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Math . Slovaca 38, 1988, No . 4. 409—417 

APPROXIMATING THE FIXED POINTS 
OF SOME NONLINEAR OPERATOR EQUATIONS 

1OANNIS K. ARGYROS 

Introduction. Consider the quadratic equation 

x = y + B(x,x) (1) 

in a Banach space X, where y e X is fixed and B is a bounded symmetric bilinear 
operator on X [4]. We choose zeJfand F to be a bounded symmetric bilinear 
operator on X in such a way that the following auxiliary quadratic equation is 
satisfied 

z = y + F(z,z). (2) 

We then use the solutions of (2) to approximate the fixed points of (1). 
We make use of the following theorem. The proof can be found in [3]. 
Theorem 1. Let Pbea nonlinear operator defined onD cz X such that P is twice 

Frechet differentiate on D. Let zeD be such that: 
(i) ro = (P'(z))~x exists and is bounded', 

(ii) \\P(z)\\ < v; 
(Hi) \\P"(x)\\ <b if | | j t - z | | < r , U(z,r) = {x<= X\ \\x - z\\ < r} c D; 

(iv) h=\\r0\\
2vb<±-; 

2 
(v) r0 = (\-s/l-2h)v\\ro\\/h<r. 

Then there exists x e U(z, r0) such that P(x) = 0. Furthermore, x is the only 
solution of P contained in U(z,r)n U(z,rt), where 

r, = ( l+Vl-2/ . ) l | ro l |v / / t . 

Definition 1. Let zeX be such that 

z = y + F(z,z) (2) 

Key words and phrases. Newton's method, quadratic operator. 1980 A.M.S. classification 
code(s): 46(B15), 65. 
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for some auxiliary bounded symmetric bilinear operator F defined on D. Define the 
operator P on D by 

P(x) = x - z + F(z, z) - B(x, x). (3) 

Then every solution x of (3) is a solution of (1). 
Note that 

p'(x) = 1- 2B(x) and P"(x) = -2B. 

The following theorem now follows easily from Theorem 1 and the above 
observations. 

Theorem 2. Let P, z be as in definition and such that: 
(i) (I — 2B(z))~x exists and is bounded', 

(ii) ||P(z)|| = \\(F- B)(z,z)\\ < \\F-B\\-\\z\\2=v; 
(iii) ||/"*(x)|| < 2\\B\\ = b if ||x - z|| < r, U(z,r) c D; 

(iv) /7= | | ( / -25 (z ) ) - ' | |VZ><- ; 
2 

(v) r0 = (1 - Vl - 2/7) v-1|(/ - 2Z?(z))-' H//7 < r. 

Then there exists xe U(z, r0) such that x = y + B(x, x) andx is unique in U(z, r) n 
n £/(z, r,), where 

r. = (1 + Vl " 2/7) v | | ( / - 21?(z))-,||/h. 

Note that if z is such that 

II251| 

then the linear operator (I — 2B(z))_1 exists and 

| |(/-2fi(z))- | | | < ! . 

l -2 | |Z? |H|z | | 

In the above case, (iv) can be replaced by 

1 V 1 
::~ £Hiz i i 22i i£ i i < 

A-2\\B\ 
or 

||z|| < [2 JiB]\(JiB\\ + yffB - FH)]-1. (4) 

We now state a lemma that will allow us to replace (i) above with the 
inverability of the linear operator I — 2F(z). The proof can be found in [1]. 

Lemma. Let L] and L2 be bounded linear operators on X. Suppose that 
(I — Li) - 1 exists as a bounded linear operator on X and 
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\L,L2-L\\\< X 

IK/-L,)-
Then (I — L 2)" ' exists and 

IK/-L2ГЧI-1 H ^ l + lKY-Lr 'HLj 
1 - ||(7 - L,)"11| • HL.L2 -JLIII 

If L2 is compact, then (I — L2)~] is defined on all of X. 
We can prove the theorem. 
Theorem 3. Let B be defined on D cz X such that B(x) is compact for each 

xeD. Let F(z) be a linear operator on D for some zeX such that 

z = y + F(z,z). 

Assume: 

(i) (/ — 2F(z))_1 exists and is bounded above by some K > 0; 

1 
(ii) 4||F(z) B(z) -B(z)B(z)\\< 

ll(/- 2F(z))-'|| 
(iii) ||P(z)|| < v; 
(iv) __.11 -St|| < b if ||jc - z\\ < r, U(z,r) c_ D; 

(v)h = K*v.b,K= l+2 | | (/-2F(z ) ) - ' | | . | | _ (z ) 
1 _ 4||(7 - 2F(z))"' || ||F(z)_(z) - B(z)B(z) 

(vi) r0 = (1 - Vl - 2h) K. v/h < r. 

Then there exists xe U(z,r0) such that x = y + _5*(X,JC) and x is unique in 
U(z, r) n U(z, r,), where 

r] = (1+Vl -2h)K.v//i. 

Proof. We obviously have that (/— 22?(z))"1 exists and is bounded above 
by K according to the lemma, (i), (ii) and the compactness of _?(z). The rest 
follows by applying Theorem 1 to 

P(x) = JC - z + F(z, z) - B(x, x). 

The natural question arises now, what the best choices for F and z are. 
(a) For F = 0, (2) gives z = y and (4) requires 4|| 51| • || y || < 1. 

(b) For F= _?, (4) requires ||z|| < —-—. 
211*11 

The best choice, however, for F and z must be such that 

z = y + F(z,z). 
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The difficulties in finding solutions of the above auxiliary equation may be 
equivalent to those of finding solutions x of (1). However, if Q is the unique 
symmetric quadratic operator associated with F such that 

Q(x) = F(x,x) for all xeX , 

then (2) can be written as 

z = y + GOO- (5) 

Now assume that Q is of finite rank v= dim (span (Rang (Q))) and set 
x = z — y to obtain 

x = Q(x + y). 

The above equation implies that the problem of solving the auxiliary equa
tion can be translated to a finite dimensional one since x must lie in rdng(Q). 

Definition 1. Let A denote the set of all bounded quadratic operatois Q in X 
such that Q has finite rank. Denote by E the set of all bounded quadrate junc
tionals f on X. 

Let fsE, deX; the operator f® d: X-> X sending r e X to f(\)de X is a 
bounded quadratic operator of rank one. Thus 

Q= tf®d,zA 
1= I 

for any fieE, i = 1,2,...,«, d,EX, / = 1,2, ...n. 
Note that if Q = X-* Yis a bounded quadratic operator and L: Y-> Z is a 

bounded linear operator, then L o Q: X -• Z is a bounded quadratic operator. (Q 
and L need not be of finite rank.) 

Definition 2. Denote by E® X the vector subspace generated in the space of all 
bounded quadratic operators by the set {QeA\ Q = f ® d, feF, dFX}, so 
QeE® X if and only if 

Q= tf®dr 
1= 1 

Theorem 4. A = E ® X 
Proof . Let {d,,...,d„} be a basis for rang((?) and choose g, such that 

gi(di) = 5,j9 ij = 1,2,...,n. Since rang(Q) is finite dimensional, the {g,}, 
/ = 1,2,...,« functionals are bounded and by the Hahn-Banach theorem they 
can be extended to bounded linear functionals on X without increasing their 
norms. Let 

fi = gi°Q, ' = l ,2 , . . . , / i . 

Then thef, / = 1,2, ...,rz are bounded quadratic functionals and 
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Q = Lf®4-

Definition 3. Let ff9 i = 1,2,...,« denote the symmetric bilinear functional 
associated with the fi9 i = 1,2,...,«, given by 

fftx9y) = -\(f(x + y)-fi(x-y)). 
4 

Denote by C the matrix of the linear transformation 22?(y)(°) restricted to 
rang(Q) relative to the basis d]9 ...,d„. Define the n x n matrix C, by 

C = I-C9 

by ii=fi(y), i= 1,2,...,«, / = Ш 
- Ш the block of matrices C, C = I : I by C,, = {cf}, w/.crc 

LcJ 

cf =fn.dj,dk), i,j,k= 1,2,...,«. 

Define vbyv = C~Uif\C\¥:0 and the block of matrices M = 

Гм'l 
LҗJ 

Mk = \C\ ]M'k9 where each M'k9 k = 1,2, ...9n is the n x n matrix which results 

m from the determinant of the matrix C if we replace the kth column by 

[ CMX 

' 
CMn 

Note that Mk9 k = 1,2, ...9n is indeed a n n x « matrix. For the case n = 2, 

M\ = 

M'2 = 

c, C\2 

Q Cгг 

C\\ c, 
Cг\ c2 

— c22Cj — cí2C2. 

— cn C2 — c2\ Cx. 

if 
Theorem 5. The point w eXisa solution of the auxiliary equation (5) if and only 

w = У + І Ś Д , 

413 



where the vector E, = e [Rn (or -") is a solution of 

x=l+C'x + x+rCx in V (or . "). (6) 

Moreover, if\C\ = \I — C'\ 7- 0, the Cramer rule transforms the above to 

x = v + x + r Mx in in (or L"). (7) 

Proof. Assume that (5) has a solution weX. Then 

w = y + Q(w) 
n 

= y+ I/W4. 
i = 1 

Applyf,f2, ...,f„ in turn to this vector identity to obtain for p = 1,2, ...,n 

fP(w)=fp(y+if,(w)d^ 

= fP(y) + i fi(»)fP(dk) + 2 I fM)f*(y,dk) 

+ 2lf(w)//w)/;(d„4). 

Letting 

fO) = x„ i= 1,2,...,« 

and writing these equations in vector form, we obtain 

x=l+ C'x + x+rCx 
OГ 

Cx=l + x+rC.x. 

Since \C\ # 0 , we obtain (7) by composing both sides of the above equation by 

c-'. 

Conversely, given (7), assume (6) has a solution vector £ = 

be defined as 
__£,. 

Let wєX 

W = y+ I íД. 

Applyfi,f2, •••,/, in turn to this vector identity to obtain for p = 1,2,...,«, 
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j» =f„(y) + X &fp(dk) + 2 X SktfM) 
k=\ k=\ 

+ 2itejfP*(di,di), 

or in matrix notation, 

f(w)=l+C'£ + £+rC£. 

Now since £ satisfies (6) we have £ =_[ + C'£ + £+rCj;. 

Now since _£ satisfies (6) we have 

£ = _ / + C ' £ + £+'££. 

Comparing the last two equations, we get 

6 = / ( H 0 , I = 1,2, ...,rz, 
so 

n 

w = y + Y. fMd» 
/ • = 1 

or 
w = y+ Q(w). 

Therefore, w is a solution of (5) and the theorem is proved. 
Example . Let X = C[0,1] and consider the equation 

x(s) = s + s\ x2(t) dl, 
Jo 

where se[0,1]. This equation is of the form (5), with rank(Q) = 1, 

y(s) = s 

d = s, and 

d(s) = x2(t) dt. 
Jo 

Using the formula, 

f*(v,w) = -(f(v + w)-f(v-w)), 
4 

we have 
C = 1 - 2f*(y,d) = 1 - 2 - í 4J 2 ás = -

4J0 3 

l=f(y)=f(s)= \ s2ás=x-
Jo 3 
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C=f(d)=f(s) = s2 ds = -
3 

j> = 3 - - = 1 
3 

M = 3 - = 1. 
= 3 

Therefore, (6) becomes 

E = 1 + t2 in C with solutions —=—-—: 
2 

since x = y + E,d, we finally have 

(I + iV3\ 

Now note that if the linear operator F(z) is of finite rank n, then the linear 
operator I — 2F(z) is invertible if and only if for every fixed v e X there exists 
vvGX such that 

w — 2F(z, w) = v. 

Since F(z) is of finite rank n, the above equation can be translated exactly as 
in Theorem 5 for the quadratic case to a linear system in ^, or ", similar to 
system (7). 
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АППРОКСИМАЦИЯ НЕПОДВИЖНЫХ ТОЧЕК НЕКОТОРЫХ НЕЛИНЕЙНЫХ 
ОПЕРАТОРНЫХ УРАВНЕНИЙ 

1оапп18 К. Аг^угоз 

Резюме 

Рассмотрим пару квадратных уравнений 

х — у + В(х,х) 

г = у + Р(г*г) 

в банаховом пространстве А\ где уеХ есть фиксированная точка, а В, Г — ограниченные 
симетрические билинейные операторы на X. Предположим, что решение 2 второго уравнения 
известно, и используем ето на апроксимацию решения первого уравнения. В частном случае, 
когда Р есть оператор конечного ранга, показывается, что проблема нахождения решения 
2 второго уравнения эквивалентна задаче решения системы квадратных уравнений в /л'" или 
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