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ABSTRACT. In this paper, we define the fractional order Pettis-integral operator 
in reflexive Banach spaces and we investigate the properties of such operator. A 
fixed point theorem is used to establish an existence result for the nonlinear 
Pettis-fractional order integral equation of the following type 

x(t) = g(t) + \Iaf(t,x(t)), t G [ 0 , l ] , 0 < a < l . 

Moreover, the existence of a solutions for the Cauchy problem 

^ = /(t ,D'3x(t)) , t £ [ 0 , l ] , 0 < / 3 < l , x(0) = x o , 

is proved. 

1. Introduc t ion and preliminaries 

Let LX{I) be the space of Lebesgue integrable functions on the interval 
I = [0,1], let C0 be the space of all null sequences endowed with the maxi
mum norm. Unless otherwise stated, E is a reflexive Banach space with norm 
||-|| and dual E*. We will denote by Ew the space E endowed with the weak 
topology cr(E,E*) and denote by C[I,E] the Banach space of strongly contin
uous functions x: I —r E with sup-norm ||-||0. 

We recall that the fractional integral operator of order a > 0 with left-hand 
point a is defined by 

7"x( í ) :=fR/ ( í _ s Г _ l x ( s ) d s-

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 26A33, 34A12, 47G10. 
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Using the known relations between the Beta- and Gamma-function, a well-known 
calculation with the Fubini-Tonelli theorem shows that J^+ / 5£ = IaI^x for each 
x £ J 1 ([a, b]) and each a,/? > 0. In particular, J™ is the nth iterate of the 
usual integral operator, and so Ia may indeed be considered as a corresponding 
fractional integral. When a = 0, we can write I0x(t) = x(t) * r/a(t) where 
rja(t) = ^---j for t > 0, rja(t) = 0 for t < 0, and rja ->• 5(t) as a -> 0 where 5 
is the delta function. 

The following lemma is folklore: 

LEMMA 1.1. Let a, (3 £ M+ . ana7 n = 1, 2, 3 , . . . . Then we have lim Iax(t) = 

t 
I^x(t) uniformly, where l\x(t) = f x(s) ds. Moreover Ia : L1 ([a, b]) -+ Ll([a, b\) 

a 
is a continuous operator. 

We recall the following definitions. Let E be a Banach space and let x: I —> E. 
Then 

1. x(-) is said to be weakly continuous (measurable) at t0 £ J if for every 
cp e E*, (p(x(-)) is continuous (measurable) at t0. 

2. A function h: E —r E is said to be weakly sequentially continuous if ft 
takes weakly convergent sequences in E to weakly convergent sequences 
in E. 

3. x(-) is said to be strongly measurable if it is the limit (in the norm 
topology in E) of a sequence of step functions a.e. on J . 

4. If the function (p(x(-)) is differentiable for every ip £ E* and if there 
is a function y: I —> E such that ^ (^ (a ; ( i ) ) ) = ip(y(t)) for every 
(p € E* and every £ £ J , then x is weakly differentiable and wTe write 
£7(£) = y(t), where x'(t) denotes the weak derivative of the function x. 

If E is weakly complete and (p(x(-)) is differentiable for every cp £ E*, then 
x is weakly differentiable. If x is weakly continuous on J , then x is strongly 
measurable ([16; p. 73]), hence weakly measurable. Also it can be easily proved, 
that weak differentiability implies weak continuity. Note that in reflexive Banach 
spaces weakly measurable functions are Pettis integrable (see [7], [16] and [22] 
for the definition) if and only if tp(x(-)) is Lebesgue integrable on J for every 
</> £ E* ([16; p. 78]). 

Consider the problem (modelled off a first order differential equation) 
t 

x(t) = x0+ I f(s,x(s)) ds, t e l , (1) 

0 

where / : J x E —> E, x0 £ E and the integral understood to be the Pettis 
integral. The existence of weak solutions of this problem was proved for exam
ple by C i c h o r i [4], C r a m e r , L a k s h m i k a n t h a m and M i t c h e l l [6], 
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K i n g h t [17] K u b i a c z y k [18], M i t c h e l l and S m i t h [20] and more re
cently by O ' R e g a n [21]. Here we deal with a general case of equation (1), 
namely, we consider the nonlinear fractional order integral equation 

x(t)=g(t) + \Iaf(t,x(t)), t e l , 0 < a < l . (2) 

DEFINITION 1.1. By a weak solution to (2) we mean a function x G C[I,E] 
such that for all tp G E* 

tp(x(t)) = tp(g(t)) + XIatp(f(t,x(t))) , t G [0,1], 0 < a < 1. 

Some interesting existence results for (2), in the case E = W1, may be found 
in [1], [3], [5], [10], [11], [12], [15] and [26]. In [1], [3], [15], [26], the real-valued 
function / is assumed to be continuous while in [5], [10] it is assumed that / 
is a Caratheodory function, and in [11], [12] the case of a Caratheodory func
tion with monotonicity condition respectively a function of bounded variation 
was studied. In case that E is an ideal space (see [29] for the definition), equa
tions (2) and generalization have provoked some interest in the literature [27]. In 
comparison with earlier results, we drop the requirement that / is real-valued 
and wre consider the general case of a vector-valued continuous function / . 

The plan of this paper is as follows. In Section 2, we prove an existence 
result for the fractional integral operator in the sense of P e 11 i s, which will be 
our main tool. After recalling some properties of such operators, we prove an 
existence result in Section 3. Moreover, we will discuss the existence of pseudo-
solution (for the definitions and basic results, see [4] or [17]) for the Cauchy 
problem 

% = f{tMt)), tei, (3) 

x(0) = x0 . 

Also, we discuss the existence of solutions for the Cauchy problem 

^ = / ( t , D ^ ( t ) ) , i e J , 0 < / J < l , 

x(0) = x0 , 

with x taking values in E. Now, we present some auxiliary results that will be 
needed in this paper. First, we state a fixed point result (proved in [21]), which 
was motivated by ideas in [2]. 

THEOREM 1.1. Let E be a Banach space and let Q be nonempty, bounded, 
closed and convex subset of C[I,E]. Suppose, that T: Q —.> Q is weakly sequen
tially continuous and assume that TQ(t) is relatively weakly compact in E for 
each t G [0,1]. Then the operator T has a fixed point in Q. 
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PROPOSITION 1.1. ([30]) A subset of a reflexive Banach space is weakly com
pact if and only if it is closed in the weak topology and bounded in the norm 
topology. 

PROPOSITION 1.2. ([20]) Let Q be a weakly compact subset of C[I,E]. Then 
Q(t) is weakly compact subset of E for each t G I. 

Finally, we state some results which directly follow from the Hahn-Banach 
theorem. 

PROPOSITION 1.3. Let E be a normed space with x0 ^ 0. Then there exits 
a (p G E* with \\p\\ = 1 and p(x0) = | |x 0 | | . 

PROPOSITION 1.4. If x0 G E is such that p(x0) — 0 for every ip G E* . then 
x0 = 0. 

2. Fractional order integrals in reflexive Banach spaces 

Here, we define the fractional order integral operator in reflexive Banach 
spaces. Definition given below is an extension of such a notion for real-valued 
functions. 

DEFINITION 2.1. Let x: I —r E be a weakly measurable function such that 
(f(x(-)) G L1(I), and let a > 0. Then the fractional (arbitrary order) Pettis-
integral Iax(t) is defined by 

t 

Iax(t):= / ( * ~ ( ^ 1x(s)ds. (5) 

In the above definition the sign J denotes the Pettis-integral. 

Such an integral is well-defined: 

THEOREM 2.1 . Letx: I -> E be a weakly measurable function, p(x(-)) GL X (I) 
and let a > 0. The fractional (arbitrary order) Pettis-integral 

Гx(t) = ľ 
o 

t 
a-l (t - s)c 

Г(a) 
-x(s) ds 

exists for almost every t G I as a function from I into E and p(lax(t)) 

Ia<p{x(t)) . 
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P r o o f . Since x: I —r E is weakly measurable and (p(x(-)) G Ll(I), x is a 
Pettis integrable function. From the definition of the integral of fractional order 
we have 

t t 

*M*(*)) = / {±f^p-*(*(*)) <-* = / * (^T"x(5))d5 

0 0 

exists for almost every t G I and is an element from Ll(I), that is, for al

most every t e l . s e (0,£) the measurable function <p( ^ ~?,K—x(s)j = 

r\a)—<p{x(s)) lS Lebesgue integrable, hence the function 5 H-> p(Q)—x(5) 
is Pettis integrable on I. From the definition of the Pettis-integral there exists 
a function denoted by Iax(-) from I into E that satisfies 

t 

p(lax(t)) = I ( *~ ( ^~VM) ds = Ia<p{x(tj) 
0 

for all ip G E* and for a.e. t G I. 
By definition, 

t 

Iax(t) = f ^ ~ *}" 3,(3) ds for a.e. t e J . (6) 
» 

D 

Remarks. 

1. It is clear that if x is weakly continuous (hence weakly measurable) 
and (p(x(-)) G LX(I), then Iax(t) exists for every £ G i" as a weakly 
continuous function. 

2. We cannot define Iax(t) for arbitrary bounded weakly measurable func
tion x since from the P h i l l i p example (see [23]) it follows that a 
bounded weakly measurable function need not be Pettis integrable func
tion. 

3. We can define the above integral for the spaces E which contain no 
isomorphic copy of C0 (cf. [7; p. 54, Theorem 7]). 

Now, for the properties of the integrals of fractional orders in reflexive spaces 
wre have the following Lemma. 

LEMMA 2.1. Let x: I -» E be weakly measurable and cp(x(-)) G Ll(I). If 
a, (3 G (0,1). we have: 

1. IaI?x(t) = Ia+PX(t) for a.e. t G I. 

2. lim Iax(t) = Ilx(t) weakly uniformly on I if only these integrals exist 
a—>\ 
on I. 
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3. lim Iax(t) = x(t) weakly in E for a.e. t G I. 
a^O 

4. If, for a fixed t G 7. (p(x(t)) is bounded for each (p G E*. th en 
\im Iax(t) = 0. 
t->o v 

Remarks. 

1. {xn(t)}™=1 converges weakly uniformly on 7 to a function x(t) if for 
almost every ( G / , e > 0 and (p G E*, there exists an integer Ar so 
that n> N implies \(p(xn(t) — x(t))\ < e. 

2. If we assume that x: 7 —>> E is weakly continuous, then all the statements 
of Lemma 2.1 hold for every t G 7 . 

P r o o f of L e m m a 2 . 1 . For any (p G E*, from the properties of the 
fractional integral operators in the Banach space LX(I) (see e.g. [25], [27] and 
[28]), we have: 

1. (p(laI^x(t)) = Ia(p(Px(t)) = IaI^(x(t)) = Ia+P(p(x(t)) = v(la+(5x(t)) 
implies (p(laI^x(t) — IaJr(5x(t)) = 0, hence according to Proposition 1.4, we 
obtain 

ri^x^) - Ia+f3x(t) = 0 (for a.e. t G I). 

2. \(p(lax(t))-Lp(llx(t))\ = \(p(lax(t)-Ilx(t))\ = \la(p(x(t))-I1(p(x(t))\ 
since (p(x(-)) G Ll(I). Then we have (p(lax(t)) —>• (p(llx(t)) uniformly on 7, 
so Iax(t) —r Ilx(t) weakly uniformly on 7 . 

3. Km<p(lax(t)) = Vim Ia<p(x(t)) = Urn <p(x(t)) * ria(t) = <p(x(t)) * S(t) 

= <p(x(t)). 

4. The proof of this part follows immediately from Proposition 1.4 and the 
inequality 

\^(lax(t)) | = \la(p(x(t)) | < K f+ , where K = sup|^(x(t)) | . 

• 

E X A M P L E . Let x: I —> L^ be defined by x(t) = Xr0 t] • This function is weakly 
measurable and for each (p G L*^ , we have (px G L1 (each (px is a function 
of bounded variation) (cf. [8], [9], [14]). Thus, according to Theorem 2.1, Iax 
exists. To calculate the fractional order Pettis-integral of x, let p G Ll and let 
(p be the element in L*^ corresponding to p. For any t > 0, we have 
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o 
t t 1 

=/ ̂ Fv{xis)) ds=I {1i$r Ip{e)x^e) deds 
0 0 0 

-lN!srim Aeis=//ir'ffl i$i° 
0 0 0 0 

o e o 
I 

= / £rn>>*iM«>> d<> = *> ( i ^ W ) ] 
Hence 

o 

Remark. As a -> 1, we get the same result due to R. G e i t z (see [14]). 

Now, we give the definition of the weak derivative of fractional order. 

DEFINITION 2.2. Let x: I -* E be & weakly differentiable function and x1 is 
weakly continuous. We define the weak derivative of x of order (3 G (0,1] by 

~)^x(t) := Ix~® Dx(i), D denote the weakly differential operator. 

3 . M a i n r e s u l t s 

In this section we present our main result by proving the existence of solutions 
of the equation (2) in C[J, E]. 

Let E be a reflexive Banach space. For a fixed g G C[7, E] let 

Er = {xeC[I,E]: N | 0 < N | 0 + r } ( r > 0 ) , 

where ||-||0 is the sup-norm. We will consider the set 

Br = {x(t) eE: xeEr, tel}. 
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Let us state the following assumptions: 

1. Assume, that g G C[I,E]. 

2. Let / : / x Br -+ E satisfies the following conditions: 

(a) For each t G / , ft = f(t: •) is weakly sequentially continuous. 

(b) For each x G Er, / (- ,x(-)) is weakly measurable on I. 

(c) For any r > 0, the weak closure of the range of / ( / x Br) is 
weakly compact in E (or equivalently: there exists an M such 
that \\f(t,x)\\ < M for all (t,x) G I x Br). 

Now, we are in a position to formulate and prove our main result. 

THEOREM 3 .1 . Let the conditions (1) and (2) be satisfied in addition to the 
following inequality 

r ( l + a) ' 

Then the equation (2) has at least one weak solution x G C[I, E]. 

P r o o f . Let us define the operator T as 

(Tx)(t)=g(t) + \Iaf(t,x(t)) t e l , 0 < a < l . (7) 

We will solve equation (2) by finding a fixed point of the operator T. 

We claim 

T: C[I,E] -+C[I,E\. 

To prove our claim, first note that assumption (b) implies that for each x G 
C[I,E]: / (• ,#(•)) is weakly measurable on I. The fact that / has wreakly com
pact range means that (/?(/(•, x(-))) is Lebesgue integrable on / for every (/?G£* 
and thus the operator T is well-defined. Now, we show that if x G C[J, E], then 
Tx G C[I,E]. Note, that there exists r > 0 with ||x||0 = sup \\x(t)\\ < \\g\\Q +r. 

tei 
Now assumption (c) implies that 

\\f(t,x(t))\\<M for * e [ 0 , l ] . 

Let £, 5 G [0,1] with t > s. Without loss of generality, assume Tx(t)—Tx(s) ^ 0. 
Then there exists (a consequence of Proposition 1.3) <p G E* with \\cp\\ -= 1 and 

\\Tx(t) - Tx(s)\\ = tp(Tx(t) - Tx(s)) . 
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Thus 

\\Tx(t)-Tx(s)\\ t 
\a — l 

\\Tx(t)-Tx(s)\\ 

<\<p{g{t)-g{s))\ + \\\ f-^--щ-vimm) àß 
0 

* (s - ) a ~ l 

<\\g(t)-g(s)\\ + \\\ 

- / • 

0 

/ ({t-ey 
1 V ->) 

T(a) 

(s- y-1 

<p{f{ ,x( ))) d 

<p(f( ,x( )))d 
T(a) 

+ \\\ f{±-^ńf{ м )))à 

<\\g(t)-g(s)\\ + 
\\\M 

T(l + a) 

Hence 

{\ta-sa\+2(t-s)a}. 

\\\M 
\\Tx(t) - Tx{s)\\ < \\g(t) - g(s)\\ + ^ + r { \ t a -sa\ + 2(t- s)a} (8) 

1 (1 + a) ^ 
and so Tx G C[I, E]. 

Now, let 

Q = jx G Er : (VteI)(VseI)(\\x(t)-x(s)\\ 

< i i O w - O ( , ) i i + I ^ { r - ^ K 2 ^ - 5 r } ) } , 
note that Q is nonempty, closed, bounded, convex and equicontinuous subset of 
C[I, E]. Now, we claim that T: Q —r Q and is weakly sequentially continuous. 
If this is true then according to Proposition 1.1, TQ is bounded in C[I, E] 
(hence, Proposition 1.2, implies TQ(t) is weakly relatively compact in E for 
each t G I) and the result follows immediately from Theorem 1.1. It remains to 
prove our claim. First, we show that T maps Q into Q. To see this, note that the 
inequality (8) shows that TQ is norm continuous. Now, take x G Q; without loss 
of generality, we may assume that Iaf(t,x(t)) ^ 0, then, by Proposition 1.3, 
there exists (p G E* with \\cp\\ = 1 and | | / a / ( ^ ,x (^ ) ) | | = (f(laf(t,x(t))). Thus 

ll-7M*)|| < \W)\\ + \\)daf{t,x(t))\\ = \\g(t)\\ + <p()J«f(t,x(t))) 
1 (t-s)a~l 

< \\g(t)\\ + \Iav{f{t,x(t))) < \\g(t)\\ + \\\M f 
o 

- U m + Ť^Ta) <^(t)\\+r, 

T(a) 
ds 
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therefore 
\\Tx\\0<\\g\\0 + r. (9) 

Thus T: Q —•> Q. Finally, we will show that T is weakly sequentially continuous. 
To see this, let {xn}n

<L1 be a sequence in Q and let xn(t) —> x(t) in Ew for 
each t G [0,1]. Recall ([20]) that a sequence {xn}n

<)
=1 is weakly convergent in 

C[I, E] if and only if it is weakly pointwise convergent in E. Fix t G I. From 
the weak sequential continuity of /(£, •), the Lebesgue dominated convergence 
theorem (see assumption (c)) for the Pettis-integral ([13; Corollary 4]) implies 
for each <p € E* that <p(Txn(t)) -.> cp(Tx(t)) a.e. on 7, Txn(t) -•» Tx(t) in Ew. 
So T: Q -» Q is weakly sequentially continuous. The proof is now completed. 

• 
Remark. As in the proof of [17; Theorem 2] we can generalize the assumption 
(c) in Theorem 3.1 to the form 

(c*) There exists a null subset N of I such that the weak closure of 
f((I/N) x Br) is weakly compact in E. 

In the remaining part of this paper, we will consider the Cauchy problems 
(3) and (4) as a special cases. 

DEFINITION. A function x: I -> E is said to be a pseudo-solution of (3) 
(cf. [4]) if 

(a) x(-) is absolutely continuous, 
(b) x(0) = x0, 
(c) for each ip G E* there exists a null set N(tp) (i.e. N is depending on <p 

and mes(N(ip)) = 0) such that for each t £ N(<p) 

(<px)'(t) = ip(f(t,x(t))) (10) 

where x' denote the pseudo-derivative (see P e t t i s [4] or [22]). 

In other words by a pseudo-solution of (3) we will understand an absolutely 
continuous function such that x(0) = x0, and for each ip G E* , x(-) satisfies (10) 
a.e. on I. A strong (weak) solution of (3) is an absolutely (weakly) continuous 
function with strong (weak) derivative satisfying (3) a.e. on I. Each strong (or 
weak) solution is also a pseudo-solution. The converse is not (in general) true 
(cf. [4]). 

COROLLARY 3.1. Under the assumptions of Theorem 3.1. the Cauchy problem 
(3) has a pseudo-solution. In fact this solution is a strong solution. 

P r o o f . Putting a —j> 1, A = 1 and g(t) = x0 in equation (2), we get 
t 

x(t) = x0+ J f(s,x(s)) ds. (11) 
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From the definition of Q it follows that (as a -> 1) every solution x G Q 
wrill be absolutely continuous. Since / is Pettis integrable, then the existence 
of a pseudo-solution of (11) is equivalent to the existence of the solution of (3) 
(cf. [22; Sec. 8]). Moreover, since E is reflexive, E has the Radon-Nikodym 
property (cf. [7]) and [17; Corollary 6] implies that each pseudo-solution is a 
strong solution. D 

THEOREM 3.2. In Theorem 3.1 replace assumption (b) by the following: 

(bl) For each x G Er, /(• ,#(•)) is weakly continuous on I. 

Then Cauchy problem (4) has at least one solution x G C[I, E]. 

DEFINITION. A function x: I -» E is called a solution of (4) if 

(a) x is weakly differentiable and x' is weakly continuous, 
(b) x(0) = x0, 
(c) | = / ( t ,DVt ) ) , t e / . 

P r o o f . Putting a = 1 — /?, g(t) = 0 and A = 1 in the equation (2) and 
considering y: I —r Br be a solution, then y(-) satisfies 

y(t) = I^f(t,y(t)). (12) 

Operating by I& on both sides we obtain 

l"y(t) = Ilf(t,y(t)), t e l , 

but, / is weakly continuous in t on I (assumption (bl)) and it is well known that 
the integral of weakly continuous function is weakly differentiable with respect 
to the right endpoint of the integration interval and its derivative equals the 
integrand at that point (cf. [20]), therefore 

±lPy(t) = f(t,y(t)). 

Now, set 
x(t) = x0+ I?y(t) = x0+ Ilf(t, y(t)) , (13) 

then x(-) is weakly differentiable and 

X(0) = XQ, ^=f(t,y(t)), 

since / is weakly continuous in t on J , I1_^^f exists. Moreover, we have 

D^x(t) = I^^ = I^f(t,y(t))=y(t). 

Then any solution to equation (12) will be a solution to the Cauchy problem (4), 
this solution is given by equation (13). This completes the proof. D 
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