Mathematic Slovaca

Michal Fečkan

Note on a Poincare map

Mathematica Slovaca, Vol. 41 (1991), No. 1, 83--87

Persistent URL: http://dml.cz/dmlcz/130401

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTE ON A POINCARÉ MAP

MICHAL FEČKAN

Abstract

We construct a C^{r-1}-vector field, the flow of which gnerates a C^{r} perturbation of a given C^{r}-Poincaré map.

Recently M. Medved [1] has constructed a C^{r-1}-vector field, the flow of which generates a C^{\prime}-perturbation of a given C^{r}-Poincaré map. He has used a surjective mapping theorem, which is a corollary of the Nash-Moser implicit function theorem. We give in this paper a simple proof of this theorem using only the implicit function theorem. We study also a similar problem which solves the question whether a local mapping can be imbedded into a local flow.

The first part

We shall prove our main result (see Theorem 1.1) of this paper. Let X be a compact C^{r}-manifold, $\infty \geqq r \geqq 2$. Let us denote the set of all C^{r}-vector fields on X by $\Gamma^{r}(X)$. We assume that $v \in \Gamma^{(}(X)$ has a periodic orbit which passes through a point x_{0}. By the small flow box lemma [2] there is an open neighbouhood U of x_{0} and a C^{r}-diffeomorphism $G: U \rightarrow \mathbf{R}^{n}$ such that $x_{0} \in U$, $G\left(x_{0}\right)=0 \in \mathrm{R}^{n}$ and the vector field defined by v on $G(U)$ has the form

$$
\begin{aligned}
x^{\prime} & =\frac{\mathrm{d}}{\mathrm{~d} t} x=1 \\
y^{\prime} & =0
\end{aligned}
$$

where $x \in \mathbf{R},|x| \leqq 2, y \in \mathbf{R}^{n-1},|y| \leqq 2$.
We can suppose that for the sets $V_{1}=G^{-1}(\{0\} \times V)$ and $V_{2}=G^{-1}(\{1\} \times V)$ there is a quasi-Poincare map, where V is some open neighbourhood of $0 \in \mathbf{R}^{n-1}$. It means that there exists a mapping $\bar{P}: V_{2} \rightarrow V_{1}$ such that

AMS Subject Classification [1985): Primary 58F25, Secondary 58F30
Key words: Vector field, Poincaré map
$\bar{P}(\bar{x})=\Phi\left(t_{0}, \bar{x}\right)$ for each $\bar{x} \in V_{2}$ and some $t_{0} \in \mathbf{R}$ with the property $\Phi(t, \bar{x}) \notin$ $\notin V_{1}$ for $0 \leqq t<t_{0}$, where $\Phi(t, \bar{x})$ is the flow for v. By $P: V \rightarrow V$ we denote the representation of \bar{P} in these new coordinates (x, y). Since v has the above simple structure on $G(U)$, we note that the mapping P is a Poincare map [1] of v of our periodic orbit for the cross section V_{2} in the coordinates $(1, y)$. Now we take a mapping $h: \mathbf{R} \rightarrow \mathbf{R}$ such that

1. $h \in C^{\infty}, h(0)=0, h(1)=1$
2. there exists $d>0$ such that $h^{\prime}(t)=0$ for $t<d$ or $t>1-d$. It is clear that such a mapping exists.

Let $W_{1}, W_{2}, W_{3}, W_{4}$ be open neighbourhoods of $0 \in \mathbf{R}^{n-1}$ such that

$$
W_{4} \subset \bar{W}_{4} \subset W_{3} \subset \bar{W}_{3} \subset W_{2} \subset \bar{W}_{2} \subset W_{1} \subset \bar{W}_{1} \subset V, P\left(W_{4}\right) \subset W_{3}, P^{-1}\left(W_{1}\right) \subset V
$$

Let us consider a C^{r}-mapping $f: V \rightarrow V$. If f is sufficiently C^{1}-small (i.e. $|f|$, $|\mathrm{D} f().| \ll 1$ on V, then for each $t \in \mathbf{R}$ the mapping $Q_{t}(z)=z+h(t) \cdot f\left(P^{-1}(z)\right)$, $Q_{1}: W_{1} \rightarrow V$ is a diffeomorphism with the property $Q_{t}\left(W_{1}\right) \subset W_{2}$ and $Q_{t}\left(P\left(W_{4}\right)\right) \subset W_{3}$.

Let \bar{g} be a C^{x}-function $\bar{g}: V \rightarrow\langle 0,1\rangle$ such that

$$
\begin{aligned}
& \bar{g}(\bar{x})=0 \text { for } \bar{x} \notin W_{2} \\
& \bar{g}(\bar{x})=1 \text { for } \bar{x} \in W_{3} .
\end{aligned}
$$

Then we define the mapping $g: \mathbf{R} \times V \rightarrow V$

$$
\begin{array}{ll}
g(t, \bar{x})=h^{\prime}(t) \cdot \bar{g}(\bar{x}) \cdot f\left(P^{-1} Q_{t}^{-1}(\bar{x})\right) & \text { for } \bar{x} \in W_{2} \\
\bar{g}(t, \bar{x})=0 & \text { for } \bar{x} \notin W_{2} .
\end{array}
$$

Using the mapping g we define the vector field v_{1} as follows:

$$
\begin{aligned}
& v_{1}=(1, g(x, y)) \text { in the coordinates }(x, y) \in G(U) \\
& v_{1}=v \text { on } X \backslash U .
\end{aligned}
$$

Since $g(x, y)=0$ on the boudary of $G(U), v_{1}$ is well defined. Note that there is the loss of the derivative of v_{1} due to the transformation G, i.e. $v_{1} \in \Gamma^{r-1}(X)$. We know that if $\bar{x} \in W_{4}$, then $Q_{t}(P(\bar{x})) \in W_{3}$ and, therefore, the function $y(t)=$ $=P(\bar{x})+h(t) \cdot f(\bar{x}), x(t)=t$ satisfies the equation

$$
x^{\prime}=1, y^{\prime}=g(x, y)
$$

with the initial condition $x(0)=0, y(0)=P(x)$.
Indeed, we obtain

$$
y^{\prime}(t)=h^{\prime}(t) \cdot f(\bar{x})=g\left(t, Q_{t}(P(\bar{x}))=g(t, y(t))\right.
$$

On the other hand

$$
y(1)=P(\bar{x})+h(1) \cdot f(\bar{x})=P(\bar{x})+f(\bar{x})
$$

for each $\bar{x} \in W_{4}$. Since $v_{1}=v$ on $X \backslash U$ and $v_{1}=(1, g(x, y))$ in the coordinates $(x$, $y) \in G(U)$, we see that the Poincare map of v_{1} of our periodic orbit for the cross section $G^{-1}\left(\{1\} \times W_{4}\right) \subset V_{2}$ in the coordinates $(1, y)$ has the form $\bar{x} \rightarrow P(\bar{x})+f(\bar{x})$.
Thus we obtain the following
Theorem 1.1. Let X be a C^{r}-manifold $(\infty \geqq r \geqq 2)$ and let $v \in \Gamma^{r}(X)$ be a C^{r}-vector field on X with a periodic orbit θ and $x \in \theta$. Then we can define the Poincaré map $P: V \rightarrow V$ where V passes through x transversally to θ [1]. If $W \subset \bar{W} \subset V$ is a small neighbourhood of x in V, then there exists a C^{1}-neighbourhood U of the mapping P in $C^{r}(V, V)$ and a C^{0}-mapping $S: U \rightarrow \Gamma^{r-1}(X)$ such that if $P_{1} \in U$, then $P_{S\left(P_{1}\right)} / W=P_{1}$, where $P_{S\left(P_{1}\right)}$ is the Poincare map of $S\left(P_{1}\right)$ for the cross section V.

The second part

Let H be a Hilbert space. We consider the set $M^{r}, \infty \geqq r \geqq 1$, $M^{r} \subset\left\{(f, V), f \in C^{r}(V, H), V\right.$ is a connected open neighbourhood of $0 \in H, f(0)=0\}$
such that $(f, V) \in M^{r}$ if and only if there exists an open set $V_{1}, V \subset V_{1}$ and a C^{r}-mapping $g: I \times V_{1} \rightarrow H$ for $I=(-2,2)$ with the following property

$$
\begin{align*}
& \text { If } y^{\prime}=1, z^{\prime}=g(y, z), y \in I, z \in V_{1} \tag{2}\\
& y(0)=0, z(0)=x \in V
\end{align*}
$$

then the solution $z(., x)$ of the equation (2) satisfies

$$
z(1, x)=f(x) .
$$

Hence M^{r} is the set of all mappings $f: V \rightarrow H, f \in C^{r}$, which can be imbedded into local flows, where V has the above properties. We shall give assumptions which guarantee that a mapping $f: V \rightarrow H, f \in C^{r}$ and $f(0)=0$ belongs to M^{r} for some neighbourhood $V \subset H$ of 0 . By the above small flow box lemma we can consider for a fixed $(f, v) \in M^{r}$ that the equation (2) has the formy $y^{\prime}=1$, $z^{\prime}=0$ on $I \times V$. Thus using similar arguments as in the previous section we obtain the following

Theorem 2.1. If $(f, V) \in M^{r}$, then $(f+q, W) \in M^{r-1}$ for a small neighbourhood W of $0, W \subset \bar{W} \subset V$ and $a C^{1}$-small mapping $q \in C^{r}(V, H), q(0)=0$ (i.e. $|q|$, $|\mathrm{D} q().| \ll 1$ on V.
Furhter, by (2) we have

$$
\begin{align*}
& \mathrm{D}_{x} z^{\prime}(t, 0)=\mathrm{D}_{z} g(t, z(t, 0)) \mathrm{D}_{x} z(t, 0) \\
& \mathrm{D}_{x} z(0, x)=\operatorname{Idenity} \tag{3}
\end{align*}
$$

It is well known [3, p. 280] that $\mathrm{D}_{x} z(t, 0)$ is invertible for each $t \in(-2,2)$ and moreover, $\mathrm{D}_{x} z(0,0)=\operatorname{Identity}, \mathrm{D}_{x} z(1,0)=\mathrm{D} f(0)$.

Reversely, let us consider a C^{∞}-mapping $B:(-2,2) \rightarrow \mathscr{L}(H, H)$ such that $B(0)=$ Identity and $b(t) \in \mathscr{L}^{I}(H, H)=\left\{A \in \mathscr{L}(H, H), A^{-1} \in \mathscr{L}(H, H)\right\}$ for each $t \in(-2,2)$. Then the equation $z^{\prime}=A(t) z$ with the initial condition $z(0)=z_{0} \in H$ has the solution $z(t)=B(t) z_{0}, t \in(-2,2)$, provided that $A(t)=$ $=B^{\prime}(t) \cdot B^{-1}(t)$. Hence $(B(1), h) \in M^{\infty}$, and by Theorem 2.1 we obtain

Theorem 2.2. Let $f: V \rightarrow H$ be a C^{r}-diffeomorphism ($\infty \geqq r \geqq 2$), with properties $0 \in V \subset H, f(0)=0$ and V has the above properties. Then $(f, W) \in M^{r}$ for some $W \subset V$ if and only if $\mathrm{D} f(0) \in$ Comp Identity, where Comp Identity is the arcwise connected component of Identity in $\mathscr{L}^{\prime}(H, H)$.

Let us assume that the mapping $g \in C^{\infty}$ (see (2)) is defined on $\mathbf{R} \times V_{1}$ and 1 -periodic in y. Then by (3) we obtain that $z(t+1)=z(t, 0)$ and

$$
\mathrm{D}_{\mathrm{z}} g(t+1, z(t+1,0))=\mathrm{D}_{\mathrm{z}} g(t, z(t, 0)) .
$$

Hence $\mathrm{D}_{x} z(t, 0)$ satisfies the equation (3) with the 1-periodic map $\mathrm{D}_{z} g(t, z(t, 0))$. Reversely, if a competent mapping (see (2)) of $f,(f, V) \in M^{\circ}$ is defined on $R \times V_{1}$ and 1-periodic in y, then for a C^{1}-small $q \in C^{\infty}(V, H), q(0)=0$ the competent mapping (see (2)) of $f+q$ constructed in the proof of Theorem 2.1 is also 1-periodic in y. It follows from the fact that we used the implicit function theorem in the proof of Theorem 2.1. Using similar arguments as in the proof of Theorem 2.2 we obtain

Theorem 2.3. Let $(f, V) \in M^{x}$. If a competent mapping (see (2)) of f is defined on $\mathbf{R} \times V_{1}$ and 1 -periodic in y, then $\mathrm{D} f(0)=z(1)$, where $z($.$) is a fundamental$ solution of some linear differential equation $z^{\prime}(t)=A(t) z(t), \quad A \in C^{\kappa}$, $A(t+1)=A(t)$. Reversely, if $\mathrm{D} f(0)$ has this property, then $(f, W) \in M^{\times}$for some $W \subset V$ and a competent mapping (see (2)) off is defined for each $y \in \mathbf{R}$ and 1-periodic in y.

Let us assume that $0<\operatorname{dim} H<\infty$. It is well known that

$$
\text { Comp Identity }=\{A \in \mathscr{L}(H, H), \operatorname{det} A>0\} .
$$

Hence by Theorem 2.2 we obtain
Theorem 2.4. Let $f: V \rightarrow \mathbf{R}^{n}$ be a C^{r}-mapping ($\infty \geqq r \geqq 2$), where V is a neighbourhood of 0 and $f(0)=0$. Then f can be imbedded into a local flow, i.e. $(f$, $W) \in M^{r}$ for some $W \subset V$ if and only if $\operatorname{det} \mathrm{D} f(0)>0$.

REFERENCES

[1] MEDVEĎ, M.: Construction of realizations of perturbations of Poincaré maps. Math. Slovaca, 36, 1986, 179-190.
[2] IRWIN, M. C.: Smooth Dynamical Systems. Academic Press 1980.
[3] ŠILOV, G. J.: Matematická analýza. Alfa, Bratislava 1974.

Received December 22, 1988
Matematický ústav SAV Štefánikova ul. 49 81473 Bratislava

