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ABSTRACT. Within universal mixed linear models, including the models with
constraints, the algorithms are developed which enable to determine boundaries
of nonsensitiveness regions. These are defined in the space of parameters of the
covariance matrix of the observation vector; a shift of these parameters inside the
nonsensitiveness regions does not cause any essential damage of the estimators of
the parameters of the mean value of the observation vector.

Introduction

Let us consider a linear statistical model, i.e.

Y ~, (XB8,2(9)),

where Y denotes an n-dimensional observation vector, X3 the mean value of
the observation vector, X a design matrix, 8 an unknown vector parameter of
the mean value of the observation vector Y, (1) the covariance matrix of Y
depending on a vector parameter 9.

If 9* is an actual value of the vector ¥, then the ¥*-LBLUE (locally best
linear unbiased estimator; in more detail cf. [7; p. 180]) of an unbiasedly estimable
function of the parameter 3 depends more or less on the value of the vector 9.
In many cases its actual value is not known, it must be estimated, or it is known
only approximately. In such cases it is of some interest to know whether an
uncertainty in 9 can or cannot destroy the optimum property of the 9*-LBLUE
of an unbiasedly estimable function of 3.
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LUBOMIR KUBACEK — LUDMILA KUBACKOVA

In [2], [3], [4], [5], [6], this problem and analogous problems connected with
confidence ellipsoids and test of linear hypotheses were studied in the case of
regularity of the model.

Another type of sensitivity is studied in [1].

The aim of the paper is to find a solution in universal model (i.e. without
conditions of regularity), in universal model with constraints of the type I and
in the universal model with constraints of the type II.

1. Notations and auxiliary statements

Let Y be an n-dimensional random vector (observation vector) which re-
alization y is the vector of results of measurements. The class of distribution
functions assigned to the observation vector Y is assumed to have the properties

V{B € VIV{d € 9}(E(Y | B,9) = XP3)

and

V{3 € V}IV{¥ € ¥} (Var(Y | 8,9) = Ep:ﬂivo .

Here V means either RF (the case of the universal model without constraints),
or {u: ueR b+Bu=20} bec MB)={Bu: uec R} aknown
vector, B a known ¢ x k dimensional matrix (the case of the constraints of the
type I) or {(): b+ (B},B,) (3) =0}, b e M(B},B,) is a known vector,
B, and B, known ¢ x (k —1) and k x [ dimensional matrices, respectively (the

case of the constraints of the type II); the symmetric matrices V,,...,V, are
known and 9 = (9,,...,9,)" € ¥ C R? is the vector of parameters known only
approximately.

Let ¥* be the true value of the vector parameter 9. A small change of
9% to 9% + 079 causes a small change of the 9*-LBLUE h’3 of the function
h(B) = W3, B € V. Since 9*-LBLUE is unbiased for all ¥ € 9, i.e.

V(B e VIV{9 e 0} (E [WA(Y,9") | B,9] = WB),

the effect of the change §9 results in an enlargement of the variance of the esti-
mator only. The enlarged variance can be tolerated with respect to the opinion
of users. Generally, the ratio

VVar(RB(Y, 9% + 59) | 9*)/ Var(WB(Y,9*) | 9*),
or the difference

VVar(HB(Y, 0% + 69) | 9) — \/Var(WB(Y, 9%) | 9)
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or similar quantities are used for deciding to what extend the change of 9 can be
tolerated. The problem is to determine the domain of those changes 09 which
do not cause a greater change in Var(h’G(Y,9*) | 9*) than the tolerable one.

If the observation vector is normally distributed, ¥ ~ N, [Xﬁ, 2(19)], the
confidence regions for estimable functions can be easily determined. Also in this
case an uncertainty in the value of the vector ¥ causes a change in a shape of
the confidence ellipsoid and in the level of confidence. Similarly in testing linear
hypotheses on (3 the small change in ¥ can cause an enlargement of the risk
and a decrease of values of the power function of the test.

Let A be an m X n matrix, W an m x m p.s.d. (positive semidefinite)
matrix and let M(A) = {Au: u € R*} C M(W). Then PXV+ means the
matrix A(A’'W~A)"A’'W* (~ means the g-inverse and * the Moore-Penrose
g-inverse of the matrix; in more detail cf. [8]). If W is p.d. (positive definite),
then P‘/\V—1 is the W™1-projection matrix on M(A). The symbol M)’\V_l means
- P‘AV~1 . If W =1 (identical matrix), then the symbol P, is used instead of
PL; analogously M'A is substituted by Mp .

There are several kind of nonsensitiveness regions. One of them is defined
here. The others will be defined in the following.

DEFINITION 1.1. The nonsensitiveness region for the unbiasedly estimable
function h(B) = '3, B € R* | is

{w : Var[WB(Y, 9" +69) | 9*] < (1+ %) Var[FB(Y, ") | 19*]}.

Here € > 0 is chosen by a statistician.

2. Universal model without constraints

DEFINITION 2.1. The universal model without constraints is

Y ~, (XB,2(9)), B R, 9 €y (an open set in RP),

V,=V,,i=1,...,p.

1)

P
where X(9) = Y 9.V
i=1

If Vi,...,V, are ps.d. and ¥,,...,7,, are positive, then the model con-
sidered is a mized linear model. The mixed linear model is a special case of a gen-
eral linear model with covariance components in which the matrices V,, ... ,Vp

are symmetric (they need not be p.s.d.) and 9, ...,U, € 9 C RP (they need
P

not be positive), however X(d) = > 9,V, is p.s.d.
i=1
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In the following the mixed linear model will be under consideration. (Authors
have not been able to solve the mentioned problems in models with variance
components yet.)

DEFINITION 2.2. Let A be an m x n-matrix and y € M(A) (the subspace
generated by the columns of the matrix A). Let N be an n X n p.s.d. matrix.
Then the matrix G with the property

v{y € M(A)}¥{x: Ax =y} (AGy =y & [|Gylly < IIxlly)

where ||x||y = VX'Nx, is called the minimum N-seminorm g-inverse of the
matriz A and it is indicated as A (in more detail cf. [8]).

LEMMA 2.3. Let A be an m X n matriz. Then the class of all matrices G from
Definition 2.2 is given by solutions of the equations

AGA=A & NGA=A'GN.

One of the reprezentations of the matriz Ar—n(N) is

A N-A/(AN-A)~ if M(A") C M(N),
mN) 7 (N + AA)-A[A(N + A'A)~A’] " otherwise.
Proof. Cf. [8; p. 44]. a

In the following the abbreviate notations ¥ = E 9.V, and ¥* = E 9V

will be used. Here 97, ¢ = 1,...,p, are the actual values of the covarlance
parameters.

LEMMA 2.4. In the universal model the class of all unbiasedly estimable linear
functions of 3 is

{h(): h(B)=u'XB, ueR"}
and the 9 -LBLUE of h(-) is u'X[(X'),, ]'Y .
Proof. Cf. [8; p. 140]. a

THEOREM 2.5. In the universal model it is valid
(i) R
IXB(Y,9)/d9, = XZLv
where Z, is any matriz satisfying the condition
Vi(X'):n(E)X’ +3¥ZX - E(X')‘ X'Z'X'
= X[(X)gy] 'V, + XZJE = XZX[(X ()] B
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and
v= {' - X[(x/);(z)]/} Y;
(ii)
cov (X[(X')7, ) ¥, OX[(X')7, ] 'Y /09, 9) = 0
and

(iii) the expression XZiv is invariant of the solution of (x). One solution of
(%) is
Z,=-3V,(X); iz

Proof.
(i) With respect to Lemma 2.3
| X’(X’);(N)X’ =X & E(X’)”(E) [(X’)m(z)] ,

thus
X! (a(x');(z) /aﬁi) X'=0,

and
V(X)X + B (90X, 5, /09, ) X'
= X[(X )] Vi + X (00C) 1 3,/39,) B
what implies
(a(x');(z)/aﬁi) {2, = (X)) XZX (X)) ¢ 2, satisfies (x) } .
Further
OX[(X')zy] Y 100, = X {Z, = (X)) X'ZX' (X)) (E)}' Y
=xZ; {I-X[(X)75)'} ¥
= XZv
(ii) With respect to (i)
cov (X [(x')m(z)] Y ax[(x') 5]

X[(x’

1)

(
] cov(Y,v | 9)Z.X'

] cov (V. {1 = X[(}), 5] '} Y] 9) ZX
&) Bl - X)X 12X

)m(}l) =Xy X]ZX =0.

!

X[(x
= X[(x
E(X

ll

223



LUBOMIR KUBACEK — LUDMILA KUBAEKOVA
(iii) One solution of the equation (x) is
Z,=-%" (ﬂ)Vi(X');(z) )

which can be checked by substitution.

By multiplying both sides of (¥) from the right hand side by the matrix
T-X’, where T = X + XX', we obtain the equation

Var(v)ZX'T™X = V,(X'),, 5 X'T™X = X[(X);, )] 'V, T"X. (%%)

m(
Each of the solutions of the equation (x) is also a solution of the equation (xx).
The full class of all solutions of the new equation (*x) is

Z={ - T V,X)x
+U, — (Var(v))* Var(v)U,(X'T"X)(X'T~X)" : U, arbitrary}.

For any Z, € Z, we have

XZiv = — X[(Xl);(z)]lviz_(ﬂ)v
+ XUlv — X(X'T~X) ™ (X'T~X)U, Var(v) [Var(v)]+ v
=- X[(xl);(z)]lviz— (F)v,
since Var(v) [Var(v)]+v =v and X(X'T~X)"(X'T~X) = X. O
COROLLARY 2.6. With respect to Theorem 2.5(ii)
V{u e R"}
Var [ XB(Y, 9" +69) | 9"

~ Var [u'xAﬂ(Y,ﬂ*) | 19*] + Var({u'ax [(x');n(z)]’v/aa'} \ﬂ_ﬂ* 59 . 0*) .

This corollary is suitable for determining boundaries of the nonsensitiveness
for the 9*-LBLUE of an unbiasedly estimable function of the parameter 3.
If it is required

\/\/'ar([aFB(Y,a*)/aw*)I] 59) | 0*) <epop

where o = \/h' [(X’);(E*)]’E*(X’);I(z,)h and h € M(X'), then the followin
theorem gives one of the possible solutions of the mentioned problem.
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P

THEOREM 2.7. Let Y ~_ (X,B, > 19,.v1.), B eRF. Let h(B) = h'B, B € RF,
=1

be an unbiasedly estimable function of the parameter 3; i.e. h € M(X'). Then

69 €{u: UWhu< eiai} (nonsensitiveness region)

Var([a@(v,m)/aw*)f] 59) | 19*) < epop

where
{Wh}m. = L’hViE*‘ Var(v* | 19*)2*“Vth, ,j=1,...,p
W CIX'ZS* if r(X)=k<n, ¥* isp.d,
Ih =< WCX'XZ* if M(X) C M(Z*),
W (X'T*=X)~X'T*~  otherwise,
C=X'®2*"X,
vt = {l X[(X)7 50, }Y
T =X + XX',
Var(v* | 19*) _ _ x[(xl m(z‘)]lzy = 0* [szt Mx]+z* ,

Mx=I—X(XX) X' =1-XX*
(notice W'B(Y,9%) =L, Y).
Proof. Since .
On'B(Y,9)/89, = hZv
(see Theorem 2.5(i)) we can write
14

P P
Var[Z( h’,@(Y 19)/819 519 ‘ ] 22519i519jcov(h'2'iv,h'23vll?)
i=1 i=1 j=1
P P
=" " 69,60,h'Z; Var(v | 9)Z;h.

ﬂ‘

=137
Since

Var(v | 9) = B(9) — B(9) (X)X’ = B@) — X[(X);, )] ()

the expression h'Z; Var(v | 9)Z;h can be written in the form
WZ!s(9)[1 - (X’);(E)X’] Zh.

The matrix Z, satisfies the condition () what implies

XZ, 2(0) [1 = (X')7, 5, X'] = X[ )] Vi = X[y Vi X
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k =1,7. Thus we can write
WZiB[ - (X)X Z;h
— / — / —_ —
= 0 { [(X)e)] Vi = (X)) ViX )X} B
—_ - ! —
x (VX)) = X (X)) 'V (X))
Since Ly, = W' [(X');,x)] s and V; = V,Z"E = EX"V,,
WZB[1 - (X');, )X Z;h
- — — — ! —
= LIhVi2 2[' - (X’)m(z)xl]2 {l - X[(x/)m(z)] }22 Vj Ly
= VS (1= X (X)) VRS- (X X2V, L,
= LV, 3" [ - S(X);, 5 X5V, Ly
Thus we obtain {W}, ; in the general form
PV 2T Var(v [ 97)2"7V, Ly, h,ji=1,...,p.

Now Lemma 2.3 can be used and it is obvious how to finish the proof.

O

Remark 2.8. It is to be noticed that the shift 41 in the direction of 9*, i.e.
09 = t¥*, does not cause a change of the estimator. It is implied by the following

relation

p P
2 "N 095V, E Var(v | 97)2 TV, Ly,
i=1 j=1
= 2L, [2 - B (X)) 5 X ] ETE L,
= 20X [(X ) me)) { B = X[(X )] =" F Ly = 0,

since there exists u € R* such that h' = u'X.

If we want to know the nonsensitiveness region for all linear unbiasedly es-
timable functions simultaneously, we can proceed according to the following

lemma.

LEMMA 2.9. Let E, ; be the p x p matriz with the (i,7) -th entry equal to 1
and with other entries equal to 0, s € R* | such that s's = 1 and A,i,j akxk

matriz given by the relation

A= (X)) VB Var(vr [ 97) 877V, B (X) 5.

) bl
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i,j=1,...,p, then in the universal model from Theorem 2.7 we can write

pxk
V{h:h'h=1}V{50 € RP} (w'whw < 69’ ZiniG;w) ,
i=1

where
81
G, = : , i=1,...,pxk,
8ip
p P pXxk
Z E E,;®A, ;= Z ,8,8; (the spectral decomposition),
i=1 j=1 r=1

g =8 g,), r=1...pxk.

The vectors 8., r =1,...,p X k are p x k-dimensional and g,8, =9, ,
(the Kronecker delta).

Proof The expression §9'Wy09 can be rewritten in the form

60 @h)) D (E,;®A, )6V h),

i=1 j=1

since

Y4 4 ‘ 14 4
(69 @)D S (E, ;@A )@ h) =D > 69'E, ;59K A, ;h

i=1 j=1 i=1 j=1
P P
=22 09,80,{Wp}, ;-
i=1 j=1
pXxk p P
Let Y 7,8,8. be the spectral decomposition of the matrix ), Y E; ; ® A; ;-
r=1 i=1j=1
Then we can write
pxk pXxk
§'OWRED = (89’ @ W) D v,8,8.(60 @ h) =D 7,(69'G,h)?
r=1 r=1
pXk pXxk

<>, (5«9’(;,6;519/ §0'G, G 59 )2 =89'>_7,G,G,69,
r=1 r=1

since

2
G489
V{h:h'h=1} | (69'G,h)? < | §9'G,———| | - O
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Let Ker(¥*) = {u: ¥*u = 0} and K be the matrix with the property
M(K) = Ker(X*).

If h e M(X'K), then Var[i?,[\i(Y,'ﬂ*) | 9*] = 0, which means that this func-
tion is nonsensitive. If M(X) C M(X*), then M(X'K) = {0} and M(X'E*) =
M(X"). Therefore in the following theorem the inclusion

M(X) c M(Z*)

is assumed.

111

P
THEOREM 2.10. Let M(X) C M(X*), Y kLI be the spectral decomposition
=1

.G,G; from Lemma 2.9 and let kK, > ky > ... . Let

(3

pxk
of the matriz Y, v
=1

w, = 1/(min{h'[(x');(z,)]’z*(x');(z,)h c he M(X), Wh= 1}) .

(In the regular case w; is the magimum eigenvalue of the matriz C™1.)

Then
AN B(Y,0*
(%) 519'19*} /a,, < s) ,

V{69 € E}V{h € M(X)} (J Var

where

£

AT

Proof. In the first step the inequality oo > w; > 0 must be proved. Let
h e M(X"). Since M(X") = M(X'E*) = M(X'E**tX) and M(X) C M(Z*),

&= {w: 69| <

} (nonsensitiveness region).

. 12 —_ % — !
min {h (X)) = (X = hE M(X), Wh = 1}
= min {¢'X'SFTX(X'EFX) X=X ¢/(X'BHX) % =1}
= min {¢'X'T*TXt: ¢/ X'=X)?t =1} >0

and simultaneously

. _ I x _
mln{h'[(X')m(E,)] B (X) 5 myh: he M(X'), h'h= 1} < .
Here the relations

h=X'X>*tXt,

B (X)) X = XXETX) X
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and

X' B X[(X) g] 2T (X)) X' 2T FXE = XD Xe

are used (it is to be noticed that the expression E*(X’);(z,)X’ is invariant with
respect to the choice of the matrix (X') (s -
Let h € M(X') be an arbitrary vector; with respect to Lemma 2.9

pXxk P
§9'Wpo0 < W'hs9' > 7,G,Gi69 = W'hY_ r,(I' 59)°
=1 i=1
Thus
14
max{ >k (159)% 1 ||69]] = c} =k,
=1
and
59 = tl, => §9'Wp69 < h'ht’k, .
It implies
109]| <t =

= V{he M(X")}
O B(Y,9%)
var 255527

Till now the problem was considered in an a priori version, i.e. before the
realization of the observation vector Y. If the experiment was already realized,
i.e. we have a realization y of the observation vector Y at our disposal, then
the quantity h'Z’v,,,, (cf. Theorem 2.5), where

Vieal = {' - X[(X');(E,)]’}y,

is a function of the vector 9 only and it holds

W By, 0" +69) = W' B(y,9") + (WZ .y, .., W'Zy,

P real

] / op <t L
h [(X) ] (O (X)) h
< t/Rywy -

s
1 real

)69 .

If a shift |l/r’fi(y, v* +609) — h’ﬁ(y,t?*)| smaller than eogy, is tolerable, then
the region

{69 : |ppd9| < epop}
where pp = (WZ} Ve, - yWZ,v,..1), is an a posteriori nonsensitiveness region

for the function h(8B) = h' B, B € R*. This can be substantially greater than
the a priori region in the case that the norm of the vector v,.,, is small.
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COROLLARY 2.11. The a posteriori nonsensitiveness region for the function
h(B) = h 3, B € R* (it is to be remind that h € M(X')) is
{69 : |ppdd| < eap},

where

pp = (—LpViZ v,y —L'thZ*_vreal) .
Proof. It is an obvious consequence of Theorem 2.5. O

The maximum sphere

{50: 169]| < 60h/J 3 (L VB (99)v,)? }

=1

included into {619 t |pp 09| < eopB}, can be more suitable in practice.

Remark 2.12. If §9 = t9*, then
p;‘la’ﬁ = _th’[(X/);(E*)]IE*E*‘Vreal

=t X [(X') )] {1 = X[(X) )] Jy = 0.

— —

Remark 2.13. If WB(Y,9* + §9) is used instead of h'3(Y,9*), then
Var [m(v,ﬂ* +89) | 9 + 519]
= Var [WB(Y,9") | 9] + (LyVyLp, - LyV, Lp) 50
If a difference
|Var[WB(Y, 9" + 69) | 9* + 9] — Var[ WB(Y,9*) | 9*]]

smaller than e?0} is tolerable, then the nonsensitiveness region for the dispersion

Var[ WB(Y,97) | 97] is
{69 : |(LRV Ly, ..., LRV, Ly < %op} .
The maximum sphere
p
69 1 1091 < %3 /| S (LpViL)? ¢,
i=1

included into it, seems to be more suitable for practice.
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3. Universal models with constraints of the type I

DEFINITION 3.1. The universal model with constraints of the type I is
Ywn(Xﬂ,Z(ﬁ)), Be{u: b+Bu=0}=V,, ded,

where B is a given ¢ x k matrix and b € M(B).
There are two equivalent expressions of this model.

(i) Model without restrictions
Y - XB, ~, (XKg7,2(0)), ~yeRTE geu,

where (3, is any vector satisfying the equality b+ BB, = 0 and Kg
is k x (k—r(B)) matrix with the property M(Kg) = Ker(B) = {u :
uc R, Bu=0}=M(Mg,), where Mg, =1—-Pg, =1-B'(BB’)"B.

(i)
(3;,) ~n+q ((é)ﬂ(ﬁ: 8)), BeV, d€d.

In the model from Definition 3.1 a function h(3) = h’'3, B € V|, is unbiasedly
estimable if and only if h € M(X’,B’), thus there exist vectors u and z such
that h = h, + h,, where h) = X'u and h, = B'z.

LEMMA 3.2. [t holds that
— ! _ !
XKg [(K,Bx)m(E)] = XMp, [(MB'X/)m(E)] :
Proof. With respect to our assumption on the matrix Kg,
v{xe M(X)}({u: KpX'u=Kpx} ={u: Mg X'u=Mgx}=T).
It is implied by the following

XM(Kg) = XM(Mg,) = M(XKg) = M(XMg,)
<= Ker(KgX') = Ker(Mg, X').
Further, with respect do Definition 2.2
V{u e R"}(u’XKB [(KgX)im ()] S(KpX'); 5, KB X't
= u'XMpg, [(MgX');, 5] "E(Mg X'),, 5, Mg, X'u)
= B(KgX');, 5 KeX' = B(Mg,X');, 5 Mg X',

Thus XMg: [(MB’XI);(E)], is one version of the matrix XKB[(K’BX’);(E)];]
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LEMMA 3.3. We have
M(X',B') = M[X'(Z + XMg,X')*X + B'B] .
Proof.
Viue R*}3H{xeR", y e R?} X'u=MgX'x+B'y
It suffices to choose
x=u and y=(BB')"BX'u
thus
Mg X'x + B'y = Mg, X'u + B'(BB') "BXu = X'u
ie.,
M(X',B') = M(Mg, X', B').
Let X'(X + XMg, X')*X = JJ'; then
M(X',B') = M(Mg X', B') = M{Mg, [X'( + XMg,X')*X] My, B'B}
= M(Mg,J,B') = M(J,B') = M(JJ + B'B)
= M[X'(Z + XMg,X')*X + B'B].
O

To solve the problems given in the prev1ous section, it is necessary to know

the expresswns for L} , Var(v* | 9*), Var[h’B(Y 9*) | 9*] and for the matrix
A, t,j=1,...,p, in the model from Definition 3.1.

These expressions are given in the following sequences of statements.
Here

C=X'Z*"X, W=X'(Z*+XMgX)"X+B'B
LEMMA 3.4. The 9*-LBLUE of a function h(B) = W'B, B € V|, where h ¢
M(X',B’), is
— . Y Y
h',@(Y,—b,'ﬂ ): [_;’ (—b) = [(L;:))’, (Lf))/] (—b) ,
where

1)\/ 2)\/

(L) ()] =

( (WP, C*X'="", H'C*B/(BCB))")

if M(XMg,) C M(S*) and M(B') C M(C),

=0 (WPRS(C+B'B) XS, 1(C+B'B)*B'[B(C + B'B)"B/] )
if M(XMg,) C M(Z),

| (WP, g WHX/(E7 + XMg, X')", 'W*B'(BW*B)*)  otherurs .
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Here Ker(B) = {u: Bu = 0} and Pﬁer(B) =1-C+*B'(BC~B')"B; an analo-
gous meaning has the symbol vaer(B) .

Proof. Let the last case be considered only. Then with respect to Lemma 3.2

HB=hg, + h'Kg [(KgX');, s )] (Y = XB,)
= W'B, + h'Mg, [Mg, X'(=* + XMg,X')"XMg,] ™ x
x Mg, X'(Z* + XMg,X')~(Y = X3,)
= W@, + h' (Mg, WMg,)*X'(Z* + XMg,X')* (Y — X3,)
=h'B, + H{Wt - W+B'(BW'B')TBW*}x
x X'(Z* + XMg, X) (Y — XB,)
= PR, gy WHX'(S* + XMg, X)*Y — HW*+B'[BW*B'] " b.

Analogously other cases can be proved. O

z*,0

COROLLARY 3.5. One version of the minimum ( 0, 0

of the matriz (X', B') is given by the relation

!
(X,B) o, ) =
( m( 0, o)
[ (PSee)CT XS, CTB/(BCB))
if M(XMB,) C M(Z*) and M(B') C M(C),
={ (PEiB3(C+ B'B)*X'="~, (C+ B'B)*B/[B(C + B'B)*B'| ")
if M(XMg,) C M(E*),
L (P}Q‘QF(B)W+X’(E* +XMB,x')+,w+B'(Bw+B')+) otherwise.

) -seminorm g- inverse

LEMMA 3.6. In the model from Definition 3.1

() (8) [ ()5

0, 0
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Further
Var(v,|9*) =

( 3 — X(Mg,CMg, )X’ = £* — X[C*+ — C*B/(BC~B')~BC*]X’
if M(XMg,) C M(Z*) and M(B') C M(C),

— X(Mg,CMg, )X’
={ - x{(c +B'B)* + (C+B'B)*B'[B(C + B'B)"B'] x
x B(C + B'B)+}x' if M(XMg,) C M(S"),
{ ¥ — X[W+ — WFB'(BW+B)*B'W*]|X’' + XMg, X' otherwise.

Proof. It is obvious, however, in the general case, Lemma 3.3 must be
taken into account. O

LEMMA 3.7. Let h € M(X',B’); then in the model from Definition 3.1
Var[m(Y,—b,ﬂ*)w*] =
(Mg, CMg,)*h
if M(XMpg,) C M(2*) and M(B') Cc M(C),
h'[Mg, (C+B'B)Mg]"h if M(XMg,) C M(Z*),
h' (Mg, WMg,)"h— h'Mg,h, otherwise.

LEMMA 3.8. Let h € M(X',B’); then in the model from Definition 3.1

oh' [(x' B')~< } ( )/819

Proof. It is implied by Theorem 2.7, Lemma 3.4, Corollary 3.5. and
Lemma 3.6. O

= (LY'V,m vy

LEMMA 3.9. The matriz A, ;, i,j = 1,...,p, in the case of the model from
Definition 3.1 is

A, =P g (O)TXVE Var(v) | 992V, XPY o ()7,
where
C*t - C*B'(BC-B')~BC*
if M(XMg,) C M(=*) and M(B') c M(C),
P ()t =4 (C+B'B)Y —(C+B'B)"B'[B(C+ B'B)*B']"
x B'(C+B'B)t if M(XMg,) C M(E*)
W+ — WH+B/(BWHB')"BW™ otherwise.
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This sequence of statements enables us to use Theorem 2.7 for the model
with constraints of the type I.

Remark 3.10. Since it is easy to obtain the other nonsensitivity regions for
this model which are analogous to the regions given in the preceding section,
the formulae in this section are omitted.

4. Universal model with constraints of the type II

DEFINITION 4.1. The universal model with constraints of the type II is
Y ~, (X8, (), Ve,
B = (g;) € {(;’) cueR ) zeR, b+Blu+Bzz:0} =V -

There are two equivalent expressions of this model

(i) Model without restrictions

Y — XﬂLO ~n (XKl'Y, 2(19)) , ~ e Rk+l—-1‘(31,82) , Je Q,

where Ker(B,,B,) = M [(2 )] , the matrix (2) is of the full rank

in columns and (g:g ) is any vector satisfying the equality b+B, 3, +

B,3,,=10.

(ii)
(%) (s ) () (& 3))
(%) €V, ved.

LEMMA 4.2. We have

M(K;) = M(Mg, m, ) -

Proof. Since
B,K, + B,K, =0 = Mg B K, =0,

obviously M(K,) C M(MB;MB ).
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From the other side
(0#) x e M(Mgm, ) <= Mg,B;x=0 < Iz €R'}(B,x = -B,2)
i.e.
X K,
. (S M K2 thus M(MBQMB'Z) C M(Kl) .

LEMMA 4.3. We have
M(Blv Bz) = M(MBzBl: BQ) .

Proof. Obviously M(B;) c M(Mg_B,,B,), since

V{u € R}(B,u= (Pg, + Mg,)B,u
= Mg, B,u + B,(B;B,)"B;B,u = Mg B u+ Bzz) ’

where z = (B,B,)"B;B, u.
Further M(Mg B;) C M(B,,B,), since

V{u e Rk}(MBzu = Byu—Pg u =B u+B,(B;B,)"By(~u)).

LEMMA 4.4. Let A and B be n x n p.s.d. matrices. Then M(A,B)

M(A +B).
Proof. Cf. [8; p. 120].

LEMMA 4.5. Let
* +
W = X’(E + XMBQMBZ X’) X+ B’IMBZB1 .

Then M(X') C M(W).
Proof. With respect to Lemmas 4.3. and 4.4 (cf. also Lemma 3.3)

M(W) = M[Mg,p, X'(Z* +XMg; , X)*XMgp, +BiMg,B,]
= M(Mg, v, X',BMg,).

Since
! __ /
X' = (Mg;m,, +Pg,mg, )X

= Mg, i, X' + B} Mg, (Mg, B,B{Mg ) Mg, B,X
= MB;M32X/+BllMB2zv
where Z = (Mg, B,B{Mg ) Mg B, X, it is valid M(X") C M(W).
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=*,0

THEOREM 4.6. One version of the minimum ( o o

) -seminorm g-inverse of

the matriz ()(()l g:;) is given by the relation
(5 0] -G B
0. By/)m(%9) (3], [41/"

= Mg mg, [(Maimg, X)rim]
ﬂ =W*B|(Mg,B,W*B/Mg )*,
~[(BY)8 W+B’)]lBlw+xl(2* + XMB;MBZX/)+

= [(By ) (B, W+B’)},'

=
=

where

Proof. Let (g:g) be any vector satisfying the equality b + B, ; +
B,3,,=0.
With respect to Lemmas 2.4, 4.2 and 4.5 we have

XB,(Y,—b,9%)
=XpB, o + XK, [(Kllxl);;(z:*)]’(y - xﬂ1,o)
=XMg; m,, [(MBgMBz X');(p)]ly
+XB, o — XMg;m, (Mg, X)) XBi o

= XY +XB1 0
. - +
— XMg; M, [Mg; M X' (Z* + XMp;p, X) ™ XM, |7 x
X Mg, g, X'(5° + XMg, mg X)*XB,

:XY + X'BI,O - Xgl,o
+ XW* B (Mg,B,W*B Mg, )"Mg B, 3, ;.

Since B,3, ; = —B,08,, — b, we have
@](Y,—b,’ﬁ*) = x(7w+B,l(MBzBlw+B’1MBz)+) (_Yb> :
Thus [2] = W*B/ (Mg B,W*B,Mg_ )"
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With respect to Lemma 2.3 the matrices , , and must satisfy
the equalities

x[1]x + x[2]B, = X, X[2]B, =0,
B,[1]X +B,[3]X+B,[2]B, +B,[4]B, =B,, B,[2]B,+B][4]B,=B,,
x[1]z=x[1]'x, (B,[1]+B,[3])=* =0.

It is obvious that = B . Let us choose = [(B’z);(Blw+B,)]'; then we
1
. . — ! + *
can find out that a possible form of is —[(B’2)m(BIW+B;)] B,W*X'(Z* +
XM B, Mg, X' )+, however, it is necessary to check necessary and sufficient con-
ditions. It is simple, however, tedious; thus as an example only the equality

BIX + BZX + BlB1 + BzB1 = B, , is proved.

The notation V = B,W*B/ + B,B, is used in the following.
B,[1]X + B,[3]X +B,[2]B, + B,[4]B,
=B, Mg, [(Mg; Mg, X )iz X — B, [(Blz):n(slwm;)]lx
X B,WHX/ (B 4+ XMg,p, X)X

+ _ !
+ B1W+BI1(MBzBlw+B'1MBz) B, + B, [(B; m(BIW+B’1)] B,

=B, [Mg iy X' (=" + XMgy 1, X') XMy, 1" My, X'
x (B* 4 XMg, mg, X') "X = By(BV*B,) P BLV B, WF X'
X (2" + XMg, , X)X
+B,W*B|[v+ - V*B,(B,V'B,)"B,V']B,
+B,(ByV*R,)tB, VB,

=B, [W+ _ W+B! Mg, (Mg,B,W+BMg )*Mg B, W*]x
x (W — B'1M3231) = B2(B'2V+BQ)+B'2V+BIW+ (W - BllMBzBl)
+B,w+B [Vt —V*B,(B,V'B,)TB,V*]B,
+ Bz(B’ZV*Bz)JfB'gV‘LBl

=B,W*"W ~ B w+B Mg (Mg, B,W'B/Mg )*Mg_B,
— B2(B'2V+B2)+B’2\/+BIW+W
+By(B,V*B,)*B,VH(B,W'B] + B,B,)Mg, B,
TVt ~ v+, (BVB,) "B,V Mg, B,
+ B2(B'2V+B2)+B'ZV+31
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=B,WtW — B,W*B] [V+ - V+Bz(B’2V+Bz)+B'2V+] B,

- B,(B,VTB,)tB, VB, WTW

-+ VV+B1 — VV+82(8’2V+82)+B'2V+B1

+ B2(B’2V“‘Bz)+B’2V+B1
= 81W+W - V[V+ - V+82(B’2V+Bz)+B'2V+] B,

- BZ(B'2V+Bz)+B'2V+BIW+W +VVTB,

v+ v+ v+ v+
=B,WtW + Pg, B, — Pg, 81W+W = Pg, B, + Mg, 81W+W
+ +

= ng Bl + M\Blz (PBz + M32)81W+W
=PY B, + MY Mg B,W+W

v+ v+ v+ v+
=Pg, B, + Mg, Mg B, =Pg, B, + Mg, B, =B, .

In an analogous way the other equalities can be proved. O

For any unbiasedly estimable function h(3,,8,) = h; 3, +h,3,, (Bl ) €V,
the nonsensitiveness region is given by Theorem 2.7, where the quantities W, .,

i,j=1,...,p, Ly, v*, Var(v* | 9*) and Var[h (ﬁl,ﬁ2 (Y,—b,9%) | 9*] must
be expressed in terms of the model with constraints of the type II.
These expressions are

h=(<L“>> (L)),
) = T+ 5],
L‘2 "= h[2]+ hyl4],
= (%)= e (5 B (%) - (9)
~b B,, B,)\[3], ~b 0)°
(Wp},, = (L)'V,= Var(vy | 97) =V, L0,
vi =Y - X[1]y - X[2](-b),
Var(vi | 9%) = (1= X[1])=*(1 - X[1])’
and

Var(h(B,, B,)(Y, —b,8*) | 9¥)

oo (5 B) (3 2)

HH
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It is obvious how to proceed in the case of the other mentioned kinds of

nonsensitiveness regions.

(1]
(2]
(3]
(4]

(7]
(8]
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