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THE RELATION BETWEEN A FLOW AND ITS 
DISCRETIZATION 

MICHAL FECKAN 

ABSTRACT . It is proved that the h-time map of a hyperbolic flow and its 
h -discretization are uniformly topologically conjugate for each small positive h . 

Introduction. Let $(£, x) be the flow generated by the equation 

x1 = Ax + g(x), (1) 

where A 6 £ ( R m ) , A has no eigenvalues on the imaginary axis, g £ 
C1(Rm,Rm), g(0) = 0, sup\g\ < oo, \Dg(x)\ < b for each x G R m and 6 
sufficiently small. The equation (1) has the discretization 

x„+i = xn + h- Axn + h • g(xn), h^O 

which gives us the mapping 

G(h,x) = x + h-Ax + h- g(x). (2) 

It is not difficult to see that I + h • A has no eigenvalues on the unit circle 
for each small h ^ 0. Hence, if moreover g(x) = o(|x|) as x —> 0, then the 
mapping (2) has local stable and unstable manifolds TV£, W£ for the fixed 
point 0, respectively. Recently the author of this paper [1] has shown that the 
manifolds W£, W£ tend to W9

y W
u as h - • 0, h > 0, where W% Wu are 

local stable, unstable manifolds of (1) for the fixed point 0, respectively. 

The purpose of this paper is to show that the mapping 3>(/i, -) and G(/i, •) 
are uniformly topologically conjugate for each small positive h, i.e. the following 
theorem holds: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 58F99. Secondary 34C35. 
K e y w o r d s : Discretization, Dynamical systems, Hartman-Grobman theorem. 
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THEOREM 1. For sufficiently small b and a compact set K C R m there is a 
number 8 > 0 and a C° -mapping 

H: (0,6) -> C°(Rm,Rm) = {/: R m -> Rm , / is continuous} 

such that 
$(A,.) .JI(A,.) = JI(A,.).C(A,.) on K 

and 

i) H(A,-) is a homeomorphism, 
ii) sup |H(-,-)| < oo, sup |JI_ 1(- , . ) | < oo . 

(0,6)xK (0,6)xK 

If K = Bq = {x, |x| < q} for q large, then Bq/2 C f] H(-, K). 
(0,6) 

P r o o f . We divide the proof into several steps. 

Step 1. 
By the Hartman-Grobman theorem [2, p. 115] there is an Hi G C£(Rm,Rm) 

= {/ € C°(Rm,Rm), / is bounded, i.e. s u p | / | < oo} such that 

^ (A , . ) . ( J + Hi) = (J + Hi).e^A 

and (J + Hi)""1 = J + Hi for some Hi G Cg(Rm,Rm) • 
Let E9, Eu be stable and unstable subspaces of A, respectively. 

Step 2. 

LEMMA 2. There is a Si > 0 and a C° -mapping 

H3:(0,o\)-+C£(Rm,Rm) 

such that 
(I + H3(h, .)).(I + h-A) = G(h, • ) • ( / + H3(h, •)), (3) 

where J+H3(A,«) w a homeomorphism for each A G (0,#i) and (J+H3(A,-)) 

= J + H3(A,-), H3(A,-)GC^(Rm,Rm). Moreover 

sup |H3( . , .) | < oo, sup |H3(-,-)| < oo. 
(0,6i)xWLm (0 ,6 i )x lR m 

P r o o f of L e m m a 2. We shall follow [2, Theorem 5.15.]. We can rewrite 
the equation (3) in the form 

H3
fl = (J + hA)9 • H9 • (J + AA)"1 + A • / • (J + H3) • (J + hA)-1 

H3" = ((J + AA)U)_1 • Hu • (J + hA) - A • ((J + AA)U)_ 1 • gu • (J + #3), 
(4) 
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where for any mapping S: R m -> R m we write S9 = PSS, Su = PUS and 
P u , Ps are projections to Eu, E3, respectively. We solve (4) in the space 
C £ ( R m , R m ) . It is clear that the mapping 

Th: C£(Rm,Rm) -> C£(Rm,Rm) 

Th(H) = ( (J + hA)3 • H3 • (J + hA)~\ ((J + hAYY1 'HU.(I+ hA)) 

has the property 

\Th(H) - Th(F)\ < (1 - c • h) • |H - F\ (5) 

for some constant c > 0, small positive ft and each if, F G Cg(Rm,Rm). 
Indeed, we can choose norms || • | | i , || • ||2 on the space E3, Eu respectively [3, 
p. 145] such that 

| |(/ + h • AY\U < ( 1 - h -c) 

\\((I + h.A)')-\<(l-h.c) 

for each small positive h and we put 

| / | = 8 U P ( | | / - ( . ) | | l + | | / - ( - ) l l . ) 
m m 

for each / G C g ( R m , R m ) . 
Hence (4) has the form 

H = Th(H) + h • Fh(H), 

where Fh(H) = (g° • (I + H) • (I + hA)-1,-((/+ hA)u)_1 • y- • ( / + / / ) ) . 

Thus 
H = h-(I-Th)-

1-Fh(H). (6) 

Since by (5) and the Banach fixed point theorem 

K I - T , ) - 1 ! ^ ! 

we can apply uniformly the implicit function theorem to (6) for each small 
positive h. (Note that b is sufficiently small). Hence (3) has a unique solution. 
On the other hand, let us consider the equation 

(I + H)-(I + h-A + h-g) = (I+h-A)-(I + H) 
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which is equivalent to 

H9 - ( J + hA)9 H9 -(I + hA + hg)-1 = -hg9 • ( J + hA + hg)'1 

Hu - ((I + hA)u)~l -Hu.(I+hA + hg) = h' ((I + hA^)"1 • gu. 

Since this equation is similar to (4) we obtain by the above results t ha t this 

equat ion has a unique solution H(h, •) G CB(Rm,Rm) f ° r e a c n small positive 

h. Using a s t andard procedure [2, Theorem 5.15] we have I + H = ( J + H)-1 , 

where H is a solution of (4). This gives us the proof of Lemma 2. 

Step 3. 

In the last step we try to find a homeomorphism J + H4(h,'): R m —• R m 

such tha t 

eh'A(l + H4(h,.)) = (l+H4(h,.)).(I + h'A) on K cRm (7) 

for h > 0 small and H4(hr) E C^(Rm,Rm), K is a compact set. Since 

ehA = I+h-A + f(h-A), 

where f(x) = ex — 1 — x, we have f(h • A) = 0(h2) as h —• 0 . Wi thou t loss of 

generality we can suppose K = Bq for q large. Since f(h • .A) $. CB(Rm,Rm), 

we modify f(h • A) in the following way 

f(h,x) = s(x) • f(h- A)x, 

where s is a function having the property 

i) seC°° 
ii) 5 = 1 on BL 

iii) 5 = 0 on i?2L 

for L ^> q sufficiently large. Thus a modified equation of (7) has the form 

( / + h • A + f(h, •)) • ( / + HA(h, •)) = ( / + H4(h, -))-(I + h- A). (8) 

To solve (8) we follow the above step 2. Hence (8) has the form 

# 4 = T A ( F 4 ) + o(li2) 

and 

^ 4 = ( / - T A ) - 1 - o ( ^ 2 ) . 

126 



THE RELATION BETWEEN A FLOW AND ITS DISCRETIZATION 

We see that i?4 exists for each small positive h and H4( A, •) —• 0 as h —> 0. It 
follows also by the step 2 that 

(I + H^h,-))'1 = I + H^hr), .&4(M€C§(Rm,Rm) 

and H4(A, •) —• 0 as A —> 0. 
Summing up we see that 

(/ +ffi(O) • (r + J-MM) • (I + II3(M) 

is the desired mapping H(A, •) satisfying 

$(A, •) • H(A, •) = H(A, •) • G(A, •) on if. (9) 

Indeed, since L ^> a is large, H4(A,-) = 0(A), H3(A,-) is bounded and A is 
small we have 

( / + //4(/i , •)) • (I + H3(h, -))K C BL, 

and thus f(h,-) = f(h-A) on (l + H4(h,-)) • (l +H3(h,-j)K. Moreover, JT,(.) 
is also bounded on R m . These facts imply both 

(0,6) 

for (5 small and (9). 
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