constants that \&'(g,f)\m ^ Rm(\ + | / |w) for all geW~Q a n d / e W°°. We leave the 
details to the reader. Now it suffices to prove the assertion (2). Let us define the 
mapping R^\ W J x Z ^ W 0 0 , 

RHQ, f)(s, z, \i) = T-'xpg(T, s, z, \x)h(Zg(0, z, V, -s), / i ) , (18) 

where \pg(t, s, z, /x) = [<&g(t, s, z, M)]_1- From the properties of the resolvent it 
follows that map t-+\pg(T, t, z, li) is a solution of the equation 

^=-XA°(t,z,v)- (19) 

Therefore the smoothness of the mapping (g, s, z, [i) •-> tyg(s, z, \i) is obvious. 
The mapping R3* has the same structure as the mapping 3F' and therefore using the 
same procedure as that in the proof of the assertion 1 one can prove that R3< is 
a tame map. From the formulae (14), (18) we obtain that 

&'(g)oR&(g)h(z9ii) = 

= f <Pg(T, s, z, li)T-V(T, s, z, \i)h(Zg(0, Zg(0, z, p , s), -s), p) ds = 
Jo 

= f T~lh(z, li) ds = h(z, fi) for all (z, fi) e T 1 xlk,he Z°° 
Jo 

and this completes the proof. 
As a direct consequence of Lemma 4, Lemma 5 and Theorem 4 we obtain the 

following lemma. 
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Lemma 7. There exists a neighbourhood U0cz W0 of the zero map 0 e W0 such 
that &= &IU0: [ / 0->^(t / 0) is surjective, where &(U0)a C00(In-1x Ik, I""1) is an 
open neighbourhood of the mapping h0: I"'1 x Ik—> P1"1, h0(z, Li) = z. Moreover, 
there exists a smooth tame map G: 3*(U0) —>U0 such that 3<oG(h) = h for all 
he&(U0). 

Proof of T h e o r e m 2. Let (W, h) be a chart o n X x P having the properties 
(1)—(4) from Lemma 3. Let W00, W0, Z°° be the Frechet spaces defined as above. 
Let us recall that q)g = (Y°, Zg) is the parametrized flow defined by the system (2) 
for geW00 and &: W~-^Z~, &(g)(z,\i) = Zg(0, z, \i, T)-z, where 0 < T < 1 . 
The set S = h;1({T} x I"-1) is the global transversal of the vector field GJWX and 
hPo(YnWi) = Ix {0}. If H = H[G, y, A, x0, p0, U, V] is the parametrized Poincare 
map, then Lemma 3 (4) implies that for each (x,p)eUxV there exists 
(z,ii)er~1x Ik such that 

hlpoH(x, p) = cp°(0, z, ^ , T) = (T, z). (20) 

The flow q)g defines in the coordinates of the chart (W, h) a parametrized vector 
field Gg on W, where Gg = G on W\/i_1(Bn+fc(l/2)). Let us define the paramet
rized vector field P o n X x P a s follows: Fg = Gg on W and Fg = G on X x P \ W. 
This is obviously Cr. From Theorem 1 it follows that there exists an open 
neighbourhood U0 of the zero map 0 e WJ such that if U x V is a sufficiently small 
neighbourhood of the point (x0, p0) i n l x P , then for each g eU0 the mapping 
Hg = HFe[G, y, I, x0, p0, U, V] is defined and for such (x, p)eUx V for which 
the equality (20) is valid we have 

hlpoHg(x,p) = <pg(0,z,ii, T) = (T, o0(z,lt)+HQ)(z,ti))> (21) 

where o0e C30^'1 x Ik, I""1), o0(z, ju) = z for all (z, ju). If l/0 is sufficiently small, 
then by Lemma 7 there exists an open neighbourhood V0aZ°° of the zero map 
0 e Z00 such that 2F/ U0: l/0-> V0 is surjective. Moreover, there exists a smooth map 
Q: U0—> V0 such that &>oQ(o) = o for all oe V0. This means that for arbitrary 
oeV0 there exists g e U0 such that &*(g) = o. Therefore for arbitrary o e U(o0) = 
{o0+o: oe U0} there exists g eU0 such that 

hlpoHg(x, p) = cpg(0, z, ft, T) = (T, 6(z, ii)) (22) 

for all (JC, p)eUx V. Let K = h^(Bn+k(l/2))nU, L = .V(Bk(l/2))n V, Mpo= V 

and let Ny be an open neighbourhood of y such that |J hxp(lx /""^cN.,. Let 
p e V 

i?(H) = {HeZ^U[K], V[L]): there exists 6eU(o0) such that hXpoH(x,p) 
= (T, 6(z,ii)) for all (JC, p)e Ux V}. Let us define the map %: V(H)>-* 
V r(P[MJ, X[Ny]) as follows: If HeY(H) and hlpoH(x,p) = (T, d(z, /*)), 
where 6 e U(o0), then x(H) = Fg, where g e U0 is the map for which the equality 
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(22) is valid. From the construction of F9 it follows that % is continuous and from 
the equality (22) we have that HF<>[G, y, Z, x0, p0, U, V] = H. 
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КОНСТРУКЦИЯ РЕАЛИЗАЦИИ ВОЗМУЩЕНИИ ОТОБРАЖЕНИИ ПУАНКАРЕ 

МИап МеоЧесГ 

Р е з ю м е 

В статье дана одна конструкция векторного поля класса С г , поток которого порождает 
Сг-возмущение данного отображения Паункере класса С г . 
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