Mathematic Slovaca

Michal Fečkan

The relation between a flow and its discretization

Mathematica Slovaca, Vol. 42 (1992), No. 1, 123--127

Persistent URL: http://dml.cz/dmlcz/130038

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE RELATION BETWEEN A FLOW AND ITS DISCRETIZATION

MICHAL FEČKAN

Abstract

It is proved that the h-time map of a hyperbolic flow and its \boldsymbol{h}-discretization are uniformly topologically conjugate for each small positive \boldsymbol{h}.

Introduction. Let $\Phi(t, x)$ be the flow generated by the equation

$$
\begin{equation*}
x^{\prime}=A x+g(x) \tag{1}
\end{equation*}
$$

where $A \in \mathcal{L}\left(\mathbb{R}^{m}\right), A$ has no eigenvalues on the imaginary axis, $g \in$ $C^{1}\left(\mathbb{R}^{\boldsymbol{m}}, \mathbb{R}^{\boldsymbol{m}}\right), g(0)=0, \sup |g|<\infty,|\mathrm{D} g(x)| \leq b$ for each $x \in \mathbb{R}^{m}$ and b sufficiently small. The equation (1) has the discretization

$$
x_{n+1}=x_{n}+h \cdot A x_{n}+h \cdot g\left(x_{n}\right), \quad h \neq 0
$$

which gives us the mapping

$$
\begin{equation*}
G(h, x)=x+h \cdot A x+h \cdot g(x) \tag{2}
\end{equation*}
$$

It is not difficult to see that $I+h \cdot A$ has no eigenvalues on the unit circle for each small $h \neq 0$. Hence, if moreover $g(x)=o(|x|)$ as $x \rightarrow 0$, then the mapping (2) has local stable and unstable manifolds W_{h}^{s}, W_{h}^{u} for the fixed point 0 , respectively. Recently the author of this paper [1] has shown that the manifolds W_{h}^{s}, W_{h}^{u} tend to W^{s}, W^{u} as $h \rightarrow 0, h>0$, where W^{s}, W^{u} are local stable, unstable manifolds of (1) for the fixed point 0 , respectively.

The purpose of this paper is to show that the mapping $\Phi(h, \cdot)$ and $G(h, \cdot)$ are uniformly topologically conjugate for each small positive h, i.e. the following theorem holds:

[^0]
MICHAL FECKAN

Theorem 1. For sufficiently small b and a compact set $K \subset \mathbb{R}^{m}$ there is a number $\delta>0$ and a C^{0}-mapping

$$
H:(0, \delta) \rightarrow C^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)=\left\{f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, f \text { is continuous }\right\}
$$

such that

$$
\Phi(h, \cdot) \cdot H(h, \cdot)=H(h, \cdot) \cdot G(h, \cdot) \quad \text { on } \quad K
$$

and
i) $H(h, \cdot)$ is a homeomorphism,
ii) $\sup _{(0, \delta) \times K}|H(\cdot, \cdot)|<\infty, \sup _{(0, \delta) \times K}\left|H^{-1}(\cdot, \cdot)\right|<\infty$.

If $K=B_{q}=\{x,|x| \leq q\}$ for q large, then $B_{q / 2} \subset \bigcap_{(0, \delta)} H(\cdot, K)$.
Proof. We divide the proof into several steps.

Step 1.

By the Hartman-Grobman theorem [2, p. 115] there is an $H_{1} \in C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ $=\left\{f \in C^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right), f\right.$ is bounded, i.e. $\left.\sup |f|<\infty\right\}$ such that

$$
\Phi(h, \cdot) \cdot\left(I+H_{1}\right)=\left(I+H_{1}\right) \cdot \mathrm{e}^{h \cdot A}
$$

and $\left(I+H_{1}\right)^{-1}=I+H_{1}$ for some $\bar{H}_{1} \in C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.
Let E^{s}, E^{u} be stable and unstable subspaces of A, respectively.
Step 2.
LEMMA 2. There is a $\delta_{1}>0$ and a C^{0}-mapping

$$
H_{3}:\left(0, \delta_{1}\right) \rightarrow C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

such that

$$
\begin{equation*}
\left(I+H_{3}(h, \cdot)\right) \cdot(I+h \cdot A)=G(h, \cdot) \cdot\left(I+H_{3}(h, \cdot)\right) \tag{3}
\end{equation*}
$$

where $I+H_{3}(h, \cdot)$ is a homeomorphism for each $h \in\left(0, \delta_{1}\right)$ and $\left(I+H_{3}(h, \cdot)\right)^{-1}$ $=I+\bar{H}_{3}(h, \cdot), \bar{H}_{3}(h, \cdot) \in C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Moreover

$$
\sup _{\left(0, \delta_{1}\right) \times \mathbb{R}^{m}}\left|H_{3}(\cdot, \cdot)\right|<\infty, \quad \sup _{\left(0, \delta_{1}\right) \times \mathbb{R}^{m}}\left|\bar{H}_{3}(\cdot, \cdot)\right|<\infty
$$

Proof of Lemma 2. We shall follow [2, Theorem 5.15.]. We can rewrite the equation (3) in the form

$$
\begin{align*}
& H_{3}^{s}=(I+h A)^{s} \cdot H_{3}^{s} \cdot(I+h A)^{-1}+h \cdot g^{s} \cdot\left(I+H_{3}\right) \cdot(I+h A)^{-1} \\
& H_{3}^{u}=\left((I+h A)^{u}\right)^{-1} \cdot H_{3}^{u} \cdot(I+h A)-h \cdot\left((I+h A)^{u}\right)^{-1} \cdot g^{u} \cdot\left(I+H_{3}\right), \tag{4}
\end{align*}
$$

where for any mapping $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ we write $S^{s}=P_{s} S, S^{u}=P_{u} S$ and P_{u}, P_{s} are projections to E^{u}, E^{s}, respectively. We solve (4) in the space $C_{\mathrm{B}}^{0}\left(\mathbb{R}^{\boldsymbol{m}}, \mathbb{R}^{m}\right)$. It is clear that the mapping

$$
\begin{gathered}
T_{h}: C_{\mathbf{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \rightarrow C_{\mathbf{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right) \\
T_{h}(H)=\left((I+h A)^{s} \cdot H^{s} \cdot(I+h A)^{-1},\left((I+h A)^{u}\right)^{-1} \cdot H^{u} \cdot(I+h A)\right)
\end{gathered}
$$

has the property

$$
\begin{equation*}
\left|T_{h}(H)-T_{h}(F)\right| \leq(1-c \cdot h) \cdot|H-F| \tag{5}
\end{equation*}
$$

for some constant $c>0$, small positive h and each $H, F \in C_{B}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$. Indeed, we can choose norms $\|\cdot\|_{1},\|\cdot\|_{2}$ on the space E^{s}, E^{u} respectively [3, p. 145] such that

$$
\begin{array}{r}
\left\|(I+h \cdot A)^{s}\right\|_{1} \leq(1-h \cdot c) \\
\left\|\left((I+h \cdot A)^{u}\right)^{-1}\right\|_{2} \leq(1-h \cdot c)
\end{array}
$$

for each small positive h and we put

$$
|f|=\sup _{\mathbb{R}^{m}}\left(\left\|f^{s}(\cdot)\right\|_{1}+\left\|f^{u}(\cdot)\right\|_{2}\right)
$$

for each $f \in C_{\mathbf{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$.
Hence (4) has the form

$$
H=T_{h}(H)+h \cdot F_{h}(H)
$$

where $F_{h}(H)=\left(g^{s} \cdot(I+H) \cdot(I+h A)^{-1},-\left((I+h A)^{u}\right)^{-1} \cdot g^{u} \cdot(I+H)\right)$.
Thus

$$
\begin{equation*}
H=h \cdot\left(I-T_{h}\right)^{-1} \cdot F_{h}(H) \tag{6}
\end{equation*}
$$

Since by (5) and the Banach fixed point theorem

$$
\left|\left(I-T_{h}\right)^{-1}\right| \leq \frac{c}{h}
$$

we can apply uniformly the implicit function theorem to (6) for each small positive h. (Note that b is sufficiently small). Hence (3) has a unique solution. On the other hand, let us consider the equation

$$
(I+H) \cdot(I+h \cdot A+h \cdot g)=(I+h \cdot A) \cdot(I+H)
$$

which is equivalent to

$$
\begin{gathered}
H^{s}-(I+h A)^{s} \cdot H^{s} \cdot(I+h A+h g)^{-1}=-h g^{s} \cdot(I+h A+h g)^{-1} \\
H^{u}-\left((I+h A)^{u}\right)^{-1} \cdot H^{u} \cdot(I+h A+h g)=h \cdot\left((I+h A)^{u}\right)^{-1} \cdot g^{u}
\end{gathered}
$$

Since this equation is similar to (4) we obtain by the above results that this equation has a unique solution $H(h, \cdot) \in C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ for each small positive h. Using a standard procedure [2, Theorem 5.15] we have $I+H=(I+H)^{-1}$, where H is a solution of (4). This gives us the proof of Lemma 2.

Step 3.

In the last step we try to find a homeomorphism $I+H_{4}(h, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\mathrm{e}^{h \cdot A}\left(I+H_{4}(h, \cdot)\right)=\left(I+H_{4}(h, \cdot)\right) \cdot(I+h \cdot A) \quad \text { on } \quad K \subset \mathbb{R}^{m} \tag{7}
\end{equation*}
$$

for $h>0$ small and $H_{4}(h, \cdot) \in C_{\mathbf{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right), K$ is a compact set. Since

$$
\mathrm{e}^{h \cdot A}=I+h \cdot A+f(h \cdot A)
$$

where $f(x)=\mathrm{e}^{x}-1-x$, we have $f(h \cdot A)=O\left(h^{2}\right)$ as $h \rightarrow 0$. Without loss of generality we can suppose $K=B_{q}$ for q large. Since $f(h \cdot A) \notin C_{\mathrm{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$, we modify $f(h \cdot A)$ in the following way

$$
\tilde{f}(h, x)=s(x) \cdot f(h \cdot A) x
$$

where s is a function having the property
i) $s \in C^{\infty}$
ii) $s=1$ on B_{L}
iii) $s=0$ on $B_{2 L}$
for $L \gg q$ sufficiently large. Thus a modified equation of (7) has the form

$$
\begin{equation*}
(I+h \cdot A+\tilde{f}(h, \cdot)) \cdot\left(I+H_{4}(h, \cdot)\right)=\left(I+H_{4}(h, \cdot)\right) \cdot(I+h \cdot A) \tag{8}
\end{equation*}
$$

To solve (8) we follow the above step 2. Hence (8) has the form

$$
H_{4}=T_{h}\left(H_{4}\right)+O\left(h^{2}\right)
$$

and

$$
H_{4}=\left(I-T_{h}\right)^{-1} \cdot O\left(h^{2}\right) .
$$

the relation between a flow and its discretization

We see that H_{4} exists for each small positive h and $H_{4}(h, \cdot) \rightarrow 0$ as $h \rightarrow 0$. It follows also by the step 2 that

$$
\left(I+H_{4}(h, \cdot)\right)^{-1}=I+\bar{H}_{4}(h, \cdot), \quad \bar{H}_{4}(h, \cdot) \in C_{\mathbf{B}}^{0}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)
$$

and $\bar{H}_{4}(h, \cdot) \rightarrow 0$ as $h \rightarrow 0$.
Summing up we see that

$$
\left(I+H_{1}(\cdot)\right) \cdot\left(I+H_{4}(h, \cdot)\right) \cdot\left(I+\bar{H}_{3}(h, \cdot)\right)
$$

is the desired mapping $H(h, \cdot)$ satisfying

$$
\begin{equation*}
\Phi(h, \cdot) \cdot H(h, \cdot)=H(h, \cdot) \cdot G(h, \cdot) \quad \text { on } \quad K . \tag{9}
\end{equation*}
$$

Indeed, since $L \gg q$ is large, $H_{4}(h, \cdot)=O(h), \bar{H}_{3}(h, \cdot)$ is bounded and h is small we have

$$
\left(I+H_{4}(h, \cdot)\right) \cdot\left(I+\bar{H}_{3}(h, \cdot)\right) K \subset B_{L},
$$

and thus $\tilde{f}(h, \cdot)=f(h \cdot A)$ on $\left(I+H_{4}(h, \cdot)\right) \cdot\left(I+\bar{H}_{3}(h, \cdot)\right) K$. Moreover, $H_{1}(\cdot)$ is also bounded on \mathbb{R}^{m}. These facts imply both

$$
B_{q / 2} \subset \bigcap_{(0, \delta)} H(\cdot, K)
$$

for δ small and (9).

references

[1] FEČKAN, M.: Asymptotic behaviour of stable manifolds, Proc. Am. Math. Soc. 111 (1991), 585-593.
[2] IRWIN, M. C.: Smooth Dynamical Systems, Academic Press, New York, 1980.
[3] HIRSCH, M. W.-SMALE, S.: Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974.
[4] MEDVEĎ, M.: Dynamické systémy, Veda, Bratislava, 1988.

[^0]: AMS Subject Classification (1991): Primary 58F99. Secondary 34C35.
 Key words: Discretization, Dynamical systems, Hartman-Grobman theorem.

