Beloslav Riečan On the strong law of large numbers on some ordered structures

Mathematica Slovaca, Vol. 54 (2004), No. 1, 61--67

Persistent URL: http://dml.cz/dmlcz/130144

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Mathematica Slovaca © 2004 Mathematical Institute Slovak Academy of Sciences

Math. Slovaca, 54 (2004), No. 1, 61-67

Dedicated to Professor Sylvia Pulmannová on the occasion of her 65th birthday

ON THE STRONG LAW OF LARGE NUMBERS ON SOME ORDERED STRUCTURES

Beloslav Riečan

(Communicated by Anatolij Dvurečenskij)

ABSTRACT. Some limit theorems have been proved in the paper [RIEČAN, B.: Probability theory on some ordered structures, Atti Sem. Mat. Fis. Univ. Modena 47 (1999), 255-265] in a general ordered space. In the framework of the structure the strong law of large numbers is proved in this article.

1. Introduction

In [7] various mathematical models of quantum mechanical systems have been unified from the point of view of probability theory. More precisely a sequence of independent observables has been considered in [7].

Let us recall some basic notions. There is given a partially ordered set M with the least element 0 and the greatest element 1 and with a partial commutative binary operation +.

One of typical examples is the following. Let M be the set of all functions $f: \Omega \to \langle 0, 1 \rangle$ measurable with respect to a given σ -algebra of subsets of Ω . If the ordering is the usual one, then M evidently contains the least element 0_{Ω} and the greatest element 1_{Ω} . If we define the operation + as the sum of functions, then evidently + is only a partial binary operation.

The basic notions of the generalized probability theory are state and observable. The state corresponds to the probability measure, the observable corresponds to the notion of a random variable.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28E10, 60F05.

Keywords: law of large numbers, fuzzy measure theory.

This paper has been supported by grant VEGA 1/9056/02.

DEFINITION 1. A state is a mapping $m: M \to (0, 1)$ satisfying the following properties:

- (i) m(1) = 1, m(0) = 0.
- (ii) If $a, b, c \in M$, b + c is defined and a = b + c, then

$$m(a) = m(b) + m(c) \,.$$

(iii) If $(a_n)_{n=1}^{\infty} \subset M$, $a \in M$, $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

DEFINITION 2. A weak observable is a mapping $x: \mathcal{B}(\mathbb{R}) \to M$ ($\mathcal{B}(\mathbb{R})$ is the σ -algebra of Borel subsets of the set \mathbb{R} of real numbers) satisfying the following conditions:

- (i) $m(x(\mathbb{R})) = 1$.
- (ii) If $A, B \in \mathcal{B}(\mathbb{R})$, $A \cap B = \emptyset$, then x(A) + x(B) exists and $x(A \cup B) = x(A) + x(B)$.
- (iii) If $(A_n)_{n=1}^{\infty} \subset \mathcal{B}(\mathbb{R})$ and $A_n \nearrow A$, then $x(A_n) \nearrow x(A)$.

It is easy to see that for any state $m: M \to \langle 0, 1 \rangle$ and any weak observable $x: \mathcal{B}(\mathbb{R}) \to M$ the mapping $m_x: \mathcal{B}(\mathbb{R}) \to \langle 0, 1 \rangle$, defined by the formula $m_x = m \circ x$, is a probability measure.

If (Ω, \mathcal{S}, P) is a probability space, then one can consider:

$$M = \left\{ \chi_A : \ A \in \mathcal{S} \right\}, \qquad m \colon M \to \left< 0, 1 \right>, \quad m(\chi_A) = P(A) \,.$$

Moreover, if $\xi \colon \Omega \to \mathbb{R}$ is a random variable, then one can define an observable $x \colon \mathcal{B}(\mathbb{R}) \to M$ by the formula $x(B) = \chi_{\xi(B)}^{-1}$. Evidently $P_{\xi} = m_x$.

If ξ , η are two random variables, then they are independent if

$$P(\xi^{-1}(C) \cap \eta^{-1}(D)) = P(\xi^{-1}(C)) \cdot P(\eta^{-1}(D)) = P_{\xi}(C) \cdot P_{\eta}(D)$$

for any $C, D \in \mathcal{B}(\mathbb{R})$, what can be rewritten by the formula

$$P_T(C\times D) = P_\xi \times P_\eta(C\times D)\,, \tag{\ast}$$

where $T = (\xi, \eta)$ is the corresponding random vector, $P_T(B) = P(T^{-1}(B))$ $(B \in \mathcal{B}(\mathbb{R}^2))$ and $P_{\xi} \times P_{\eta}$ is the product of measures P_{ξ} , P_{η} . As a consequence of the equality (*) we obtain the formula

$$P((\xi + \eta)^{-1}((-\infty, t))) = P_{\xi} \times P_{\eta}(\{(u, v) : u + v < t\}),$$

which can be rewritten by the formula

$$P \circ (\xi + \eta)^{-1}(B) = (P_{\xi} \times P_{\eta}) \circ g^{-1}(B), \qquad B \in \mathcal{B}(\mathbb{R}),$$
 (**)

where $g \colon \mathbb{R}^2 \to \mathbb{R}$ is given by g(u, v) = u + v.

Following (**) and (*) in our general case [7] we have defined two kinds of independency.

DEFINITION 3. Weak observables $x_n \colon \mathcal{B}(\mathbb{R}) \to M$ (n = 1, 2, ...) are called to be *weakly independent* if to any *n* there is a weak observable $y_n \colon \mathcal{B}(\mathbb{R}) \to M$ such that

$$m \circ y_n = (m_{x_1} \times \cdots \times m_{x_n}) \circ g_n^{-1}$$

where $g_n \colon \mathbb{R}^n \to \mathbb{R}$ is defined by the formula $g_n(u_1, \ldots, u_n) = u_1 + \cdots + u_n$.

DEFINITION 4. Weak observables $x_n \colon \mathcal{B}(\mathbb{R}) \to M$ are called to be *strongly independent*, if to any *n* there exists a mapping $h_n \colon \mathcal{B}(\mathbb{R}^n) \to M$ satisfying the following properties:

(i)
$$m(h_n(\mathbb{R}^n)) = 1$$
.

- (ii) $h_n(A \cup B) = h_n(A) + h_n(B)$, whenever $A, B \in \mathcal{B}(\mathbb{R}^n)$, $A \cap B = \emptyset$.
- (iii) If $A_i \nearrow A$, $(A_i)_{i=1}^{\infty} \subset \mathcal{B}(\mathbb{R}^n)$, then $h_n(A_i) \nearrow h_n(A)$.

(iv)
$$m \circ h_n = m_{x_1} \times \cdots \times m_{x_n}$$
.

Using weak independency the weak law of large numbers and the central limit theorem have been proved in [7]. In the paper we prove the strong law of large numbers, of course, by the help of strong independency. A similar approach has been realized in [2], in the special case of D-posets ([4]).

2. Formulation

Recall that we work with an algebraic system $(M, \leq, +)$, where (M, \leq) is a partial ordered set with the least element 0 and the greatest element 1 and + is a commutative partial binary operation. State is defined with respect to Definition 1, observable with respect to Definition 2, strong independency of a sequence of observables with respect to Definition 4.

DEFINITION 5. We shall say that a weak observable $x: \mathcal{B}(\mathbb{R}) \to M$ belongs to L^1 if the following integral exists

$$E(x) = \int_{-\infty}^{\infty} t \, \mathrm{d}m_x(t) \, .$$

It belongs to L^2 if the following integral exists

$$\int_{-\infty}^{\infty} t^2 \, \mathrm{d}m_x(t) \, .$$

63

In this case we define the *dispersion* of x

$$\sigma^{2}(x) = \int_{-\infty}^{\infty} t^{2} dm_{x}(t) - E(x)^{2}$$
$$= \int_{-\infty}^{\infty} (t - E(x))^{2} dm_{x}(t) dm_{x}$$

DEFINITION 6. Let $x_1, \ldots, x_n \colon \mathcal{B}(\mathbb{R}) \to M$ be strongly independent observables, $h_n \colon \mathcal{B}(\mathbb{R}^n) \to M$ the corresponding joint observable, $g_n \colon \mathbb{R}^n \to \mathbb{R}$ be a Borel function. Then we define an observable $g_n(x_1, \ldots, x_n) \colon \mathcal{B}(\mathbb{R}) \to M$ by the formula

$$g_n(x_1,\ldots,x_n)(B) = h_n \circ g_n^{-1}(B) \,.$$

DEFINITION 7. Let $(M, \leq, +)$ be a lattice. A sequence $(y_n)_{n=1}^{\infty}$ of observables converges *m*-a.e. to 0, if

$$\lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} m\left(\bigwedge_{n=k}^{k+i} y_n\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right) = 1.$$

THEOREM. Let $(M, +, \leq)$ be the algebraic system stated above such that M is a lattice (with respect to \leq). Let $(x_n)_{n=1}^{\infty}$ be a strongly independent sequence of weak observables from L^2 . Let $\sum_{n=1}^{\infty} \frac{\sigma^2(x_n)}{n^2} < \infty$. Then

$$\left(\frac{1}{n}\sum_{i=1}^{n} (x_i - E(x_i))\right)_{n=1}^{\infty}$$

converges m-a.e. to 0.

3. Proof

Let $(\mathbb{R}^{\mathbb{N}}, \sigma(\mathcal{C}), P)$ be the probability space, where \mathcal{C} is the family of all cylinders in $\mathbb{R}^{\mathbb{N}}$ and P is the infinite product of probability measures m_{x_1}, m_{x_2}, \ldots , i.e.

Define $\xi_n \colon \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ by the formula

$$\xi_n\big((t_i)_{i=1}^\infty\big) = t_n \,.$$

Then $\,\xi_n\,$ is a random variable and

$$P_{\xi_n}(A) = P\left(\xi_n^{-1}(A)\right) = P\left(\left\{(t_i)_{i=1}^{\infty}: t_n \in A\right\}\right) = m_{x_n}(A),$$

hence $P_{\xi_n} = m_{x_n}$. Therefore

$$\int\limits_{\mathbb{R}^{\mathsf{N}}} \xi_n^2 \; \mathrm{d}P = \int\limits_{\mathbb{R}} t^2 \; \mathrm{d}P_{\xi_n}(t) = \int\limits_{\mathbb{R}} t^2 \; \mathrm{d}m_{x_n}(t) < \infty \,,$$

hence $\xi_n \in L^2$ and $E(\xi_n) = E(x_n), \ \sigma^2(\xi_n) = \sigma^2(x_n)$. Moreover, $\xi_1, \xi_2, \xi_3, \ldots$ are independent. Indeed,

$$\begin{split} P\bigg(\bigcap_{i=1}^{n}\xi_{i}^{-1}(A_{i})\bigg) &= P\big(\big\{(t_{i})_{i=1}^{\infty}:\ t_{1}\in A_{1},\ldots,\ t_{n}\in A_{n}\big\}\big) \\ &= m_{x_{1}}(A_{1})\cdots m_{x_{n}}(A_{n}) = P_{\xi_{1}}(A_{1})\cdots P_{\xi_{n}}(A_{n}) \\ &= P\big(\xi_{1}^{-1}(A_{1})\big)\cdots P\big(\xi_{n}^{-1}(A_{n})\big)\,. \end{split}$$

Therefore $(\xi_n)_{n=1}^{\infty}$ satisfies the assumptions of the strong law of large numbers, hence

$$\frac{1}{n}\sum_{i=1}^n \bigl(\xi_i-E(\xi_i)\bigr)\to 0 \quad P\text{-a.e.}\,.$$

Define $g_n \colon \mathbb{R}^n \to \mathbb{R}$ by the equality

$$g_n(u_1, \dots, u_n) = \frac{1}{n} \sum_{i=1}^n \left(u_i - E(\xi_i) \right) = \frac{1}{n} \sum_{i=1}^n \left(u_i - E(x_i) \right)$$

and put

$$\begin{split} \eta_n &= g_n(\xi_1,\ldots,\xi_n) = g_n \circ T_n\,,\\ y_n &= g_n(x_1,\ldots,x_n) = h_n \circ g_n^{-1} \end{split}$$

We have proved that $\eta_n \to 0~P\text{-a.e.}.$ It is equivalent to the equality

$$\lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P\left(\bigcap_{n=k}^{k+i} \eta_n^{-1}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right) = 1.$$

65

But

$$\begin{split} & P\bigg(\bigcap_{n=k}^{k+i} \eta_n^{-1} \Big(\Big(-\frac{1}{p}, \frac{1}{p} \Big) \Big) \bigg) \\ &= P\bigg(\bigcap_{n=k}^{k+i} T_n^{-1} \circ g_n^{-1} \Big(\Big(-\frac{1}{p}, \frac{1}{p} \Big) \Big) \Big) \\ &= m_{x_1} \times \dots \times m_{x_{k+i}} \left(\bigcap_{n=k}^{k+i} \Big\{ (u_1, \dots, u_{k+i}) : \ (u_1, \dots, u_n) \in g_n^{-1} \big((-\frac{1}{p}, \frac{1}{p}) \big) \Big\} \right) \\ &= m\bigg(h_{k+i} \bigg(\bigcap_{n=k}^{k+i} \Big\{ (u_1, \dots, u_{k+i}) : \ (u_1, \dots, u_n) \in g_n^{-1} \big((-\frac{1}{p}, \frac{1}{p}) \big) \Big\} \bigg) \bigg) \\ &\leq m\bigg(\bigwedge_{n=k}^{k+i} h_{k+i} \Big(\Big\{ (u_1, \dots, u_{k+i}) : \ (u_1, \dots, u_n) \in g_n^{-1} \big((-\frac{1}{p}, \frac{1}{p}) \big) \Big\} \Big) \bigg) \\ &= m\bigg(\bigwedge_{n=k}^{k+i} h_n \circ g_n^{-1} \big(\big(-\frac{1}{p}, \frac{1}{p} \big) \big) \bigg) = m\bigg(\bigwedge_{n=k}^{k+i} y_n \big(\big(-\frac{1}{p}, \frac{1}{p} \big) \big) \bigg) . \end{split}$$

Therefore

$$1 = \lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P\left(\bigcap_{n=k}^{k+i} \eta_n^{-1}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right)$$
$$\leq \lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} m\left(\bigwedge_{n=k}^{k+i} y_n\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right).$$

We have proved that $y_n \to 0$ m-a.e.. But

$$y_n = g_n(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n (x_i - E(x_i)).$$

REFERENCES

- [1] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000.
- JUREČKOVÁ, M.-RIEČAN, B.: On the strong law of large numbers in D-posets, Internat. J. Theoret. Phys. 34 (1995), 1495-1500.
- [3] KACIÁN, A.: Probability on l-Rings. PhD. Thesis, Math. Inst. Slovak Acad. Sci., Bratislava, 1998.
- [4] KÔPKA, F.-CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21-34.

ON THE STRONG LAW OF LARGE NUMBERS ON SOME ORDERED STRUCTURES

- [5] MESIAR, R.-RIEČAN, B.: On the joint observable in some quantum structures, Tatra Mt. Math. Publ. 3 (1993), 183-190.
- [6] PTÁK, P.—PULMANNOVÁ, S.: Orthomodular Structures as Quantum Logics, Kluwer Acad. Publ., Dordrecht, 1991.
- [7] RIEČAN, B.: Probability theory on some ordered structures, Atti Sem. Mat. Fis. Univ. Modena 47 (1999), 255-265.
- [8] RIEČAN, B.: On limit theorems in fuzzy quantum spaces, Fuzzy Sets and Systems 101 (1999), 79-86.
- [9] RIEČAN, B.: On the strong law of large numbers for weak observables in MV algebras, Tatra Mt. Math. Publ. 15 (1998), 13-21.
- [10] RIEČAN, B.: On the product MV algebras, Tatra Mt. Math. Publ. 16 (1999), 143-149.
- [11] RIEČAN, B.—MUNDICI, D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–909.
- [12] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure, and Ordering, Kluwer/Ister Science, Dordrecht/Bratislava, 1997.

Received February 4, 2003

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava SLOVAKIA

Current address: Department of Mathematics Faculty of Natural Sciences Matej Bel University Tajovského 40 SK-974 01 Banská Bystrica SLOVAKIA

E-mail: riecan@mat.savba.sk