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(Communicated by L'ubica Holá) 

ABSTRACT. Conditions are shown concerning a continuous open surjection / 
on the closed unit interval [0,1] under which the functional equation / ( u ( x , y)) = 
Ll(f(x)>f(y)) has no solution /x: [0,1] x [0,1] —> [0,1] among homogeneous means 
on [0,1]. 

A mean on a nonempty topological Hausdorff space X is a (continuous) map
ping m: X x X -» X such that m(x,y) = m(y,x) and m(x,x) = x whenever 
x,y e X. 

Various kinds of means and their basic properties have been discussed 
in A u m a n n ' s habilitation thesis [2] and [3]. A u m a n n [4], B a c o n [5], 
E c k m a n n [8], E c k m a n n , G a n e a and H i l t o n [9], and S i g m o n [11] 
have shown that there are wide classes of spaces which do not admit any mean. 
And although the concept of a mean is defined for an arbitrary topological Haus
dorff space, the most important space which admits a mean is the simplest one, 
viz. the closed unit interval [0,1] of reals. For some open questions concerning 
means on [0,1] see B a c o n [5; p. 13] and B a k e r and W i l d e r [6; p. 103]. In 
the present paper just means m on [0,1] will be discussed. 

Functional equations of the type 

f(n(x,y))=ix(f(x),f(y)), (1) 

with Lt given and / unknown, have been studied extensively (see e.g. A c z e 1 [1]). 
In this paper, however, we will consider (1) with / given and /i unknown, ex
actly as it is done in [6]. In this context, the equation is a functional equation 
in a single variable in the sense of the book by K u c z m a [10]. But unlikely 
theorems concerning equation (1) in [10], we do not assume that / is injective. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 39B22, 26B35. 
K e y w o r d s : closed interval, functional equation, homogeneous, mapping, mean, open. 
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In what follows all mappings are assumed to be continuous. For shortness we 
let I to denote the interval [0,1]. We will consider a mapping v\ I x I —> I such 
that 

v(x, x) = x for all x G I (2) 

and that the functional equation 

f{v{x,y)) = v{f{x),f{y)) (3) 

is satisfied for all x, y G I, where / : I —> I is a given mapping. Further, g\ I —> I 
will always denote a surjection defined by 

(2x if x€ [0,1/2], 
5 ( X ) = \ 2 - 2 X if xe [1/2,1]. ( 4 ) 

Some relations between the functional equation (1) (or (3)) and the mapping 
f = g were studied by W i l d e r [13] and by B a k e r and W i l d e r [6]. In 
particular, it is shown in [6] that if / = g, then the functional equation (1) has 
no solution ji among the means on [0,1]. This is a corollary to a more general 
result (see [6; p. 92, Theorem 5]) which runs as follows. 

5. THEOREM. (Baker and Wilder) / / a mapping v\ I x I —> I satisfies condi
tion 

v(x, x) = x for all x £ I (2) 

and the functional equation 

g("(x, y)) = v(g{x), g(y)) for x,yel, (6) 

then 
either v(x, y) = x for all x, y G / , 

or v(x,y) = y for all x , ? / G / . 

We apply the above theorem to show that the conclusion (7) holds true in 
the case when equation (6) is replaced by (3), where / is a mapping from I 
into 7, a restriction of which is similar to g in a sense that will be explained 
below, provided that the mapping v satisfies some additional conditions. Next, 
the obtained result will be applied to get (7) in case when (3) holds not necessary 
for / = g but for any member / : I -> I of a countable family of open mappings, 
provided that v is homogeneous. Recall that a mapping / : / - > / is said to be 
open if it maps open subsets of the domain onto open subsets of the range, and 
a mapping v\ I x I -> / is said to be homogeneous if for each constant t G [0,1] 
the equality 

v(tx,ty) = tv(x,y) (8) 

holds for every x,y G I. Observe that the means /i(^,y) on I defined by 
(x + y) /2 , y/xy, min(x,H) and max(x,H) are homogeneous, while ji(x,y) — 
min(x, y)/(l + \x — y\) is not. 
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Two surjective mappings fx: Xx -> Yx and f2: X2 -> Y2 between topologi
cal spaces are said to be equivalent provided that there are homeomorphisms 
hx: Xx -> X2 and hY: Yx -> Y2 such that f2ohx = hYofl. This concept gen
eralizes the condition saying that f2: [a, b] —> [a, 6] is a conjugate of / x : J -> J 
(considered in [6; p. 92]) in the sense that there is a homeomorphism h: I —r [a, 6] 
such that /x = /i""1 o f2oh. 

Now we formulate the main result of the paper. 

9. THEOREM. Let mappings v: I x I -» J and f: I -> J 6e 8uc/i £/ia£ 
i/(x, x) -= x /or a/Z x G J (2) 

and 
f(v(x,y)) = v(f(x)J(y)) for all x,y G J . (3) 

J/ Mere are subintervals [a, 6] and [c, d] = /([a, 6]) o/ J and homeomorphisms 
hx: I -> [a, 6] and /i2: [c, d] -» J w/iic/i satisfy the conditions 

0 = M( / | [a ,6 ] ) °V (10) 
/^(i/fop)) =^(/ii(x),/i1(y)) for all x,y e I, (11) 

*/([c,d]x[c,d])c[c,d], (12) 

h2(v(x,y))=v(h2{x),h2(y)) for all x,ye[c,d\, (13) 

£Aen 
either v(x, y) = x for all x, y G J , 
or l/(x,y) = y for all x,y € I. 

14. Remarks. 
1) The existence of homeomorphisms /i1 and h2 satisfying (10) denotes that 

the restriction / |[a,6]: [a.&] -> [c,d\ and the mapping g: I -> I defined by (4) 
are equivalent. 

2) Condition (12) is assumed to make functional equation (13) possible; more 
precisely, to be sure that the composition h2 o v is well defined. 

15. P r o o f of T h e o r e m 9. We apply Theorem 5. To this end it is enough 
to show that the assumed conditions imply that the mapping v under consider
ation satisfies functional equation (6). Put, for shortness, /0 = f\[a, b]- Let 
x,y € I, and observe the following sequence of equivalences. 

g(v(x,y)) = h2(/„(\ (v(x,-/)))) by (10) 

= h2(f0(v(h1(x),h1(y)))) by (11) 

= ^ ( / o ( M * ) ) . / o ( M v ) ) ) ) by (3) 

= " W / o ( M * ) ) ) > > - 2 ( / o ( M 0 ) ) ) ) by (12) and (13) 

= "(9(x),g(v)) by (10). 
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Thus v fulfills (6), so Theorem 5 can be applied, from which (7) follows. The 
proof is complete. • 

To present the above mentioned application of Theorem 9 we recall a count
able family of open mappings of I onto itself. Let a positive integer fc be given 
and let me { 0 , 1 , . . . , fc}. Define a surjection gk: I -> I by the following condi
tions: 

(a) if m is even, then gk{f) = 0, and if m is odd, then gk(f) = 1; 

(b) for each m, the restriction gk\[f,In^1] • [f, ^ r 1 ] -> J 

is defined as linear. 

Thus this restriction, and hence the mapping gk, is a surjection. Note that 
gk(0) = 0 and that gk(l) is either 1 or 0 according to fc is either odd or even. 
Observe that g1 is the identity and g2= g. Further, note that each gk is open. 

Now we apply Theorem 9 to prove the next result which is just the previ
ously mentioned extension of B a k e r and W i l d e r ' s Theorem 5 in which the 
condition demanding that v satisfies functional equation (3) with / = g = g2 

(see (6)) is weakened to one saying that v has to satisfy (3) with / = gk for an 
arbitrary fc > 2 provided that v satisfies a condition of homogeneity type. 

16. THEOREM. I/ a mapping v: I -> I is such that 

v(x,x) = x for all x G I , (2) 

and if for some integer fc > 2 and for all x,y G I it satisfies the functional 
equation 

9k{»{x,y)) =v{gk(x),gk(y)) (17) 

and the condition 

v{(2/k)x,(2/k)y) = (2/k)v(x,y), (18) 

then 
either v(x, y) = x for all x,y G I, 

or v(x, y) = y for all x,y G I. 

P r o o f . In Theorem 9 put a = 0, b = 2/fc, c = 0 and d = 1. Define 
hx: I -> [a,b] = [0, 2/fc] by hx(x) = (2/k)x for all x G I and take h2: I -> I 
as the identity, i.e., h2(x) = x for all x G / . We have to verify that all the 
assumptions of Theorem 9 are fulfilled. Indeed, (2) is assumed, and (17) stands 
for (3) with / = gk. It can easily be observed that g2 = (gk \ [0, 2/fc]) °hx, whence 
(10) follows. Further, (11) is an immediate consequence of the definition of hx 

and of (18). Finally, since [c, d] = [0,1] and since h2 is the identity, conditions 
(12) and (13) trivially hold. Thus Theorem 9 can be applied, so (7) follows as 
needed. • 
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19. R e m a r k . Note that if k = 2, then the coefficient 2/k equals 1, so the 
needed equality (18) turns into the identity. It is so because for k = 2 the 
theorem is a particular case of B a k e r and W i 1 d e r 's Theorem 5 of [6] which 
was proved without any homogeneity assumption. Thus the following question 
is natural. 

20. Ques t ion . Is condition (18) on the mapping v an essential assumption in 
Theorem 16 for k > 2? 

Since condition (18) is a very particular case of the homogeneity condition (8) 
for the mapping v, we get the following corollaries to Theorem 16. 

2 1 . COROLLARY. If a homogeneous mapping v: I x / -> I is such that 

v(x,x) = x for all x e l , (2) 

and if for some integer k > 2 and for all x,y G I it satisfies the functional 
equation 

9k(v(x>y)) = v{9k(x)>9k(y)) > (1 7) 

then 
either v(x,y) = x for all x,y e I, 

or v(x,y) = y for all x,y e I. 

22. COROLLARY. If k > 2 , then the functional equation 

9Mx>y))=K9k(x)>9k(y)) f°ral1 z . y e / (23) 

has no solution \i among means on I satisfying the condition 

/x((2/fc)x, (2/k)y) = (2/k)fi(x, y) for all x,y G I, (24) 

thus among homogeneous means on I. 

The next result is also a consequence of Theorem 16. 

25. COROLLARY. Given a closed bounded interval J, let a mapping ip: 
J x J —> J be such that 

ip(x,x) = x for all xEJ. (26) 

If there are a mapping f: J -» J with 

f{^(x,y))=^(f(x),f(y)) for all x,y G J , (27) 

and a homeomorphism h: I —j> J such that, for some k>2, 

gk = h-lofoh, (28) 
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and if the mapping v: I x I -» I defined by 

v(x,y) = h-1(ij;(h(x),h(y))) for x,yel (29) 

satisfies the condition 

v((2/k)x, (2/k)y) = (2/k)v(x, y) for all x,y G I, (18) 

then 
either I/J(X, y) = x for all x,y G J , 

or ip(x,y) = y for all x,y G J . 
(30) 

P r o o f . It is easy to verify that (26) and (29) imply (2). Further, we get 
(17) by the following sequence of arguments: 

gk(v(x,y))=h-l(f(h(v(x,y)))) by (28) 

= h-l(f(h(h-lty(h(x),h(y)))))) by (29) 

= h-l(f(*P(h(x),h(y)))) 

= h-1ty(f(h(x),h(y)))) by (27) 

= /z-1(^(/i(/i-H/(^))))^(^H/(^)))))) 

= v(h-1(f(h(x))),h-l(f(h(y)))) by (29) 

= v(9k(x)>9k(y)) by (28). 

Finally, condition (18) is assumed. Thus Theorem 16 can be applied, whence 
we conclude that alternative (7) holds. In the first case, if v(x,y) = x for all 
x,y G / , then for all x,y G J we have 

^(x,y) = h(v(h-\x),h-\y)))=h(h-l(x))=x. 

Similarly, in the second case, we find ip(x,y) = y for all x,y G J . Thus (30) 
follows and the proof is complete. • 

3 1 . Ques t ion . Does the conclusion (30) of Corollary 25 hold under a (more 
natural) assumption of a particular case of the homogeneity condition concerning 
the mapping ip instead of (18) for vl 

Recall the following characterization of open mappings of closed bounded 
intervals, which is due to W h y b u r n (see [12; p. 184, (1.3)]). 
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32. PROPOSITION. (Whyburn) A surjective mapping f:Jx -r J2 between 
closed bounded intervals Jx and J2 is open if and only if f is equivalent to 
gk : I —> I for some positive integer k. 

33. R e m a r k . In Corollary 25 the existence of the homeomorphism h: I -> J 
satisfying (28) for some k > 2 means that / is a conjugate of gk, so it is 
equivalent to gk. Therefore / is open by Proposition 32. 

Taking J = I in Corollary 25 and replacing ^ by v and v by v0 we get a 
stronger version of Theorem 16. 

34. PROPOSITION. Let mappings v: I x I —> I and / : / — > / be such that 

v(x, x) = x for all x G / , (2) 

and 
f(v(x,y))=v(f(x),f(y)) for all x,y e I. (3) 

If f is a conjugate of gk for some k > 2 and if for a homeomorphism h: I -+ I 
with 

gk=h~1ofoh, (28) 

the mapping v0: I x I —r / defined by 

^{x,y) = h-l(v(h(x),h{y))) for all x,y e I (35) 

satisfies the condition 

v0((2/k)x,(2/k)y) = (2/k)v0(x,y) for all x,y e I, (36) 

then 
either v(x, y) = x for all x, y G I, 

or v(x,y) = y for all xyy e I. 
(7) 

In the light of Proposition 32 and Remark 33 the following questions seem to 
be interesting. 

37. Ques t ion . Is the conclusion (7) true if v satisfies, besides (2), functional 
equation (3) for a fixed open mapping / : / - > / distinct from a homeomorphism 
(and, perhaps, a kind of homogeneity condition of the form (18) or (36))? 

38. Ques t ion . Is the result formulated in Corollary 22 true for all (not necess
ary homogeneous) means / i o n / ? 

39. R e m a r k . The methods presented in this paper were also successfully ex
ploited to produce corresponding versions of B a k e r and W i 1 d e r 's Theorem 4 
of [6; p. 92] and its extension due to W i l d e r [13] concerning inverse limit 
means. For details see [7]. 
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