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TWO-STAGE REGRESSION MODEL

LUBOMIR KUBACEK

Introduction

A mixed linear model is characterized by the relations E(Y]B) = Xp,
p
Var(Y]9) = ) 9V, where Y is an n-dimensional random vector, fis an unk-
i<

nown k-dimensional parameter, fe Z* (k-dimensional Euclidean space), X is a
known n x k matrix, $ is a p-dimensional vector of variance components
(usually unknown), 8= (9,,...,9,)ed < #”, § is an open set, V,, i=1,...,p,
are known symmetric n X n matrices; E and Var denote mean value and
covariance matrix, respectively.

N A T N )
C, X2 o, z22

where the dimensions of the vectors Y, and Y, are n, and n, (n, + n, = n), the
matrices X,, X, are of the types n, x k,, n, x k, and the matrices X,,, X,, are of
the types n, x n,, n, X n,, respectively, then the regression model (Y, Xg, X) is
called the two-stage regression model ([1], [6], [7]).

The aim of the paper is to find the locally (or uniformly) best estimators of
the parameters f§ and & under some, in the following more excactly specified,
conditions.

1. Notations, definitions and auxiliary statements

Definition 1.1. The two-stage regression model is regular if the ranks of the
matrices X;, X,, Xy, £y are: R(X,) =k, <n;, RX,) =k, <ny,, R(E,)=n,
R(Zy) =n,.

In the following the matrices X,, and X,, are considered in the form
I, = otH, and X, = o7H,, where 67€(0,©), i =1, 2, are variance com-
ponents; thus & = (o7, 67) € (0, ©) x (0, 0) = 9. It is obvious that the matrix
X(9) is regular for each 3€ 8. The variance components are considered to be a)
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known, b) unknown, their ratio ¢ = o;/o} is known and c) unknown with the
unknown ratio Q.

The LBLUE (locally best linear unbiased estimator) of the parameter f,
i=1,2, based on the vector Y, is denoted by (Y, (if it exists); thus, e.g.,
BB (Y)). Y,] is the LBLUE of B, which is based on ,(Y,) and Y,. UBLUE
means the uniform BLUE (with respect to the variance components).

The LMVQUIE (locally minimum variance quadratic unbiased invariant
estimator) of the parameter o7 based on the vector Y, is denoted as 67(Y,) (if it
exists); estimators of the type Y’ A Y are considered only; thus 62[63(Y,), B (Y)).
Y] is the LMVQUIE of o3 based on 6{()), (V) and Y,; here Gi[6{(Y)),
B(Y), Y=k &(Y)+k[Bi(Y), YiIAIB(Y), Vi) (k,k, are properly
chosen constants, A is a properly chosen matrix).

Within the two-stage regression model the estimators are permitted to be
determined in the following sequence only:

B(Y), G(Y), GB(Y), 61(Y)), Yal, BiB(Y), YaIGi (YY),
dzz[ﬁl(yl)’ 612( YI)* YZ]}’ 622( YI’ YZ)’ 6'|2(Yla YZ)’ ﬁZ[YI* Y’I&IZ(YI’ Yz)-
&Y, YL LY., VilGi(Y,, V), ai(Y,, V).

The notation B[,(Y,), Y,lof, 62] means the (o}, 02)-LBLUE.
In what follows the normality of the vector Y is assumed; Y ~ N(Xf, X).
The symbol A~ means the generalized inverse (g-inverse) of the matrix A, i.e.
AA-A = A; A" is the Moore—Penrose g-inverse [4], A, y, is the minimum
N-seminorm g-inverse of the matrix A [4]. Ker (A) denotes the null-space of the
matrix A and #(A) denotes the column space of the matrix A.

N\
Lemma 1.1. In the model Y ~ N, (Xﬂ, i 9,\/,) the unbiased invariant estima-

tor of the vector $ exists if and only if the rlnatrix K?, (K"}, = Tr(MV,MV),
ij=1,...,p, M =1 — XX*, is regular. The matrix K" is regular if and only if
the matrices MV,M, ..., MV,M are linearly independent.

Proof. See [5].

Lemma 1.2. If K from Lemma .1 is regular, then the $,-LMVQUIE of the
vector 9 is §(Y) = Smzr,m+ 7> where

Smzm+ i, = Tr(MEM) " V(MEM)' V], ij=1,....p,

P
M = ' - xx+‘ E0 = Z '901\/1" (‘90|a"',‘90p)/ = ‘9 ’ )72 (7‘}1’ sy ‘?p),s

i=1
7= Y (ML,M)*V(MEM)*Y, i=1,...,p.
Proof. See [5].
Lemma 1.3. If X, in Lemma 1.2 is regular, then (ME,M)* = ;' — £, 'X.
(XESIX)XE
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Proof. The statement follows from the definition of the Moore—Penrose
g-inverse.

2. Solution

Theorem 2.1. If in the two-stage regression model the variance components o}
and o} are known (i.e. the matrices ¥,, and ¥,, are known), then

(1) AY) = XER'X)'XEL'Y,,
Q) BIB(Y), Vil = (XiK; ' X,) 7' XK' [Y; — CA(Y))),
where K, = C(X|Z;;'X,)"'C" + Z,,,
3) (Y., Y) = BlB(Y), Y2l
@ B(Y., ) =B(Y) + XZ:'X) "' C'KS ' v,, where
v, =Y, — CA(Y) — X,(X3K; ' X,) ' XK 'Y, — CA (Y.

Proof. (1) is a well-known fact (see, e.g., [2]); (2) is a consequence of the
fact that ¥, — Cf(Y))~ N,,(X,5,, K;); (3) is proved in [1]. As regards (4) it is
sufficient to prove that a) the vector (v{, v;), v, = Y, — X, B(Y,), represents the
class of all linear unbiased estimators of the function g(f,,8) =0, ﬁ,e?/?k‘,
gze%kz, which are based on the vector (Y], Y3)" and b) B,(V,, Y,) arises from
B,(Y)) using the covariance correction from the vector (v}, v3)". The rest of the
proofis then a consequence of the C. R. Rao fundamental lemma of locally best

unbiased estimators [3, p. 257].
a) The class of all linear unbiased estimators of the function g is

Uy =LY, + LYy: LeR", LeR™, E(LY, + LY, | b, B) =0, Be A", Be

egf"z} = {L{ Y+ LY,: [L‘ ]eKer[X;’ c . We shall prove that
L, 0, X
® Ker| X | A B,
0, X A,, Ay,
Ay =1—=XDne, X, A= —XDng,)C'I1 = KDmxyXs],
A; =0, Ay =1 — (XK Xs-

(*) follows from the inclusion

./”[A”, Alz]cKerI:X;, :](c,ﬂ(c/)c'ﬂ(x;)=@kl)
AZI’ 22 x

) 2
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and from the equality

. X, ¢ .
dlmKerLO , =n +n, — (k, + k,) = dim .4

bl

A”. Apjl.
AZI’ AZZ

’ ’

L
Each vector [Lzl] from Ker[x" c ] can be expressed in the form

’
’ 2

AL, A

J, u, Egg"], u,e .%"2,
’ /
Al?_v AZZ

(L, L) = (Ui,ué)[

i.e. the element from %, is of the form (u],ug)[ V':'. because of A}, Y, =
V'w

=V (A, =0),and ALY, + ALY, = v,.
b) The estimator

e B —eov[Bon ] ][ ver V][] ] -4
v -V, v,

possesses the property

(%) cov[ﬁl,[ :; :” =0.
Here the equality
olpon ]l -
v, v, v,
ol el [ ])= o] ]

was applied.
(**x) is the necessary and sufficient condition for (xx) to be the LBLUE (see

[3, p. 257)).

Because of cov [/?.(Y,),[ v ]] — [0, —(X[Ei'X,) 'C'My]
| 7]

Varl:w]:l:Mx,s 0 :”:zlla OJ,WhCre Mx,=I_PX.’
VZ 0, sz 0’ KZ

Py, = X\(X{Z5' X)) 7' X{E', My, = 1 = Py, Py, = Xo(X3K5'X,) ' XK
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and because it can be easily shown that
Dl -0 el ]
v, 0, K;' 0, M,

we see that () after some rearrangement is B.(Y,,Y,) from (4).

Remark 2.1. Theorem2.1 can be easily modified for the case of the
known ratio ¢ = o}/o; of the unknown covariance components.

Theorem 2.2. Consider a regular two-stage regression model with £,, = o{H,
and X,, = o?H, when the ratio ¢ = o}/c? of the unknown covariance components

(6},03)€(0, 00) x (0, ) is unknown. Then

1. If #(C) & M(X,) and n, > k,, then there exist LMVQUIEs 6(Y,, Y,)
and 63(Y,, Y)).

2. If M(C)c M(K,), n, >k, ny>k, then there exist UMVQUIEs
Gi(Y,, Y)) and 65(Y,. Y)).

Proof. Without any loss of generality we can consider

E,,:d—,zl,222=0'22|.1fv,=|::; g},vzf——[g’ ?]andx=[)((:l’ )(()il,

then

P =XXX)"'X = [P“’ P”],
P219 P22

where
P, = X,(X{X,))"'X] — X, (X X;)"'C'=C(X X)) ™' X],
% =K' — K- X,00K1X,) " XK
( = K™'My,, M, is the K~' — projector onto the K~'-orthogonal complement

of the subspace .# (X2)>,

K = C(X{X,)"'C’ +1,
P,=X,(X{X))"'C% =P;,,
Py,=1—m=x
Here the relationships
[x;x, + C’C, c*xz]'1 _ [ A, B]"
X;C, X;X, B, D

387



B [A“ +A~'B(D-B'A"'B)"'B'/A”", —A"'B(D - B’A“B)"]
B —(D - B’A'B)"'B’A", (D - B’A~'B)"!
XX, + C'C)' =X X)) = (X;X)~'C [l + CXX)'CTCX X)) =
= (X X)) = (X{X)'C’KT'CX X))

and C(X;X,)~'C’ = K — | were utilized. In accordance with Lemma 1.1 it can
be easily shown that

A |

—Pu(1=Py), PP,

MVZM — [ P]2P2]7 —PIZ(I - l222):"
~(1=Py)Py,  (1-Py

where M =1 — P. The diagonal submatrices of the matrices MV, M and
MV,M can be expressed as follows:

a1-P,))= Xt X,(X; X)) 'C'(x — x}) CX; X,) ' X1,
% =1-=XXX)"'X],
P,P,=x—%
P,P, = X,(X; X)) 'C'®*C(X;x,)"'X],
(I — Py)? =«

Furthermore, % + 0 (<=n, > k,) and #*> + % (< .#(C) ¢ .#(X,)). The first im-
plication is obvious. The other can be proved by contradiction. Let » = % Then

K-'M, = K™'My, K™ 'My (e My K™TMy = My )
and
K'=[I+CXX)'Cl'=1-C(X;X,+C'C)"'C'= My, K~'My =
= My, — My,C(X{X, + C’C)"C’M,(2 thus szK"sz = My, =
= My,C(X;X, + C'C)"'C’'My, = 0= M, C = 0= .#(C) < #(X,).

As % is positive semidefinite % + 0=>x%>+ 0. If V{ke 2'}x — »* + k%%, then
P,,P,,and (I — P,,) are linearly independent and thus MV, M and MV, M are
linearly independent. If 3{k,e Z'} » — »? = k,%?, then

(1= Py)* = M + kX, (X X)) 'C % C (X X,) ™' X]
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and
P,P; = Xl(xixl)ilC/“ZC(XIXI)_‘X{

are nonzero matrices ((1 — P,,)>+ 0 is obvious; P,P,, + 0< the rank
R(Py) = R[xC(X|X,)™'X]] = RIK™'My,C(X{X,)~'X{] >
> R[MXZC(X;X,"X;XX] = R(My,C) >0

because of the assumption .#(C) ¢ .#(X,)) and they are linearly independent.
It is a consequence of the fact that the column space of the matrix M is

orthogonal to the column space of the matrix X;(X;X,)~'C’»*C(X;X,)~'X,
thus they are linearly independent. This implies the linear independence of the
matrices MV, M and MV,M. With respect to Lemma 1.1 the matrix K" is
regular.

The proof of the assertion 2 see in [6].

Theorem 2.3. In the regular two-stage regression model from Theorem 2.2 it is
valid that

1. If n, > k,, then the UMVQUIE (with respect to o}) of the variance com-
ponent o} based on the vector Y, is

Gi(Y) = viHT'v/(n, — k), vi= Y, — xlﬁl(Yl)'
2. If M(C) & M(X,) &n, > k,, then

. 1 vy -
(Y, Yl 0'021, 0'52) = Z{[("l — k) Glz(yl) + 0()21 viK;'wlln, — k, — 2Tr (R) +

+ Tr(R?)] — o300, viKy "H, K5 'wy[n, — k, — Tr(R)]}

is the (63, 0&)-LMVQUIE of the variance component o} and
. ) | AP _
G (Y, Yoy, 00,) = Z{Vsz 'H, K5 'vyopln, — ky + Tr(R)] —

— oplog*(n — ki) 61(Y) + viK7 'w][Tr (R) — Tr (R*)]}
is the (63, 05)-LMVQUIE of the variance component c3. Here
n, — k, + Tr(R?), Tr(R) — Tr(R?)
Tr(R) — Tr(RY), n,— k, — 2Tr(R) + Tr(RZ)]
K, = 05, C(X{H'X,)~'C" + o5, H,, _
R = C(X{H['X,)™'C 05 [K; " — Ky " X,(X: K5 'X;) 7' X5K; ).

3. If M(C) < MXK,) &n, > k, &ny > k,, then the UMVQUIE of o} and o3
are

A= det[
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GUY,, Yy) = 61(Y)) = {1/Tr[(M{H,M)*H,(M,H,M,)" ]} Yi(MH,M,)"H,-
(MHM)"Y,,
G3(Y,, Yy) = 63(Y,) = {1/Tr[(M,H,;M,) " Hy(M,H,M,) "]} Y2(M,H,M,) " H,-
«(M,H,M,)"Y,,
where M, =1 — XX/, i=1,2.
Proof. 1. The statement is a well-known fact (see, e.g., [2, Section 5.4]).
xl’ 0 Gnglv 0 2 >
2. Let us denote X = s Xy = = oy V| + 0, Vs,

C, X2 0’ 0-622H2
M =1 — XX*. Then by Lemma 1.3

(MEM)* = 7' — E7'X(X'Eg'X) ' X'E; ! = [®j ®J
@ 9 @
where O, @, @ are obtained analogously as P,,, P,,, P,, in the proof of
Theorem 2.2

O=C +HI'X,(X{H'X)7'e’C . COXTH' X)) 'X(H,

,
Lo H. X, LIRS

= o5 '(Hi ' = HU' X (XHT X ) T X TH ) (= 05°C g, x)s

LodH, X,
Ciw.x, = Ki' = Ky XK ' X,) 7T XGKS
K, = 62 C(X|H;'X,)"'C’ + oH,,
@ = —H'X,(X{H{'X,)"'C'C, «, x,»
Q= CI.K:.X:'

Furthermore

(MEZ,M)*V,(MZ,M)* =[®Hr®, DOH,Q ]

Q'H,O, @HO
(ME,M)*V,(ME,M)* = [ @H,®’, OH,® ]
®H,®. OH,®
}71 = Y’(leol\/l)+vl(NIZ()Nl)+ Y= 0'014(n| - kl)é'lz(Yl) + [Y2 — Cﬁl(y‘)],_
'C“K:-X:C(X;Hl_lxl) 'C'Ci i, x,lYs— Ch ()]

7= Y/ (MEM)"V,(MEZ,M)TY = [V, — CA(Y)ICk,x,H:Cik x,"
Y, = CA(Y)],

=
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Tr[((ME,M)* V,(MZ,M)*V,] = Tr[OH, O H,] = o5;*(n, — k,) + 0;* Tr(R?),
Tr[(ME,M)*V,(ME,M)*V,] = Tr[@®’H, Q H,] = 05 205[Tr (R) — Tr(R?)],
Tr[(MZ,M)* V,(ME,M)*V,] = Tr[® H,®O H,] =

= 05*[n, — k, — 2Tr (R) + Tr(R?)),

o5 *[ny — k, + Tr (R?)], 051705 [Tr (R) — Tr (R?)] :l

S ~ + ==
(M [ao-ﬁaozz[Tr(m —Tr(RY)], 05'ln, —k, — 2Tt (R) + Tr (R%)]

With respect to Lemma 1.2 the (o7, 65)-LMVQUIE of the vector (o7, 03)" is
S0 i [ 7]
g, vyl T Ll
After substituting and rearranging this we obtain the assertion 2.

For statement 3 see [6].

Remark 2.2 Let the ratio ¢ = o}/o; be known. Then the UMVQUIEs
6i(Y,, Ys) (= 063(V,, Y,)) and 63(Y,, Y,) can be easily derived. The expression
for 67(Y,, Y,) is an analogy of the expression for 62(Y,) from 1 of Theorem 2.3.

Remark 23.1fn, =k, & #(C) ¢ #(X,) &n, > k,, then the relations for
6i(Y,, Y. o, 03) and 63(Y,, Y,|04, 0%) in Theorem2.3 do not contain the
expression &7(Y;) which is impossible to be determined. Nevertheless, the
estimators 61(Y,, Y,| 64, 05) and ci(Y,, Y,| 6, 03) exist.

Remark 2.4. The matrices K'” from Lemma 1.1 and Sz m)+ from Lem-
ma 1.2 are simultaneously either regular or singular. The regularity of the matrix
K was proved in Theorem2.2. The regularity of the matrix Sgg,m)+ (from
Theorem 2.3) can be directly proved if n, > k.

Denote S, = oZ,C(X;H;'X))"'C'(#0), S,=o05H, (S, is regular),
K, =S, + S, (K, is regular). Express the matrix C, y_ , in its factorized form
Ci k,.x, = JJ’, where J is of the type n, x R(C, «, x,) and R(C, k, x,) = n, — k.
Then in the Hilbert space ¥, _, of symmetric (n, — k,) % (n, — k,) matrices
with the inner product (A, B) = Tr(AB), A,Be ¥, _, , the Gram matrix G of
the couple J’S,J and J’S,J is

[(J’S,J,-J’SIJ>, <J’S,J,J’SZJ>]
(J'S,0,0'SJ>, <J'8,,4'8,d5 1

It can be easily proved that
n—k, O
G+ [ o ] =S .
0. 0 (MZ,M)

391



The regularity of the matrix J’S,J implies (J’S,J, J’S,J> = o05*[n, — k, —
— 2Tr(R) + Tr(R?)] > 0. The matrix G is always positive semidefinite and
n, — k, > 0, thus the matrix S(M,;OM)+ is regular.

Remark 2.5. Theorems2.1, 2.2 and 2.3 enable us to determine the
sequence

B.(Y)), 6X(Y)), a2B(Y), GX(Y)), Y] =
= 83V, Yal62(Y)), ail, BLB(Y)), Ys, GX(Y,), 63V, YalGE(Y)), ol ...

Instead of the estimator 63[Y;, Y5|67(Y)), 05] the estimator obtained iteratively
can be used; for the value oy, we substitute 6;[Y,, Y,|62(Y)), 0] and repeat this
procedure several times.

Remark 2.6 The mean values of the following quadratic forms of the
vectors Y, and Y,, frequently occurring in practice, are interesting (the notation
from Theorem 2.3 is used):

(@) E(viKy'vlot, 07) = of Tr(R)/oy, + o3[n, — ky — Tr(R))/ 05y,
(b) E(v;K7'H,K5 vyl o7, 67) = of[Tr (R) — Tr(R?))/(03,03) +
+ o?[n, — k, — 2Tr (R) + Tr (R?))/o3,.

Denote ﬁz = (X3H; ' X)) "' XGHS 'Y, — Cﬁl(yl)]’ v=Y,— CBI(YI) - xzﬁz'
Then

(©) E(%H;'W%|ot, 03) = oi Tr[C) u, x,C(XTHT'X))7'C'] + 03(n, — k).

This shows that none of the forms (a), (b) and (c) can be used alone for the
estimation of the variance component 7. An exception is the case .#(C) c
cM(X;)=R=0&C, 4 x,CX{H;'X;)"'C’" = 0 (in detail see [6] and [7)).

Remark 2.7. Estimates of o and o7 from theorem2.3, cases 1. and 3,
are always positive. This is not true in the case 2. The probability of obtaining
the negative estimates in this case decreases with increasing n, and n,. As an
evaluation of the exact value of this probability in an actual case is difficult, a
simulation study was made. It was found that n, — k; > 20, i = 1,2, was suf-
ficient for obtaining an acceptable small value of this probability.
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JABYXDSTATIHAA PETPECCUOHHASI MOAEJb
Lubomir Kubacdek
Pe3rome

Perpeccuonnas monenb Y ~ N, (Xf,X) Ha3biBaeTcs peryjsipHON ABYXdTanHo#, ecau Y =
=Y, Y, X = [X,, 0 :|,/3= (BB, 2= of[H" o:l + 0'22[0’ 0 :I ;3nech X, — n, x k;
R ) 0, O 0, H,

MaTpHla, UMEIoLLAsA MOJHBIA paHr B cronbuax, i = 1,2, C+ 0, a H, — n; X n; NOJIOXHUTENbHO
onpenaesieHHass MaTpuua, i = 1,2. CylecTByeT TOJIbKO OAHA MOCJIEAOBATEIbHOCTD, AOMYCTUMAs
15 OTpeneNeHUs OLEHOK HEM3BECTHBIX MapaMeTpoB f € #* (npocTpaHcTBO EBK/MAA pa3MEPHOCTH
k,), 0',-26(0, ), i =1, 2; 9Ta NOCneaOBaTENLHOCTb yka3aHa B cTaTbe. [lonyyeHbl JJOKadbHO (MM
PAaBHOMEPHO) HaWJIy4llHe OLEHKH 3THX MapaMeTpOB U MOKa3aHbl YCIOBHS UX CyLIECTBOBAHHUS.
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