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ADOMATIC AND IDOMATIC NUMBERS
OF GRAPHS

BOHDAN ZELINKA

E.J. Cockayne and S. T. Hedetniemi [1] have defined the domatic number
of a graph and also some related concepts, among others the adomatic number of
a graph and the idomatic one. Here we shall present some results concerning
adomatic and idomatic numbers. We consider finite undirected graphs without
loops and multiple edges. First we shall give definitions.

A dominating set in a graph G is a subset D of the vertex set V(G) of G with the
property that to each vertex x € V(G) — D there exists a vertex y € D adjacent to x.
A dominating set D of G is called indivisible if it is not a union of two disjoint
dominating sets of G. A partition of V(G), all of whose classes are dominating sets
in G, is called a domatic partition of G. The maximum number of classes of
a domatic partition of G is called the domatic number of G and denoted by d(G).
The minimum number of classes of a partition of V(G), all of whose classes are
indivisible dominating sets in G, is called the adomatic number of G and denoted
by ad(G). If there exists at least one domatic partition of G, all of whose classes are
independent sets, then the maximum number of classes of such a partition is called
the idomatic number of G and denoted by id(G). If no such partition exists, we put
id(G)=0. A graph G for which id(G) #0 is called idomatic.

First we prove some assertions concerning the adomatic number.

Proposition 1. A connected graph G has the adomatic number equal to 1 if and
only if it consists of one vertex.

Proof. If G consists of one vertex, the unique partition of its vertex set consists
of one class and this class is a dominating set in G. On the other hand, if ad(G) =1,
then V(G) must be an indivisible dominating set in G. If G is a connected graph
" with more than one vertex, then according to [1] its domatic number is at least
2 and there exists a partition { D;, ..., D4} of V(G), where d is the domatic number
of G and all classes of the partition are dominating sets in G. Then V(G) is the

d
union of two disjoint sets D;, | J D;, which are both dominating sets in G, thus it is
i=2
not an indivisible dominating set in G and ad(G)=Z2.
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Theorem 1. Let G be a disconnected graph without isolated vertices. Then
ad(G)=2.

Proof. Let H,, ..., Hi be connected components of G. As each of these
components has at least two vertices, its domatic number is at least 2. For each
i=1, ..., k choose a domatic partition &; of H; with the maximum number of
classes. In each 9; choose one class E; and by F; denote the set of all vertices of H;
not belonging to E.. Evidently E; is an indivisible dominating set and F; is

k k
a dominating set in H;. Now put D, = E,u{J F,, D.=F,ulJ E.. Evidently D, and
i=2 i=2

D, are dominating sets in G and D;n D, =. Suppose that D, is the union of two
disjoint sets A, A, which are both dominating sets in G. Each of the sets A, A,
must have a non-empty intersection with the vertex sets of all connected compo-
nents of G; thus let B,=A,nV(H,), B,=A,nV(H,). Then B,, B, are disjoint
dominating sets in H; and B,u B, = E,, which is a contradiction with the indivisibil-
ity of E,. We have proved that D; is an indivisible dominating set in G.
Analogously (using H: instead of H;) we prove that so is D,. Hence ad(G)=2.
According to Proposition 1 it cannot be 1, therefore ad(G)=2.
Before proving a further theorem we shall prove a lemma.

Lemma. Let u, v be two vertices of a connected graph G, Iet their distance be at
least 3. Then there exists a spanning tree T of G which contains all edges incident
with u and all edges incident with v. ~

Proof. Choose a shortest path P connecting ¥ and v in G; it contains exactly
one vertex adjacent to u and exactly one vertex adjacent to v. Let To be the
subgraph of G whose edge set consists of all edges of P, all edges incident with u
and all edges incident with v and whose vertex set consists of all end vertices of
these edges. As the distance between u and v is at least 3, the graph Ty is a tree.
Each circuit in G contains at least one edge not belonging to To, therefore it is
possible to destroy all circuits of G by successive deleting edges not belonging to To
and then a spanning tree T is obtained which contains T; as a subtree.

Theorem 2. Let G be a connected graph whose diameter is at least 3. Then
ad(G) =2.

Proof. Let u, v be two vertices of G whose distance is at least 3. Let T be
a spanning tree of G described in Lemma. We shall colour the vertices of T by the
colours 1 and 2. The vertex u will be coloured by the colour 1 and all vertices
adjacent to it by the colour 2. The vertex v will be coloured by 2 and all vertices
adjacent to it by 1. Now let P be the path described in the proof of Lemma. Let the
vertices of P be u = xo, xi, ..., xx = v and let its edges be xx;.; for i=0, 1, ..., k —1.
If k is odd, then x; will be coloured by 1 for i even and by 2 for i odd. If k is even,
then x; will be coloured by 1 for i even, i=k—2 and by 2 for i odd, i=k-3;
further xx_, will be coloured by 1 and xi by 2. Thus all vertices of T, are coloured.
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To each vertex y of T not belonging to T, there exists exactly one vertex z of To
whose distance from y in T is minimal. If this distance is even, we colour y by the
same colour as z, if it is odd, we colour it by the colour other than that of z. Let D,
(or D,) be the set of all vertices coloured by 1 (or by 2 respectively). Then
{D,, D,} is a domatic partition of T and also of G. Suppose that D, is not
indivisible. Then D is the union of two disjoint dominating sets A;, A, of G.
Exactly one of the sets A, A, contains u; without loss of generality let it be A;.
Then ‘A, does not contain # and no vertex of A, is adjacent to u (all vertices
adjacent to u belong to D). This is a contradiction with the assumption that A; is
a dominating set in G. We have proved that D is an indivisible dominating set in
G. Analogously we prove that so is D,. Hence ad(G)=2.

Theorem 3. Let a, n be integers such that 2=a=n—2 or 2=a =n. Then there
exists a connected graph G with n vertices such that ad(G) = a.

Proof. If 2=a =n, the required graph is the complete graph with n vertices.
Thus suppose 2=<a=n—2. Let V,, V, be two disjoint sets, let |Vi|=a, |V;|=
n—a. Let G(a, n) be the graph with the vertex set V= V,u V, in which two vertices
are adjacent if and only if at least one of them belongs to V;. Let-x;, x, be two
distinct vertices of Vi, let y be a vertex of V,. Consider the sets D, ..., D, such that
Dy ={x, y}, D:={x2}u(V>—{y}) and the sets D, ..., D, (if a=3) as one-elem-
ent subsets of V;—{xi, x2}. The sets D, ..., D, form a domatic partition of
G(a, n). Moreover, each of these sets is an indivisible dominating set in G(a, n);
this follows from the fact that neither {y}, nor V,—{y} is a dominating set. Hence
ad(G(a, n)) = a. Suppose that there exists a partition of the vertex set of G(a, n)
into less than a indivisible dominating sets. Then according to the Pigeon Hole
Principle at least one of these sets contains two distinct vertices of V. If we denote
it by E and the mentioned vertices by u, v, then E is the union of disjoint sets {u},
E — {u}. The set {u} is evidently dominating in G(a, n) and so is E — {u}, because
it contains a dominating set {v} as a subset. This is a contradiction with the
indivisibility of E. We have proved that ad(G(a, n))=a.

Theorem 4. If G is a connected graph with n vertices, n Z4, then ad(G) # n — 1.

Proof. Suppose that ad(G)=n—1 and let @ be a domatic partition of G with
n —1 classes. Then exactly one class of 9 consists of two vertices and all others are
one-element sets. As all of these sets are dominating in G, the graph G is either
complete, or obtained from a complete graph by deleting one edge. In the first case
ad(G) = n. In the second case G is isomorphic to the graph G(a, n) from the proof
of Theorem 3 for a=n—2 and thus ad(G)=n—2.

For n =3 the assertion does not hold. A path of the length 2 has 3 vertices and its
adomatic number is 2.

Now we turn to the idomatic number of a graph. E.J. Cockayne and S.T.
Hedetniemi [1] have suggested the problem to characterize idomatic graphs. We
shall give a simple characterization of them.

101



Proposition 2. A graph G is idomatic if and only if its vertex set V(G) is the
union of pairwise disjoint maximal independent sets.

Proof. Let- M be a maximal independent set in a graph G. Then M is
a dominating set in G ; otherwise there would exist a vertex x € V(G) — M adjacent
to no vertex of M and Mu{x} would be an independent set, which would be
a contradiction with the maximality of M. This implies the sufficiency of the
condition. On the other hand, if N is an independent dominating set in G, then itis
evidently a maximal independent set in G and this implies the necessity.

Proposition 3. Let G be an idomatic graph. Then

ad(G)=id(G)=d(G).

Proof. The inequality id(G)=d(G) is evident. Now let M be an independent
dominating set in G. As we have shown in the proof of Proposition 2, no proper
subset of M is dominating in M, because it is an independent set which is not
maximal. Hence M is an indivisible dominating set and this implies ad(G) = id(G).

Proposition 4. Let G be an idomatic graph. Then y(G) = id(G) and consequent-
Iy x(G)=d(G), where x(G) is the chromatic number of G.
The proof is left to the reader.

Theorem 5. Let c, d be integers. 2= c=d. Then there exists a graph G such that
id(G)=c, d(G)=d.

Proof. Let the vertex set of G be the union of disjoint sets X ={x1, ..., Xa-c+2},
Y={y1, ... Ya-c+2}> 2={21 ..., Z—2}. Two vertices of G are adjacent if and only if
they belong neither both to X, nor both to Y. Evidently { X, Y, {z:}, ..., {zc 2}} is
a partition of the vertex set of G, all of whose classes are independent dominating
sets. It has c classes and evidently there exists no such partition with more than ¢
classes, because any other independent set in G is a proper subset of X or of Y and
is not dominating in G. Hence id(G)=c. Now {{xi, y1}, ..., {Xd c+2, Ya-cs2}s
{z1}, ..., {z—2}} is a domatic partition of G with d classes. Any partition of the
vertex set of G with more than d classes would contain a class being a proper subset

of X or of y and such a class would not be a dominating set in G. Therefore
d(G)=d.
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AJOMATHNYECKVE U U[IOMATUYECKUE YUCJIA TPAPOB
Bohdan Zelinka
Pesome

JloMuHaHTHOE MHOXeCTBO B rpadpe G Ha3bIBaeTCsl HEPA3JIOXKHMMBIM, €CTH OHO He SIBJISETCS 00b-
€[IMHEHHEM JIByX HeNepeceKalolMXcsi AOMMHAHTHBIX MHOXeCTB B G. MMHMMallbHOE YMCIIO KJIaccoB
pa36uennss MHoxecTBa BepumH V(G) rpada G, Bce Kitacchl KOTOPOToO SIBISIOTCS HEPa3NoXUMbIMH
JAOMHHAHTHBIMU MHOXeCTBaMU B G, Ha3bIBaeTC afOMaTHYeCKMM uYucioM rpada G u oGo3HavaeTcs
yepe3 ad(G). MakcumanbHOe YMCIO KiaccoB pasGuenus MHoxecTBa V(G), Bce Kiacchl KOTOpOro
ABJISAIOTCA HE3aBUCUMBIMM [OMMHAHTHBIMM MHOXeCTBaMu B G, Ha3bIBaeTCH MIOMaTHYECKUM YHUCIIOM
rpada G u o6o3Havaercs yepe3 id(G). U3yyaioTes cBOWCTBa 3TUX YMCes.
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