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TOPOLOGICAL CONDITIONS FOR 
THE EXISTENCE OF FIXED POINTS 

IVAN KUPKA 

(Communicated by Lubica Holá) 

ABSTRACT. Let X be an arbitrary topological space. Let F: X —•> X be a 
(multi)function with closed graph. A sufficient condition for the existence of 
a fixed point of F is given. Topological and quasi-uniform approaches to con-
tractibility are compared. 

1. Introduction 

In this paper we give a topological generalization of the Banach contraction 
principle. We generalize the result published in [2], We prove that if X is an 
arbitrary topological space and F: X -> X is a feebly topologically contractive 
multifunction with a closed graph, then F has a fixed point. We compare our 
approach with the approach of M o r a l e s in [4], 

The present result differs from the old one ([2]) in several points. Instead of 
Hausdorff spaces we consider arbitrary topological spaces. Instead of continuous 
functions we consider functions with closed graphs. The contractivity condition 
is weakened and the idea used in proof is different and more simple. 

Before presenting results, we establish some terminology. 

DEFINITION 1. ([2]) Let X be an arbitrary topological space. Let / : X -» X 
be a function. Then / is said to be topologically contractive (in what follows 
t-contractive) if and only if 

(*) for every open cover c of X and for every couple of points a, b G X 
there exists n G N such that Vk > n 3P G c such that fk(a) G P and 
/*(&) eP holds. 

Now, we define a weaker contractivity condition. The topological contractivity 
means, that fk(a) and fk(b) are "near" for every k which is sufficiently large. 

AMS Sub jec t C l a s s i f i c a t i o n (1991): Primary 54H25; Secondary 47H10. 
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Instead, we will show that it suffices to assume a weaker concept: always, when 
we choose what it means "near" (in terms of an open cover), there exists at least 
one index k such that fk(a) and fk(b) are near one to another. 

DEFINITION 2. Let X be an arbitrary topological space. Let / : X —» X be 
a function. Then / is said to be feebly topologically contractive (in what follows 
f-t-contractive) if and only if 

(*) for every open cover c of X and for every couple of points a,!) G I 
there exists k G N such that there exists Pec such that fk(a) G P 
and fk(b) eP holds. 

2. Results 

THEOREM 1. Let X be an arbitrary topological space. Let f: X —> X be an 
f-t-contractive function with a closed graph. Then f has a fixed point. 

P r o o f . This is a consequence of Theorem 2. • 

We will prove our result in a more general setting, than announced in Theo
rem 1. First, we need the notion of a feeble contractivity for multifunctions. Let 
F: X -> X be a multifunction, let A C X. Let us denote F(A) = | J F(a). 

aEA 
Let z be an element of X , we denote F2(z) = F(F(z)) and, by induction, 
Fk(z) = F(Fk~1(z)) for every natural k, k > 3. We say that a point z G X is 
a fixed point of F if and only if z G F(z). 

DEFINITION 3 . Let X be an arbitrary topological space. Let F: X —> X be a 
multifunction. Then F is said to be feebly topologically contractive (f-t-contrac-
tive) if and only if (*) for every open cover c of X and for every couple of 
points a, b G X there exists k G N such that ~P G c such that Fk(a) C P and 
Fk{b)nP£Q holds. 

THEOREM 2. Let X be an arbitrary topological space. Let F: X —•> A" be 
an f-t-contractive multifunction with a closed graph. Then F has a fixed point. 
Moreover, if X is Tx then the fixed point is unique and if z is the fixed point 
then F(z) = {z}. 

P r o o f . 
I) Let X be an arbitrary topological space. Let us suppose, to obtain a 

contradiction, that F has no fixed point. Let us consider the space X x X 
with the product topology. In this case the set 0 = XxX — GvF is an open 
neighborhood of the diagonal {[x, x]; i G l J . S o we can define an open cover c 
of X as follows: c = {V ; V is open in X and V x V C 0} . Let us take a point 
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a € X and a point b G F(a). From f-t-contractivity of F we obtain: there exists 
k G N such that 3 P G c such that Fk(a) C P and Fk(b) n P ^ 0 holds. Since 
6 G F ( a ) , F*(b) C F* + 1 ( a ) holds so Fk+1(a) n P ^ 0 is true or, differently 
said, F( .F*(a)) n P ^ 0. But we know that Fk(a) C P , so F ( P ) n P ^ 0 holds, 
which gives G r F n P x P 7 - - 0 and G r F n O ^ 0. But this is a contradiction. 

II) Let X be a Tx space. Let 2 be a fixed point of F . Let there exist 
b G F(z) which is different from z. Let us define an open cover c of X by 
c = {X — {z}, X — {b}}. Since F is f-t-contractive, there exist P G c and 
k G N such that Fk(z) C P . From z G F(z) we obtain 2 G F * " 1 ^ ) , so 
{z, b} C F(z) CFk(z)CP. But this is impossible. 

Now, let us suppose that F has at least two distinct fixed points a and b. 
Now we know that F(a) = {a} and F(b) = {b}. Defining an open cover c of X 
by c = {X — {a}, X — {b}} and using the f-t-contractivity of F we obtain the 
same type of contradiction as above. • 

E X A M P L E 1. The condition F(a) C P in (*) in Definition 3 of f-t-contractivity 
cannot be replaced by F(a) D P 7-- 0. 

Let X = {1,2,3} with the discrete topology. Let F : X -> X be defined by 
F ( l ) = {2,3}, F(2) = {1,3}, F(3) = {1,2}. 

Then the graph of F is closed and 

(**) for every open cover c of X and for every couple of points a, 6 G X 
there exists k G N such that 3 P G c such that Fk(a) n P / 0 and 
Fk(b)nP£Q holds, 

since F 2 ( z ) = {1,2,3} for every z G X. But F has no fixed point. 

The function G: R - > R defined by G(x) = ( - o o , x - l ] U [ x + l, +00) Mx G R 
is an another example of a multifunction with closed graph which satisfies (**) 
and has no fixed point. The condition (**) is satisfied for k = 1 while Va, b G R 
G(a)nG(b)^<b. 

E X A M P L E 2. Let X = R with the usual topology. Let G: X -> X be defined 
by G(x) = {0,n} if x = ^ for some integer n > 1, G(x) = 0 otherwise. 

Let us define F: X —> X by F(x) = { —2(n-n)} ^or x ^ (^+1 ' n) anc* n 

even, F(x) = {§} for x G ( ^ r , £ ) and m odd, P ( ^ ) = { - ^ T I ) , - ^ , ^ } 
for every integer k > 1, F(x) = | for x > 1 and F(x) = {0} for x < 0. 

Both G and F have closed graphs and they are f-t-contractive. Their fixed 
point is 0. 

If we change slightly the definition of G by redefining only the value in the 
point 1 by G(l) = {0,1} (the old value being {0}) the situation changes. Firstly, 
0 and 1 are the fixed points of G and, secondly, G is no more f-t-contractive. 
To see that it suffices to consider a = 1, b = 0 and c = { R - {0}, R - {1}} . So, 
it can happen that Theorem 2 does not fit for quite a nice multifunction and it 
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works only for some of its selections. That is why we consider Theorem 1 as the 
main result of the paper. 

E X A M P L E 3. ([2]) Let X = {l , 5 , . . . , £,•••} U {0} with the natural metric 
inherited from K. Let us define / : X -> X as follows: 

/ (0) = 1 and / ( £ ) = j^i for k = 1,2,. . . . Then X is a complete metric 
space, / is t-contractive, but / has no fixed point. So, the condition of closedness 
of the graph of / in Theorem 1 is essential. 

3. Topology versus quasi-uniformity 

In this section we compare two approaches which permit to obtain fixed-
point theorems in non uniformizable spaces. The first one is the approach of 
M o r a l e s [4], He formulates his results in the quasi-uniform language. The 
second one is the purely topological approach of Theorem 2 of this paper. 

A quasi-uniformity on a set A" is a filter W on X x X satisfying the axioms 
of a uniformity, with the possible exception of the symmetry axiom. 

Every topological space is quasi-uniformizable (see [5]). 
Let (X, T) be a topological space. For each set G G T , we put SG = (G x G) 

U ((X - G) x X). 
Then the family S = {SG ; G G T] is a subbase for a quasiuniformity <$/(T) 

which in turn generates T. So T is the family of all subsets G of X such that 
for each x G G there exists U G <$/ such that U[x] C G ([5]). In what follows 
we denote by ty (T) this quasi-uniformity introduced by P e r v i n . 

DEFINITION 4. ([4]) Let (X, ty) be a quasi-uniform space. Let / be a function 
on X into itself. We say that / is occasionally small if, for every ordered pair 
(x, y) G X xX and every f / G ^ , there exists a positive integer n = n((x, y), U) 
such that (fn(x)Jn(y)) eU. 

DEFINITION 5. ([4]) We say that a topological space is US if every convergent 
sequence has a unique limit. 

DEFINITION 6. Let (X,fy) be a quasi-uniform space. According to D a v i s 
[1], a filter F on X is "Cauchy" if, for every U G W, there exists x = x(U) G X 
such that U[x] G F. M o r a l e s in [4] defines a Cauchy sequence in X to be a 
sequence {xn}™=1 in X whose corresponding Frechet filter is Cauchy, that is, 
for every [ / G ^ , there exist x = x(U) G X and a positive integer n = n(U) 
such that xm G U[x] for all m > n. If every Cauchy sequence in X converges, 
we say that X is sequentially complete. 

The following result was proved by M o r a l e s in [4]. 
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THEOREM 3. ([4; Theorem 1.1]) Let X = (X.fy) be a sequentially complete 
US quasi-uniform space and let f be a function on X into itself. If at least 
one iterate fk is an occasionally small contraction, then f has a unique fixed 
point u. Moreover, for arbitrary x0 G X lim (fk)n(x0) = u. 

n—KX> 

Let us compare Theorem 1 and Theorem 3. Is one of these theorems more 
general than the other one? We will give a partial answer to this question. 

If we restrict ourselves to Haussdorf spaces, the situation is clear. The as
sumptions of Theorem 3 imply the assumptions of Theorem 1. So for Hausdorff 
spaces Theorem 1 is more general. Let us show it. 

First of all, since h = fk is a contraction and since being a contraction in [4] 
is more than being continuous, since X is Hausdorff, the graph of h is closed-
One of the quickest ways to prove the f-t-contractivity of h (which works even 
for X non Hausdorff) could be the following one: 

Let a, 6 be two arbitrary elements of X, let c be an open cover of X. Since 
the assumptions of Theorem 3 hold, the function h has a fixed point x0 such 
that each of the following two sequences {hn(a)}n=1 and {hn(b)}^=1 converges 
to x0. There exists an open set U G c such that x0 G U. Then there exists a 
positive integer m such that the points /im(a), hm(b) are elements of U. So h 
is f-t-contractive. 

In our opinion the basic merit of the topological approach is that it does not 
require X to be sequentially complete. Any topological space is sufficient. Of 
course, the closedness of the graph of / reveals that X does have some qualities. 

The following example shows that in general the assumptions of Theorem 1 
do not imply the assumptions of Theorem 3, even when we restrict ourselves on 
domain spaces X which are compact metric. 

EXAMPLE 4. Let X = { ^ ; n is a positive integer} U { ^ + ^- ; n i s a positive 
integer} U {0}. We consider on X the the usual metric inherited from R. 

Let / : X -> X be defined as follows: 
for every positive integer n put 

/ ( I + -U---- and / ( - - )=-L--
J \n n

2J n J \nj n + 1 
/(0) = 0. 

The graph of / is closed since / is continuous, and it is easy to check the 
f-t-contractibility of / since for every x G X the sequence {fn(^)}°^=ll con
verges to 0. But / is not contractive with respect to the classic metric (nor to 
the uniformity W = {U£ ; e > 0} where Ue = {[a, b] G X x X ; \a - b\ < e}). 
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4. Occasionally small or f-t-contractive? 

The following examples try to give a clearer picture of the interdependence 
of the two notions mentioned above. 

EXAMPLE 5. If / : X -> X is f-t-contractive it need not be occasionally small 
even when X is a compact topological space. Let (X, T) be a topological space 
defined by X = (1,4), T = {(1,4), (1,3), (2,4), (2,3), (1,4)}. Let us define 
/ : X -> X as follows: /(2) = 3, f(x) = 2 for each x ± 2. 

Then / is f-t-contractive while for every open cover c of X the set X is an 
element of c. 

But / is not occasionally small with respect to the uniformity <%/(T). 
To see that, put 

* = 5(i,3) = ((1.3) x (1,3)) U (({1} U (3,4)) x (1,4)), 

B = 5 (2j4) = ((2,4) x (2,4)) U (((1,2) U {4}) x (1,4)), 

U = AnB, a = 2, 6 = 3. 

Of course U G ^/(T). Let n be a positive integer. Since for every posi
tive integer k we have {fk(a)Jk(b)} = {2,3}, the couples [fn(a)Jn(b)] and 
[fn(b), fn(a)] are not elements of U. 

EXAMPLE 6. If / : X —> X is occasionally small then it need not be f-t-contrac
tive. Let (J\T, fy) be a uniform space defined as follows: X = { l , § , | , | , - - - } , 
^ = {U£; e > 0} where U£ = {[a, b] G X x X ; \a - b\ < e}. 

Let us define / : X -> X as follows: / ( ^ ) = ^ ^ for every positive integer n. 
The graph of / is closed. It is easy to see that / is occasionally small. But / 

oo 

is not f-t-contractive. To show this, let us put c = (J {£} . Then c is an open 
k=l 

cover of X. Let a = 1, b = ^. Let n be an arbitrary positive integer. Since 
fn(a) 7-. / n (b ) , then there exists no set P G c such that {/n(a),/n(6)} C P 
holds. 
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