Mathematic Slovaca

Vítězslav Novák

On representation of ternary structures

Mathematica Slovaca, Vol. 45 (1995), No. 5, 469--480

Persistent URL: http://dml.cz/dmlcz/129651

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON REPRESENTATION OF TERNARY STRUCTURES

VÍTĚZSLAV NOVÁK

(Communicated by Tibor Katriňák)

Abstract

A construction is presented which gives a possibility of describing ternary relations. Graphical representation of ternary relations is noted.

0. Introduction

Let G be a nonempty set. If ϱ is a binary relation on G, then the pair $\mathbb{G}=(G, \varrho)$ is called a binary structure; if t is a ternary relation on G, then $\mathbb{G}=(G, t)$ is called a ternary structure.

A ternary relation t on G (and the structure $\mathbb{G}=(G, t))$ is called symmetric \quad if $(x, y, z) \in t \Longrightarrow(z, y, x) \in t$, asymmetric \quad if $(x, y, z) \in t \Longrightarrow(z, y, x) \notin t$, cyclic if $(x, y, z) \in t \Longrightarrow(y, z, x) \in t$, transitive \quad if $(x, y, z) \in t,(z, y, u) \in t \Longrightarrow(x, y, u) \in t$. If the last condition holds only for $y=z$, i.e., if

$$
(x, y, y) \in t,(y, y, z) \in t \Longrightarrow(x, y, z) \in t
$$

then the relation t and the structure \mathbb{G} are called weakly transitive.
A ternary structure (G, t) is a called a cyclically ordered set ([3], [1], [2], [5]) if it is asymmetric, cyclic and transitive. In the process of constructing examples or counterexamples of ternary relations on finite sets, we meet the problem of graphical representation of such relations. If (G, t) is cyclic and $(x, y, z) \in t$,

[^0]
VítĚZSLAV NOVÁK

then the triplets $(x, y, z),(y, z, x),(z, x, y)$ can be represented by an oriented triangle

The following example ([4]) shows that we can get into troubles even in that case: if $G=\{x, y, z, u, v, w\}, t=\{(x, y, z),(x, u, y),(y, v, z),(z, w, x)\}$ and t^{c} is a cyclic hull of t, then the graph of $\left(G, t^{c}\right)$ is as follows:

u
Thus, in this graph, we have obtained an oriented triangle corresponding to triplets $(x, z, y),(z, y, x),(y, x, z)$ which are not in t^{c}. In [4], we have represented ternary structures by double binary structures. A double binary structure is a triplet $\mathbb{G}=(G, \varrho, r)$, where G is a set, ϱ is a binary relation on G, and r is a binary relation on ϱ with the following property:

$$
(x, y) \in \varrho,(u, v) \in \varrho, \quad((x, y),(u, v)) \in r \Longrightarrow y=u
$$

If (G, ϱ, r) is a double binary structure, then we can define a ternary relation t on G as follows:

$$
(x, y, z) \in t \Longleftrightarrow(x, y) \in \varrho,(y, z) \in \varrho,((x, y),(y, z)) \in r
$$

if (G, t) is a ternary structure, then it is possible to define a double binary structure (G, ϱ, r) by:
$(x, y) \in \varrho \Longleftrightarrow$ there is $z \in G$ such that $(x, y, z) \in t$ or $(z, x, y) \in t$ and for $(x, y) \in \varrho,(u, v) \in \varrho$ it is

$$
((x, y),(u, v)) \in r \Longleftrightarrow y=u \text { and }(x, y, v) \in t
$$

Special properties of ternary structures are transformed in corresponding properties of double binary structures ([4]). Further, double binary structures on finite sets can be graphically represented. In this paper, we describe an abstract construction which contains double binary structures as special cases.

1. E-systems

1.1. Definition. Let E be a set, $G \neq \emptyset$ a set, and $p_{1}: E \rightarrow G, p_{2}: E \rightarrow G$ mappings. Let the pair of mappings $\left\{p_{1}, p_{2}\right\}$ distinguish elements of E, i.e., let $e_{1}, e_{2} \in E, p_{1}\left(e_{1}\right)=p_{1}\left(e_{2}\right), p_{2}\left(e_{1}\right)=p_{2}\left(e_{2}\right) \Longrightarrow e_{1}=e_{2}$ hold. Then the quadruple $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right)$ will be called an E-system.

Let $\left(E, G, p_{1}, p_{2}\right)$ be an E-system, and $e \in E$. If there exists an element $e^{\prime} \in E$ such that $p_{1}\left(e^{\prime}\right)=p_{2}(e), p_{2}\left(e^{\prime}\right)=p_{1}(e)$, then we denote it $e^{\prime}=e^{-1}$.
1.2. Lemma. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right)$ be an E-system. Put for any $x \in G$ $L(x)=\left\{e \in E ; p_{1}(e)=x\right\}, R(x)=\left\{e \in E ; p_{2}(e)=x\right\}$. Then the set systems $\{L(x) ; x \in G\},\{R(x) ; x \in G\}$ have properties:

$$
\begin{gather*}
\bigcup_{x \in G} L(x)=E, \quad \bigcup_{x \in G} R(x)=E \\
x, y \in G, x \neq y \Longrightarrow L(x) \cap L(y)=\emptyset, R(x) \cap R(y)=\emptyset \tag{*}\\
x, y \in G \Longrightarrow \operatorname{card}\{L(x) \cap R(y)\} \leq 1
\end{gather*}
$$

Proof. Let $e \in E$ be any element and $p_{1}(e)=x$. Then $e \in L(x)$, and thus $\bigcup_{x \in G} L(x)=E$; analogously, $\bigcup_{x \in G} R(x)=E$. Let $x, y \in G, x \neq y$, and suppose the existence of an $e \in L(x) \cap L(y)$. Then $p_{1}(e)=x, p_{1}(e)=y$, which is a contradiction. Hence $L(x) \cap L(y)=\emptyset$ and, similarly, $R(x) \cap R(y)=\emptyset$. Let $x, y \in G$ and $e_{1}, e_{2} \in E, e_{1} \in L(x) \cap R(y), e_{2} \in L(x) \cap R(y)$. Then $p_{1}\left(e_{1}\right)=x=$ $p_{1}\left(e_{2}\right), p_{2}\left(e_{1}\right)=y=p_{2}\left(e_{2}\right)$, and thus $e_{1}=e_{2}$. Hence $\operatorname{card}\{L(x) \cap R(y)\} \leq 1$.
1.3. Lemma. Let E and $G \neq \emptyset$ be sets. Let $\{L(x) ; x \in G\},\{R(x) ; x \in G\}$ be systems of subsets of the set E which satisfy the condition (*). Put for any $e \in E p_{1}(e)=x$, where $e \in L(x), p_{2}(e)=y$, where $e \in R(y)$. Then $\left(E, G, p_{1}, p_{2}\right)$ is an E-system.

Proof. If $e \in E$, then (*) implies the existence of a unique $x \in G$ with $e \in L(x)$. Thus, $p_{1}: E \rightarrow G$ is a mapping, and $p_{2}: E \rightarrow G$ is a mapping. Let $e_{1}, e_{2} \in E, p_{1}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=x, p_{2}\left(e_{1}\right)=p_{2}\left(e_{2}\right)=y$. Then $e_{1} \in L(x) \cap R(y)$, $e_{2} \in L(x) \cap R(y)$ and, from this, $e_{1}=e_{2}$. Thus, the pair of mappings $\left\{p_{1}, p_{2}\right\}$ distinguishes elements of E and $\left(E, G, p_{1}, p_{2}\right)$ is an E-system.

VÍTĚZSLAV NOVÁK

1.4. Example. Let (G, ϱ) be a binary structure. Put, for any $e=(x, y) \in \varrho$, $p_{1}(e)=x, p_{2}(e)=y$. Then $\left(\varrho, G, p_{1}, p_{2}\right)$ is an E-system. Clearly, if $e=(x, y) \in \varrho$ and if there exists $e^{-1} \in \varrho$, then $e^{-1}=(y, x)$. Further, for any $x \in G$ we have $L(x)=[x] \varrho=(\{x\} \times G) \cap \varrho, R(x)=\varrho[x]=(G \times\{x\}) \cap \varrho$.
1.5. Definition. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right), \mathbb{H}=\left(F, H, q_{1}, q_{2}\right)$ be E-systems. Let $\varphi: E \rightarrow F, \psi: G \rightarrow H$ be mappings such that $\psi \circ p_{1}=q_{1} \circ \varphi, \psi \circ p_{2}=q_{2} \circ \varphi$, i.e., the diagrams

are commutative for $i=1,2$. Then the couple (φ, ψ) will be called a homomorphism of \mathbb{G} into \mathbb{H}.

In particular, if both mappings $\varphi: E \rightarrow F, \psi: G \rightarrow H$ are bijections, and, if $\left(\varphi^{-1}, \psi^{-1}\right)$ is a homomorphism of \mathbb{H} into \mathbb{G}, we call (φ, ψ) an isomorphism of \mathbb{G} onto \mathbb{H}. E-systems \mathbb{G}, \mathbb{H} are isomorphic if there exists an isomorphism of \mathbb{G} onto \mathbb{H}.
1.6. Remark. If in $1.5, G=H$ and $\psi=\operatorname{id}_{G}$, then we denote the homomorphism $\left(\varphi, \mathrm{id}_{G}\right)$ simply by φ. Thus, if $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right), \mathbb{H}=\left(F, G, q_{1}, q_{2}\right)$ are E-systems and $\varphi: E \rightarrow F$, then φ is a homomorphism of \mathbb{G} into \mathbb{H} if $p_{1}(e)=q_{1}(\varphi(e)), p_{2}(e)=q_{2}(\varphi(e))$ for any $e \in E$. An isomorphism φ of \mathbb{G} onto \mathbb{H} is a bijective homomorphism of \mathbb{G} onto \mathbb{H}.
1.7. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right)$ be an E-system. We define a binary relation ϱ on the set G so: for $x, y \in G$ there is $(x, y) \in \varrho \Longleftrightarrow$ there exists an $e \in E$ such that $p_{1}(e)=x, p_{2}(e)=y$. The binary structure (G, ϱ) will be denoted $B(\mathbb{G})$. Thus, if \mathcal{E} is the class of all E-systems, and \mathcal{B} is the class of all binary structures, we have a mapping $B: \mathcal{E} \rightarrow \mathcal{B}$.
1.8. Let $\mathbb{G}=(G, \varrho)$ be a binary structure. Let $\left(\varrho, G, p_{1}, p_{2}\right)$ be the E-system described in 1.4 ; we denote $E(\mathbb{G})$ this E-system. Thus, E is a mapping of \mathcal{B} into \mathcal{E}, i.e., $E: \mathcal{B} \rightarrow \mathcal{E}$.
1.9. TheOrem. Let \mathbb{G} be a binary structure. Then $(B \circ E)(\mathbb{G})=\mathbb{G}$, i.e., $B \circ E=\operatorname{id}_{\mathcal{B}}$.

Proof. Let $\mathbb{G}=(G, \varrho)$; then $E(\mathbb{G})=\left(\varrho, G, p_{1}, p_{2}\right)$, where $p_{1}(e)=x$, $p_{2}(e)=y$ for $e=(x, y) \in \varrho$, and $(B \circ E)(\mathbb{G})=\left(G, \varrho^{\prime}\right)$, where $(x, y) \in \varrho^{\prime} \Longleftrightarrow$ there exists $e \in \varrho$ with $p_{1}(e)=x, p_{2}(e)=y \Longleftrightarrow e=(x, y) \in \varrho$. Thus $\varrho=\varrho^{\prime}$ and $(B \circ E)(\mathbb{G})=\mathbb{G}$.

ON REPRESENTATION OF TERNARY STRUCTURES

1.10. Theorem. Let \mathbb{G} be an E-system. Then \mathbb{G} is isomorphic with $(E \circ B)(\mathbb{G})$.

Proof. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}\right)$. Then $B(\mathbb{G})=(G, \varrho)$, where $(x, y) \in$ $\varrho \Longleftrightarrow$ there exists $e \in E$ with $p_{1}(e)=x, p_{2}(e)=y$, and $(E \circ B)(\mathbb{G})=$ $\left(\varrho, G, q_{1}, q_{2}\right)$, where $q_{1}(f)=x, q_{2}(f)=y$ for $f=(x, y) \in \varrho$. Let define a mapping $\varphi: E \rightarrow \varrho$ by $\varphi(e)=\left(p_{1}(e), p_{2}(e)\right) \cdot \varphi$ is in fact a mapping of E into ϱ, and we show that it is an isomorphism of \mathbb{G} onto $(E \circ B)(\mathbb{G})$. By 1.6, it suffices to show that φ is a bijection, and that $p_{1}(e)=q_{1}(\varphi(e)), p_{2}(e)=q_{2}(\varphi(e))$ for any $e \in E$. If $(x, y) \in \varrho$, then there exists $e \in E$ such that $p_{1}(e)=x, p_{2}(e)=y$, and then $\varphi(e)=(x, y)$. Thus, φ is surjective. If $e_{1}, e_{2} \in E, \varphi\left(e_{1}\right)=\varphi\left(e_{2}\right)$, then $p_{1}\left(e_{1}\right)=p_{1}\left(e_{2}\right), p_{2}\left(e_{1}\right)=p_{2}\left(e_{2}\right)$, and, by definition, we have $e_{1}=e_{2}$. Thus φ is injective and hence, bijective. If $e \in E$, then $\varphi(e)=\left(p_{1}(e), p_{2}(e)\right)$, and hence $q_{1}(\varphi(e))=p_{1}(e), q_{2}(\varphi(e))=p_{2}(e)$. By 1.6, φ is an isomorphism.

2. E-systems with relation

2.1. Definition. Let $\left(E, G, p_{1}, p_{2}\right)$ be an E-system. Let r be a binary relation on the set E such that it holds

$$
\left(e_{1}, e_{2}\right) \in r \Longrightarrow p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)
$$

Then the structure $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ will be called an E-system with relation.
2.2. Example. Let (G, ϱ, r) be a double binary structure and $E(G, \varrho)=$ $\left(\varrho, G, p_{1}, p_{2}\right)$. Then $\left(\varrho, G, p_{1}, p_{2}, r\right)$ is an E-system with relation.
2.3. Definition. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), \mathbb{H}=\left(F, H, q_{1}, q_{2}, s\right)$ be E-systems with relation, and (φ, ψ) be a homomorphism of the E-system (E, G, p_{1}, p_{2}) into the E-system $\left(F, H, q_{1}, q_{2}\right)$. We call (φ, ψ) a homomorphism of \mathbb{G} into \mathbb{H} if $\left(e_{1}, e_{2}\right) \in r \Longrightarrow\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s$. If (φ, ψ) is an isomorphism of $\left(E, G, p_{1}, p_{2}\right)$ onto $\left(F, H, q_{1}, q_{2}\right)$, and, if $\left(e_{1}, e_{2}\right) \in r \Longleftrightarrow\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s$, then (φ, ψ) is an isomorphism of \mathbb{G} onto \mathbb{H}. E-systems with relation \mathbb{G}, \mathbb{H} are isomorphic if there exists an isomorphism of \mathbb{G} onto \mathbb{H}.
2.4. Remark. Analogously as in 1.6 , in case $G=H$ and $\psi=\mathrm{id}_{G}$, we write briefly φ in place of $\left(\varphi, \mathrm{id}_{G}\right)$. Thus, $\varphi: E \rightarrow F$ is a homomorphism of $\mathbb{G}=$ $\left(E, G, p_{1}, p_{2}, r\right)$ into $\mathbb{H}=\left(F, G, q_{1}, q_{2}, s\right)$ if $p_{1}(e)=q_{1}(\varphi(e)), p_{2}(e)=q_{2}(\varphi(e))$ for any $e \in E$, and $\left(e_{1}, e_{2}\right) \in r \Longrightarrow\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s . \varphi$ is an isomorphism of \mathbb{G} onto \mathbb{H} if it is a bijective homomorphism, and $\left(e_{1}, e_{2}\right) \in r \Longleftrightarrow$ $\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s$.

VÍTĚZSLAV NOVÁK

2.5. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ be an E-system with relation. We define a ternary relation t on the set G as follows:
$(x, y, z) \in t \Longleftrightarrow$ there exist $e_{1}, e_{2} \in E$ such that

$$
p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z \text { and }\left(e_{1}, e_{2}\right) \in r .
$$

The ternary structure (G, t) will be denoted $T(\mathbb{G})$. Thus, T is a mapping $T: \mathcal{R} \rightarrow \mathcal{T}$, where \mathcal{R} is the class of E-systems with relation, \mathcal{T} the class of ternary structures.
2.6. Let $\mathbb{G}=(G, t)$ be a ternary structure. We let define a binary relation ϱ on the set G so:
$(x, y) \in \varrho \Longleftrightarrow$ there exists $z \in G$ such that $(x, y, z) \in t$ or $(z, x, y) \in t$.
Let $E(\mathbb{G})=\left(\varrho, G, p_{1}, p_{2}\right)$ be the E-system from 1.8. We define a binary relation r on the set ϱ in the following way:

$$
((x, y),(u, v)) \in r \Longleftrightarrow y=u \text { and }(x, y, v) \in t
$$

The E-system with relation $\left(\varrho, G, p_{1}, p_{2}, r\right)$ will be denoted $R(\mathbb{G})$.
2.7. Theorem. Let \mathbb{G} be a ternary structure. Then $(T \circ R)(\mathbb{G})=\mathbb{G}$, i.e., $T \circ R=\mathrm{id}_{\mathcal{T}}$.

Proof. Let $\mathbb{G}=(G, t)$. By definition, we have $R(\mathbb{G})=\left(\varrho, G, p_{1}, p_{2}, r\right)$, where ϱ, r are defined in 2.6, and p_{1}, p_{2} are defined in 1.4. Further, $(T \circ R)(\mathbb{G})=$ $\left(G, t^{\prime}\right)$, where t^{\prime} is defined in 2.5. We show $t=t^{\prime}$. Let $(x, y, z) \in t$. Then $(x, y) \in \varrho,(y, z) \in \varrho$ and $((x, y),(y, z)) \in r$. By 1.8 and 1.4, we have $p_{1}(x, y)=x, p_{2}(x, y)=y, p_{1}(y, z)=y, p_{2}(y, z)=z$, so that $(x, y, z) \in t^{\prime}$. We have shown $t \subseteq t^{\prime}$. If $(x, y, z) \in t^{\prime}$, then there exist $e_{1}, e_{2} \in \varrho$ such that $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$ and $\left(e_{1}, e_{2}\right) \in r$. By 1.4, it is $e_{1}=(x, y), e_{2}=(y, z)$, and, by $2.6,(x, y, z) \in t$. Thus $t^{\prime} \subseteq t$, and hence $t=t^{\prime}$.
2.8. Theorem. Let \mathbb{G} be an E-system with relation. Then the structures \mathbb{G} and $(R \circ T)(\mathbb{G})$ are isomorphic.

Proof. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$; then $T(\mathbb{G})=(G, t)$, where t is defined in 2.5 , and $(R \circ T)(\mathbb{G})=\left(\varrho, G, q_{1}, q_{2}, s\right)$, where q_{1}, q_{2}, s are defined in 2.6. Let us define a mapping $\varphi: E \rightarrow \varrho$ in the same way as in the proof of 1.10 , i.e., put $\varphi(e)=\left(p_{1}(e), p_{2}(e)\right)$ for $e \in E$. It was proved in 1.10 that φ is an isomorphism of the E-system $\left(E, G, p_{1}, p_{2}\right)$ onto the E-system $\left(\varrho, G, q_{1}, q_{2}\right)$. Let $e_{1}, e_{2} \in E$, $\left(e_{1}, e_{2}\right) \in r$. Then $p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)$; denote $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y$, $p_{2}\left(e_{2}\right)=z$, so that $\varphi\left(e_{1}\right)=(x, y), \varphi\left(e_{2}\right)=(y, z)$. By 2.5 , it is $(x, y, z) \in t$, and, by 2.6 , we have $((x, y),(y, z)) \in s$, i.e., $\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s$. On the other
hand, if $e_{1}, e_{2} \in E,\left(\varphi\left(e_{1}\right), \varphi\left(e_{2}\right)\right) \in s$, then, by 2.6 , there exist $x, y, z \in G$ such that $\varphi\left(e_{1}\right)=(x, y) \in \varrho, \varphi\left(e_{2}\right)=(y, z) \in \varrho$ and $(x, y, z) \in t$. Then $x=p_{1}\left(e_{1}\right)$, $y=p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right), z=p_{2}\left(e_{2}\right)$ by definition of φ, and $\left(e_{1}, e_{2}\right) \in r$ by 2.5. Thus, φ is an isomorphism of $\left(E, G, p_{1}, p_{2}, r\right)$ onto ($\left.\varrho, G, q_{1}, q_{2}, s\right)$.

3. Special relations

3.1. Definition. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ be an E-system with relation. The relation r (and the E-system \mathbb{G}) is called inversely symmetric \quad if $\left(e_{1}, e_{2}\right) \in r \Longrightarrow\left(e_{2}^{-1}, e_{1}^{-1}\right) \in r$, inversely asymmetric reversely transitive transferable if $\left(e_{1}, e_{2}\right) \in r \Longrightarrow\left(e_{2}^{-1}, e_{1}^{-1}\right) \notin r$, if $\left(e_{1}, e_{2}\right) \in r,\left(e_{2}^{-1}, e_{3}\right) \in r \Longrightarrow\left(e_{1}, e_{3}\right) \in r$, if $\left(e_{1}, e_{2}\right) \in r \Longrightarrow$ there exists $e_{3} \in E$ with $\left(e_{2}, e_{3}\right) \in r$ and $\left(e_{3}, e_{1}\right) \in r$.
3.2. THEOREM. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is inversely symmetric if and only if $T(\mathbb{G})$ is a symmetric ternary structure.

Proof. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), T(\mathbb{G})=(G, t)$. Let \mathbb{G} be inversely symmetric and let $x, y, z \in G,(x, y, z) \in t$. Then there exist $e_{1}, e_{2} \in E$ with $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$ and $\left(e_{1}, e_{2}\right) \in r$. By assumption, then $\left(e_{2}^{-1}, e_{1}^{-1}\right) \in r$, and we have $p_{1}\left(e_{2}^{-1}\right)=z, p_{2}\left(e_{2}^{-1}\right)=p_{1}\left(e_{1}^{-1}\right)=y$, $p_{2}\left(e_{1}^{-1}\right)=x$. This implies $(z, y, x) \in t$ and t is symmetric. Let t be symmetric and let $e_{1}, e_{2} \in E,\left(e_{1}, e_{2}\right) \in r$. By 2.1 , it is $p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)$, and, if we denote $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$, then $(x, y, z) \in t$ by 2.5 . Then $(z, y, x) \in t$, which means that there exist $e_{3}, e_{4} \in E$ with $p_{1}\left(e_{3}\right)=z$, $p_{2}\left(e_{3}\right)=p_{1}\left(e_{4}\right)=y, p_{2}\left(e_{4}\right)=x$ and $\left(e_{3}, e_{4}\right) \in r$. From this, it follows $e_{3}=e_{2}^{-1}$, $e_{4}=e_{1}^{-1}$, thus $\left(e_{2}^{-1}, e_{1}^{-1}\right) \in r$, and r is inversely symmetric.
3.3. THEOREM. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is symmetric if and only if $R(\mathbb{G})$ is inversely symmetric.

Proof. By 2.7 , it is $(T \circ R)(\mathbb{G})=\mathbb{G}$. Thus, if $R(\mathbb{G})$ is inversely symmetric, then, by $3.2, \mathbb{G}=(T \circ R)(\mathbb{G})$ is symmetric. Conversely, if $\mathbb{G}=(T \circ R)(\mathbb{G})$ is symmetric, then, by $3.2, R(\mathbb{G})$ is inversely symmetric.
3.4. THEOREM. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is inversely asymmetric if and only if the ternary structure $T(\mathbb{G})$ is asymmetric.

Proof. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ and $T(\mathbb{G})=(G, t)$. Let \mathbb{G} be inversely asymmetric, and let $x, y, z \in G,(x, y, z) \in t,(z, y, x) \in t$. Then there exist $e_{1}, e_{2} \in E$ such that $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$, $\left(e_{1}, e_{2}\right) \in r$, and there exist $e_{3}, e_{4} \in E$ such that $p_{1}\left(e_{3}\right)=z, p_{2}\left(e_{3}\right)=$ $p_{1}\left(e_{4}\right)=y, p_{2}\left(e_{4}\right)=x,\left(e_{3}, e_{4}\right) \in r$. From this, $e_{3}=e_{2}^{-1}, e_{4}=e_{1}^{-1}$ so that $\left(e_{2}^{-1}, e_{1}^{-1}\right) \in r$, which contradicts the inverse asymmetry of r. Thus t

VÍTĚZSLAV NOVÁK

is asymmetric. Conversely, let t be asymmetric and suppose the existence of $e_{1}, e_{2} \in E$ with $\left(e_{1}, e_{2}\right) \in r,\left(e_{2}^{-1}, e_{1}^{-1}\right) \in r$. Denote $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=$ $p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$. Then $(x, y, z) \in t$, and, further, $p_{1}\left(e_{2}^{-1}\right)=z, p_{2}\left(e_{2}^{-1}\right)=$ $p_{1}\left(e_{1}^{-1}\right)=y, p_{2}\left(e_{1}^{-1}\right)=x$, which implies $(z, y, x) \in t$, a contradiction. Thus, r is inversely asymmetric.
3.5. THEOREM. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is asymmetric if and only if $R(\mathbb{G})$ is inversely asymmetric.

Proof follows from 3.4 and from $(T \circ R)(\mathbb{G})=\mathbb{G}$ similarly as the proof of 3.3.
3.6. ThEOREM. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is transferable if and only if the ternary structure $T(\mathbb{G})$ is cyclic.

Proof. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), T(\mathbb{G})=(G, t)$, and suppose that \mathbb{G} is transferable. Let $x, y, z \in G,(x, y, z) \in t$. Then there exist $e_{1}, e_{2} \in E$ with $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$ and $\left(e_{1}, e_{2}\right) \in r$. As r is transferable, there exists $e_{3} \in E$ with $\left(e_{2}, e_{3}\right) \in r$ and $\left(e_{3}, e_{1}\right) \in r$. From this, $p_{1}\left(e_{3}\right)=$ $p_{2}\left(e_{2}\right)=z, p_{2}\left(e_{3}\right)=p_{1}\left(e_{1}\right)=x$, and we have $p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=p_{1}\left(e_{3}\right)=z$, $p_{2}\left(e_{3}\right)=x,\left(e_{2}, e_{3}\right) \in r$. This implies $(y, z, x) \in t$ and t is cyclic. Conversely, let t be cyclic and let $e_{1}, e_{2} \in E,\left(e_{1}, e_{2}\right) \in r$. If we denote $p_{1}\left(e_{1}\right)=x$, $p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$, we have $(x, y, z) \in t$. Hence $(y, z, x) \in t$ so that there exist $e^{\prime}, e_{3} \in E$ such that $p_{1}\left(e^{\prime}\right)=y, p_{2}\left(e^{\prime}\right)=p_{1}\left(e_{3}\right)=z$, $p_{2}\left(e_{3}\right)=x$ and $\left(e^{\prime}, e_{3}\right) \in r$. As $p_{1}\left(e^{\prime}\right)=y=p_{1}\left(e_{2}\right), p_{2}\left(e^{\prime}\right)=z=p_{2}\left(e_{2}\right)$, it is $e^{\prime}=e_{2}$; thus $\left(e_{2}, e_{3}\right) \in r$. Further, $(z, x, y) \in t$ so that there exist $e^{\prime \prime}, e^{\prime \prime \prime} \in E$ with $p_{1}\left(e^{\prime \prime}\right)=z, p_{2}\left(e^{\prime \prime}\right)=p_{1}\left(e^{\prime \prime \prime}\right)=x, p_{2}\left(e^{\prime \prime \prime}\right)=y$ and $\left(e^{\prime \prime}, e^{\prime \prime \prime}\right) \in r$. As $p_{1}\left(e^{\prime \prime}\right)=p_{1}\left(e_{3}\right), p_{2}\left(e^{\prime \prime}\right)=p_{2}\left(e_{3}\right)$, it is $e^{\prime \prime}=e_{3}$, and, similarly, we have $e^{\prime \prime \prime}=e_{1}$. Thus $\left(e_{3}, e_{1}\right) \in r$ and r is transferable.
3.7. Theorem. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is cyclic if and only if $R(\mathbb{G})$ is transferable.

Proof follows from 3.6 and from $\mathbb{G}=(T \circ R)(\mathbb{G})$.
3.8. Theorem. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is reversely transitive if and only if the ternary structure $T(\mathbb{G})$ is transitive.

Proof. Denote $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), T(\mathbb{G})=(G, t)$ and suppose that \mathbb{G} is reversely transitive. Let $x, y, z, u \in G,(x, y, z) \in t,(z, y, u) \in t$. Then there exist $e_{1}, e_{2} \in E$ with $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$, $\left(e_{1}, e_{2}\right) \in r$, and there exist $e^{\prime}, e_{3} \in E$ with $p_{1}\left(e^{\prime}\right)=z, p_{2}\left(e^{\prime}\right)=p_{1}\left(e_{3}\right)=y$, $p_{2}\left(e_{3}\right)=u,\left(e^{\prime}, e_{3}\right) \in r$. As $p_{1}\left(e^{\prime}\right)=p_{2}\left(e_{2}\right), p_{2}\left(e^{\prime}\right)=p_{1}\left(e_{2}\right)$, it is $e^{\prime}=e_{2}^{-1}$. Thus $\left(e_{1}, e_{2}\right) \in r,\left(e_{2}^{-1}, e_{3}\right) \in r$, and reverse transitivity of r implies $\left(e_{1}, e_{3}\right) \in r$. As $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=u$, we have $(x, y, u) \in t$ and t is

ON REPRESENTATION OF TERNARY STRUCTURES

transitive. Let t be transitive and let $e_{1}, e_{2}, e_{3} \in E,\left(e_{1}, e_{2}\right) \in r,\left(e_{2}^{-1}, e_{3}\right) \in r$. If we denote $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$, then $(x, y, z) \in t$. Further, $p_{1}\left(e_{2}^{-1}\right)=z, p_{2}\left(e_{2}^{-1}\right)=y$, and from $\left(e_{2}^{-1}, e_{3}\right) \in r$, follows $p_{1}\left(e_{3}\right)=y$. Denote $p_{2}\left(e_{3}\right)=u$; then $(z, y, u) \in t$ and transitivity of t implies $(x, y, u) \in t$. As $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=u$, we see $\left(e_{1}, e_{3}\right) \in r$ and r is reversely transitive.
3.9. Theorem. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is transitive if and only if $R(\mathbb{G})$ is reversely transitive.

Proof follows from 3.8 and 2.7 .
As a consequence of Theorems 3.5, 3.7 and 3.9, we get
3.10. Theorem. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is a cyclically ordered set if and only if the structure $R(\mathbb{G})$ is inversely asymmetric, transferable and reversely transitive.

Similarly, 3.4, 3.6 and 3.8 imply
3.11. TheOrem. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is inversely asymmetric, transferable and reversely transitive if and only if $T(\mathbb{G})$ is a cyclically ordered set.
3.12. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ be an E-system with relation. The relation r (and the structure \mathbb{G}) will be called conditionally transitive if

$$
\left(e_{1}, e_{2}\right) \in r,\left(e_{2}, e_{3}\right) \in r, p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right) \Longrightarrow\left(e_{1}, e_{3}\right) \in r
$$

3.13. Theorem. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is conditionally transitive if and only if the ternary structure $T(\mathbb{G})$ is weakly transitive.

Proof. Denote $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), T(\mathbb{G})=(G, t)$. Let \mathbb{G} be conditionally transitive, and let $x, y, z \in G,(x, y, y) \in t,(y, y, z) \in t$. Then there are $e_{1}, e_{2} \in E$ with $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=y,\left(e_{1}, e_{2}\right) \in r$, and $e^{\prime}, e_{3} \in E$ with $p_{1}\left(e^{\prime}\right)=y, p_{2}\left(e^{\prime}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=z,\left(e^{\prime}, e_{3}\right) \in r$. As $p_{1}\left(e^{\prime}\right)=p_{1}\left(e_{2}\right), p_{2}\left(e^{\prime}\right)=p_{2}\left(e_{2}\right)$, it is $e^{\prime}=e_{2}$. Thus $\left(e_{1}, e_{2}\right) \in r,\left(e_{2}, e_{3}\right) \in r$ and $p_{2}\left(e_{1}\right)=y=p_{1}\left(e_{3}\right)$. By assumption, we have $\left(e_{1}, e_{3}\right) \in r$, and, as $p_{1}\left(e_{1}\right)=x$, $p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=z$, it is $(x, y, z) \in t$, and t is weakly transitive. Let t be weakly transitive and let $e_{1}, e_{2}, e_{3} \in E,\left(e_{1}, e_{2}\right) \in r,\left(e_{2}, e_{3}\right) \in r$, $p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)$. Denote $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=y$. From $\left(e_{1}, e_{2}\right) \in r$, it follows $p_{1}\left(e_{2}\right)=y$, and $\left(e_{2}, e_{3}\right) \in r$ implies $p_{2}\left(e_{2}\right)=p_{1}\left(e_{3}\right)=p_{2}\left(e_{1}\right)=y$. Thus $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=y,\left(e_{1}, e_{2}\right) \in r$, which implies $(x, y, y) \in t$. Further, denote $p_{2}\left(e_{3}\right)=z$ so that $p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=p_{1}\left(e_{3}\right)=y$, $p_{2}\left(e_{3}\right)=z,\left(e_{2}, e_{3}\right) \in r$, and thus $(y, y, z) \in t$. The weak transitivity of t implies $(x, y, z) \in t$. At the same time, $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=z$ so that $\left(e_{1}, e_{3}\right) \in r$, and r is conditionally transitive.

VÍTĚZSLAV NOVÁK

3.14. Theorem. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is weakly transitive if and only if the structure $R(\mathbb{G})$ is conditionally transitive.

Proof follows from 3.13 and 2.7.
3.15. Let $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right)$ be an E-system with relation and let $e \in E$. We say that e is right isolated if $\left(e, e^{\prime}\right) \in r$ holds for no $e^{\prime} \in E$. The relation r (and the structure \mathbb{G}) will be called relatively complete if the following holds:

$$
e_{1}, e_{2} \in E \text { are not right isolated, } p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right) \Longrightarrow\left(e_{1}, e_{2}\right) \in r
$$

Let $\mathbb{G}=(G, t)$ be a ternary structure. J. Š lapal [6] calls the relation t (and the structure \mathbb{G}) feebly regular if it holds

$$
x, y, z, u, v \in G,(x, y, u) \in t,(y, z, v) \in t \Longrightarrow(x, y, z) \in t
$$

3.16. Theorem. Let \mathbb{G} be an E-system with relation. Then \mathbb{G} is relatively complete if and only if the ternary structure $T(\mathbb{G})$ is feebly regular.

Proof. Put $\mathbb{G}=\left(E, G, p_{1}, p_{2}, r\right), T(\mathbb{G})=(G, t)$. Let \mathbb{G} be relatively complete, and let $x, y, z, u, v \in G,(x, y, u) \in t,(y, z, v) \in t$. Then there are $e_{1}, e_{2} \in E$ with $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=u,\left(e_{1}, e_{2}\right) \in r$, and there are $e_{3}, e_{4} \in E$ with $p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=p_{1}\left(e_{4}\right)=z, p_{2}\left(e_{4}\right)=v$, $\left(e_{3}, e_{4}\right) \in r$. Thus neither e_{1} nor e_{3} is right isolated, and $p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)$. By assumption, $\left(e_{1}, e_{3}\right) \in r$, and, as $p_{1}\left(e_{1}\right)=x, p_{2}\left(e_{1}\right)=p_{1}\left(e_{3}\right)=y, p_{2}\left(e_{3}\right)=z$, there is $(x, y, z) \in t$, and t is feebly regular. Let t be feebly regular, and let $e_{1}, e_{2} \in E$ be not right.isolated and $p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)$. Denote $p_{1}\left(e_{1}\right)=x$, $p_{2}\left(e_{1}\right)=p_{1}\left(e_{2}\right)=y, p_{2}\left(e_{2}\right)=z$. By assumption, there exist $e_{3}, e_{4} \in E$ such that $\left(e_{1}, e_{3}\right) \in r,\left(e_{2}, e_{4}\right) \in r$. Then $p_{1}\left(e_{3}\right)=p_{2}\left(e_{1}\right)=y$; if $p_{2}\left(e_{3}\right)=u$, we have $(x, y, u) \in t$. Similarly, $p_{1}\left(e_{4}\right)=p_{2}\left(e_{2}\right)=z$, and if $p_{2}\left(e_{4}\right)=v$, then $(y, z, v) \in t$. As t is feebly regular, it is $(x, y, z) \in t$, from which $\left(e_{1}, e_{2}\right) \in r$. Thus r is relatively complete.
3.17. Theorem. Let \mathbb{G} be a ternary structure. Then \mathbb{G} is feebly regular if and only if the structure $R(\mathbb{G})$ is relatively complete.

Proof follows from 3.16. and 2.7.

4. Graphical representation

4.1. Let $\left(E, G, p_{1}, p_{2}, r\right)$ be an E-system with relation, and let E, G be finite sets. We can assume without loss of generality $G \subseteq \mathbb{R}$ (the set of reals). Elements of the set E will be represented by points in a plane; concretely, an element $e \in E$ will coincide with the point $\left(p_{1}(e), p_{2}(e)\right)$. The relation r will be represented, in an obvious way, by means of oriented segments.
4.2. Example. Let $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}, G=\{1,2,3,4,5\}$, $p_{1}\left(e_{1}\right)=1, \quad p_{1}\left(e_{2}\right)=2, \quad p_{1}\left(e_{3}\right)=2, \quad p_{1}\left(e_{4}\right)=2, \quad p_{1}\left(e_{5}\right)=3, \quad p_{1}\left(e_{6}\right)=4$, $p_{2}\left(e_{1}\right)=2, \quad p_{2}\left(e_{2}\right)=3, \quad p_{2}\left(e_{3}\right)=4, \quad p_{2}\left(e_{4}\right)=5, \quad p_{2}\left(e_{5}\right)=4, \quad p_{2}\left(e_{6}\right)=5$, $r=\left\{\left(e_{1}, e_{2}\right),\left(e_{1}, e_{3}\right),\left(e_{1}, e_{4}\right),\left(e_{5}, e_{6}\right)\right\}$

Figure 1.
4.3. Let $\mathbb{G}=(G, t)$ be a ternary structure, where G is a finite set. We can assume $G \subseteq \mathbb{R}$. Let $R(\mathbb{G})=\left(\varrho, G, p_{1}, p_{2}, r\right)$ be the E-system with relation from 2.6. We construct the graphical representation of $R(\mathbb{G})$ as it is described in 4.1. From this representation, we can easily obtain the relation t, for by definition of the mapping R it holds

$$
\left(e_{1}, e_{2}\right) \in r \Longleftrightarrow\left(p_{1}\left(e_{1}\right), p_{2}\left(e_{1}\right), p_{2}\left(e_{2}\right)\right) \in t
$$

4.4. Example. Let $G=\{x, y, z, u, v\}, s=\{(x, y, z),(x, y, u),(x, y, v)$, $(z, u, v)\}, t$ be a cyclic hull of s and $\mathbb{G}=(G, t)$. Then

$$
E=\{(x, y),(y, z),(z, x),(y, u),(u, x),(y, v),(v, x),(z, u),(u, v),(v, z)\}
$$

Denote $(x, y)=e_{1},(y, z)=e_{2},(z, x)=e_{3},(y, u)=e_{4},(u, x)=e_{5},(y, v)=e_{6}$, $(v, x)=e_{7},(z, u)=e_{8},(u, v)=e_{9},(v, z)=e_{10}$, and we have $p_{1}\left(e_{1}\right)=x, \quad p_{1}\left(e_{2}\right)=y, \quad p_{1}\left(e_{3}\right)=z, \quad p_{1}\left(e_{4}\right)=y, \quad p_{1}\left(e_{5}\right)=u$, $p_{1}\left(e_{6}\right)=y, \quad p_{1}\left(e_{7}\right)=v, \quad p_{1}\left(e_{8}\right)=z, \quad p_{1}\left(e_{9}\right)=u, \quad p_{1}\left(e_{10}\right)=v$, $p_{2}\left(e_{1}\right)=y, \quad p_{2}\left(e_{2}\right)=z, \quad p_{2}\left(e_{3}\right)=x, \quad p_{2}\left(e_{4}\right)=u, \quad p_{2}\left(e_{5}\right)=x$, $p_{2}\left(e_{6}\right)=v, \quad p_{2}\left(e_{7}\right)=x, \quad p_{2}\left(e_{8}\right)=u, \quad p_{2}\left(e_{9}\right)=v, \quad p_{2}\left(e_{10}\right)=z$,

VÍTĚZSLAV NOVÁK

$$
\begin{aligned}
& r=\left\{\left(e_{1}, e_{2}\right),\left(e_{2}, e_{3}\right),\left(e_{3}, e_{1}\right),\left(e_{1}, e_{4}\right),\left(e_{4}, e_{5}\right),\left(e_{5}, e_{1}\right),\left(e_{1}, e_{6}\right)\right. \\
&\left.\left(e_{6}, e_{7}\right),\left(e_{7}, e_{1}\right),\left(e_{8}, e_{9}\right),\left(e_{9}, e_{10}\right),\left(e_{10}, e_{8}\right)\right\}
\end{aligned}
$$

The graphical representation of $R(\mathbb{G})$ is the following:

Figure 2.

Now, as, for example, $\left(e_{4}, e_{5}\right) \in r$, we have $\left(p_{1}\left(e_{4}\right), p_{2}\left(e_{4}\right), p_{2}\left(e_{5}\right)\right)=(y, u, x) \in t$.

REFERENCES

[1] ALLES, P.: Erweiterungen, Diagramme und Dimension zyklischer Ordnungen. Doctoral Thesis, Darmstadt, 1986.
[2] ALLES, P.-NEŠETŘIL, J.-POLJAK, S.: Extendability, dimensions and diagrams of cyclic orders, SIAM J. Discrete Math. 4 (1991), 453-471.
[3] NOVÁK, V.: Cyclically ordered sets, Czechoslovak Math. J. 32 (1982), 460-473.
[4] NOVÁK, V.-NOVOTNÝ, M.: Binary and ternary relations, Math. Bohem. 117 (1992), 283-292.
[5] QUILLIOT, A.: Cyclic orders, European J. Combin. 10 (1989), 477-488.
[6] ŠLAPAL, J.: Relations and topologies, Czechoslovak Math. J. 43 (1993), 141-150.

Received November 9, 1993
Revised March 16, 1994

Department of Mathematics Masaryk University Janáčkovo nám. $2 a$ CZ-662 95 Brno Czech Republic

[^0]: AMS Subject Classification (1991): Primary 04A05. Secondary 08A02.
 Key words: E-system, E-system with relation, binary structure, ternary structure, cyclically ordered set.

