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THE CSAKANY THEORY OF 
REGULARITY FOR FINITE ALGEBRAS 

IVAN CHAJDA 

(Communicated by Tibor Katriňák) 

ABSTRACT. If an algebra A has at most five elements, then A is congruence 
regular if and only if there exists a ternary functions compatible with Con A such 
t h a t p(x, y, z) = z if and only if x = y. If A has six elements, the assertion does 
not hold. 

A. P i x 1 e y [5] posed the following problem: If some congruence property 
is characterized by a MaPcev condition in varieties of algebras, can this Mal'cev 
condition (modified in a natural way) be used also for characterizing this con
gruence property in the case of a single algebra? For arithmeticity, he solved 
himself this problem affirmatively in [5]. Since every congruence identity can be 
characterized in varieties by a Mal'cev condition (see [6]), H.-P. G u m m asked 
for which other congruence identity there exists a Mal'cev theory in the case of 
a single algebra. The answer is "for none" in a general case, see [4]. However, for 
small algebras, permutability of congruences can be characterized by a Mal'cev 
theory, see e.g. [1] for at most four-element algebras, and [2] for at most eight-
element algebras (the answer is negative for at least 25-element algebra). This 
motivated our effort to proceed similar investigations for congruence regularity 
(which is not a congruence identity). Although some Mal'cev-type characteri
zations of regular varieties are known, see e.g. [7], we prefer another but more 
simple term condition given by B. C s a k a n y in [3]. At first we recall: 

DEFINITION. An algebra A is regular if 0 = (j) for 0, <\> £ Con .A whenever 
they have a congruence class in common. A variety V is regular if each A E V 
has this property. 

CSAKANY'S THEOREM. ([3]) For a variety V, the following conditions are 
equivalent: 

(1) V is regular] 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 08A30. 
K e y w o r d s : Regular algebra, Finite algebra, Term condition. 
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(2) there exist ternary terms pi(x,y, z),. .. )pn(x1 y, z) such that 

[p1(x,y,z) = zA---Apn(x,y,z) = z] <=i> x - y . 

We are going to investigate if such Csakany-type conditions can characterize 
regularity of a single algebra. 

Let A be an algebra, 6 G Con A and / : An —> A be an n-ary function. We 
say that / is compatible with 6 if ( / ( a i , . . . , a n ) , / ( b i , . . . , bn)) G 6 whenever 
(a^, bi) G 6 for i = 1,. . . , n. 

Denote by LU the least and by i the greatest congruence of A. 

LEMMA 1. Let A be an at least two-element algebra, and 8 G Con A, 0 ^ LJ . 
If 6 has a one-element congruence class, then there does not exist a ternar^ 
function p: A3 —> A compatible with 6 such that 

p(x,y,z) = z <=> x - y . 

P r o o f . Suppose [C]Q = {c} for some c G A. Let p(x,y z) be a ternary 
function compatible with 9 such that 

P(*,y,z) = z <=> x - y . 

Since 0 £ UJ , there exists a congruence class B of 6 contain ng at least t\ 
diffei it elements, say a and b. Since p(a,a,c) = c, we have 

(p(a, b c), c) - (p(a, 6, c), p(a, a, c)) G <9 , 

^ h * p(a, 6, c) = c, which is a contradiction. 

i LOREM. Let A be a finite algebra with card A _ 5. The following co dit o 
i qmvalent: 

(1) A is regular, 
(2) there exists a ternary function p: A3 —» A comp tible w^th every co 

gruence of A such that 

p(x,y,z) = z <==> x = y . 

P r o o f . For A with card A < 2, the assertion is trivial, 
(a) Suppose card A = 3, i.e. A = {a,b,c}. If A is regular, then evidenth 

Con A = {cj,v}. Define p: A3 —> A by the rules 

p(x,y,z) = { 

z if x = y , 

x if x 7̂  y a n ( l x 7^ z > 

I i/ if x 7-= y ot herwise . 
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Trivially, p is compatible with every congruence of Con A and satisfies (2). 
Conversely, let A fail to be regular. Without loss of generality, suppose the 

existence of 8 E Con A such that 6 has two classes, namely {c} and {a, b}. By 
Lemma 1, we obtain a contradiction with (2). 

(b) Let card A = 4, A = {a,b,c,d}. If A is regular, the desired compatible 
function can be defined by the rule 

= z for x = y , 

£ [z\e(x,y) ~ {*} otherwise, 

since Con A C {uo, /., #i, c?2, #3}, where 

#1 has classes {a, b} , {c, d} , 

#2 has classes {a, c} , {b, d} , 

#3 has classes {a, d} , {b, c} . 

It is easy to show that p is compatible with every congruence of Con A. 
If A fails to be regular, then there exists 6 E Con A such that 9 ^ uo, and 6 

has a one-element class. By Lemma 1, we obtain a contradiction. 
(c) Let card^l = 5, A = {a,b,c,d,e}. If A is regular, then the lattice 

Conyl cannot include any congruence 0, 6 ^ UJ , having a one-element class, i.e. 
Con A C {ou,L,6i}, where every 9i has one two-element and one three-element 
class. There exist 10 of such 0i on the underlying set of A, however, since A is 
regular, Con A contains at most one of them (because for i 7̂  j , 6iC\6j 7̂  a;, and 
#; D c9j contains a one element class). Suppose that #1 has classes C = {a,b,c} 
and D = {d, e} . Define p i : A3 —> 4̂ by the rules 

pi(x,x,z) = Z, 

Pi(x,У,d) = e l 

pľ(x,y,e) = dj 

pi(xьx2,x3) =Pi(^7г(i),^7r(2)^7r(з)) foг X i , Ж 2 Є C , X 3 G J D , 

for x / y , x, y eC , 

pi(x,у,a) = b' 

Pi(x,y,Ь) = c > 

px(x,y,c) = aÀ 

For x,y,z E C we put 

and every permutation 7r of {1,2,3}, 

for x, y E D , x ^ y . 

px(x,y,z) = x for z = 1/, 

p1(x,y,z) = v for z ^ H , 

where v G C , z ^ v ^ y . 
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Since D has only two elements, the case x,y,z G D yields p(x, y, z) = p(x, x, z), 
which was solved before. 

It is a routine calculation to verify that pi is compatible with 9\ (and, 
trivially, also with u), i). Permuting the elements a,b,c,d,e, we obtain the 
functions pi for each 9{ (i = 1 , . . . , 10). 

If A is not regular, then again Con A has to contain a congruence 9, 9 ^ UJ , 
with a one-element class; thus we obtain a contradiction by Lemma 1. • 

For algebras with more than 5 elements, the conditions (1), (2) of our The
orem need not be equivalent. The essential part of this statement is contained 
in the following: 

LEMMA 2. There exists a six-element non-regular algebra with a ternary func
tion p: A3 —» A satisfying (2) of Theorem. 

P r o o f . Let A = {a, b, c, d, e, / } and p be a ternary operation on A as 
follows: 

p(x, x,z) = z for each x,z £ A, 

and for each x,y E A, x ^ y, we put 

p(x, y,a) =b, p(x, y,c) = d, p(x, y,e) = f , 

p(x, y,b) = a , p(x, y,d) = c, p(x, y,f) = e . 

Let 9, (f) be equivalences on A determined by their partitions: 

9 has classes {a, b} , {c, d} , {e, / } , 

(f) has classes {a, b} , {c, d, e, / } . 

Then 9, (/> are congruences on the algebra (A,p), and p(x,y,z) satisfies (2) of 
Theorem (trivially, p is compatible with every congruence on (A,p) because it 
is the operation of this algebra). Moreover, (A,p) is not regular because two 
different congruences 9, cu have a common class {a,b}. • 
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