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SOME MODIFICATIONS OF THE 

CONGRUENCE EXTENSION PROPERTY 

IVAN CHAJDA 

(Communicated by Tibor Katrindk) 

ABSTRACT. Hamil tonian algebras satisfying the Congruence Ex tension Prop
erty are characterized by the strong Congruence Ex tension Proper t y A char
acterization of classes of algebras satisfying the Unique Congruence Extension 
Proper ty is given. 

The concept of congruence extension property was firstly investigated by 
A. D a y [3]: An algebra A satisfies the Congruence Extension Property (briefly 
CEP) if for every subalgebra B of A and each 9 G Con B there exists <fi G Con A 
such that <j>\j^ = 6\ the congruence <j> is called an extension of 0. A variety Y of 
algebras satisfies CEP if each A G Y has this property. Varieties satisfying CEP 
are in connection with the co called Hamiltonian Varieties, see [5]: an algebra 
A is Hamiltonian if every its subalgebra is a class of some congruence on A. 
A variety Y is Hamiltonian if each A G Y has this property-

It was proven by E . W . K i s s [4] that every Hamiltonian variety satisfies 
CEP . The converse implication does not hold, see e.g.: 

E x a m p l e 1. Let L = {0, a, 1} be a three element lattice, i.e., 0 < a < 1 . 
Thus L is distributive and, by [3], L satisfies CEP . On the other hand, S = {0,1} 
is a sublattice of L but it cannot be a class of any 8 G Con L since S is not a 
convex subset of L . Thus L is not Hamiltonian, and hence also the variety of 
all distributive lattices (which satisfies CEP) is not Hamiltonian. 

Moreover, the theorem of E . W . K i s s does not hold for a single algebra: 

E x a m p l e 2. Let A = {a, 6, c, d}, and A = (A, •, c) be an algebra of the 
type (2,0), i.e., c is the miliary operation of A and • is given as follows: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 08A30. 
K e y w o r d s : Congruence Ex tension Proper ty, Hami l tonian algebra. 
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a b c d 

a b b c b 

b b a c c 

c c c c a 

d a b c d 

Evidently, A has exactly three subalgebras, namely {c}, S = {a, b, c} and 
the whole A. Then {c} is the class of identity congruence and A is the class of 
Ax A. Moreover, 5 is a class of 9 G ConAL determined by its classes {a,b,c}, 
{d}. Hence A is Hamiltonian. On the contrary, we show that A does not satisfy 
CEP. The equivalence </> on {a,b,c} determined by its classes {a,b}, {c} is 
clearly a congruence on S. Suppose the existence of ty G Con A such that 
tp\g = (j). Since (a,b) G </>, also (a,b) G if;. Further (d,d) G if), thus also 

(6,c) = (a-d, b>d) E ip. 

Since b, c G S, we obtain (b, c) G if>\s^ but (b,c) £ <f>, which is a contradiction. 

For the sake of characterizing Hamiltonian algebras satisfying CEP, let us 
firstly recall from [2]: an algebra A satisfies the Strong Congruence Extension 
Property (briefly SCEP) if for every subalgebra B of A and each 9 G Con B 
there exists 4> G Con .A with [b]e = [b]</> for each b G B. A variety y satisfies 
SCEP if every A of V has this property. It was proven in [2] that a variety 
r satisfies SCEP if and only if Y is Hamiltonian. Since SCEP implies CEP, 
and the algebra A in Example 2 is Hamiltonian, but it does not satisfy CEP, 
and thus it also does not satisfy SCEP, the analogous theorem is not valid for a 
single algebra. However, we can prove: 

THEOREM 1. For an algebra A, the following conditions are equivalent: 

(1) A satisfies SCEP; 
(2) A is Hamiltonian and satisfies CEP. 

P r o o f . 
(1) ==> (2): Let B be a subalgebra of A. Put 9 = B x B G C o n B . By 

SCEP, there exists cf> G Con A with B = [b]$ = [b]<p for each b G B, i.e., the 
subalgebra B is a congruence class of </>, thus A is Hamiltonian. Since A satisfies 
SCEP, it also satisfies CEP. 

(2) =-=> (1): Let A be Hamiltonian and satisfies CEP. Let B be a subalgebra 
of A and 9 G C o n S . By CEP, there exists 4> £ Con A with (f>\g = 0. Since 
A is Hamiltonian, B is a block of some ip G Con A. Put 9* = </> H V>- Then 
[6]^ = [b]^ n [b]v, = [b]0 n 5 = [b]# for each b G B , thus A satisfies SCEP. • 

252 



SOME MODIFICATIONS OF THE CONGRUENCE EXTENSION PROPERTY 

We can introduce another modification of CEP: an algebra A satisfies the 
Unique Congruence Extension Property (briefly UCEP) if for every subalgebra 
B of A and each 9 G ConF? there exists a unique (j) G Con A such that <f>\g = 9. 
A class ^ of algebras satisfies UCEP if each i G ^ has this property. 

Let A be an algebra. Denote by UJA the identity relation on A, i.e., (x, y) £LUA 
if and only if x = y. 

LEMMA. Let an algebra A has a one-element subalgebra. A satisfies UCEP if 
and only if A is a one-element algebra. 

P r o o f . Let A satisfies UCEP and E be a one element subalgebra of A. 
Then 

UE =UA\E = A x A\E 

implies UA = A x A, which gives card .A = 1. The converse implication is trivial. 
D 

E x a m p l e 3. Let A = ({a, 6, c}, •) , where the binary operation • is given 
as follows: 

a b c 

a b a c 

b a a a 

c c c b 

Evidently, A has the only one subalgebra different from A, namely B = 
{a, b}. Since B has exactly two elements, Con B = {U>B, B x B}. Prove that A 
satisfies UCEP. Clearly LJB = &A\B an<^ B x B = A x A\g. It \s easy to verify 
that Con A = {uA, Ax A}, hence UCEP is evident. 

THEOREM 2. Let ^ be a class of algebras closed under subalgebras and ho-
momorphic images. The following conditions are equivalent: 

(1) <*f satisfies UCEP; 
(2) ^ has CEP and for each A G ^ and every subalgebra B of A, the 

congruence UJB has the unique extension UJA G Con A. 

P r o o f . (1) ==-» (2) is trivial. Prove (2) = > (1): 
Let A £&, B be a subalgebra of A and 9 G Con B. Since ^ satisfies CEP, 

there exists an extension of 9 onto the whole A. Suppose 0, ip G Con A with 

<f>\B=0 = <ij>\B. 

Clearly also ((f) n VOlF? = #• Hence, we can suppose (/> Q ip without loss of gen
erality. Since ^ is closed under homomorphic images, also A/(j) G ^ . Consider 
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the factor congruence ip/4> on the factor algebra D = A/<\>. Clearly C = B/(f>\g 
is a subalgebra of A/(/> and I/J/<I>\Q = ooc • By (2), it implies ip/<j> = CJD , thus 
t/> = <f> proving UCEP . D 
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