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COVERING CONDITION
IN THE LATTICE OF RADICAL CLASSES
OF LINEARLY ORDERED GROUPS

GABRIELA PRIN('}EROVA

Existence of covers in lattices of varieties and quasivarieties was studied by A. N.
Trachtman [10], V. A. Gorbunov [11] and G. Polldk [9]; for the case of
varieties of lattice ordered groups cf. N. Ja. Medvedev [8]. Analogous questions
concerning covers of torsion classes and radical classes of lattice ordered groups
were studied by J. Jakubik [4], [3].

Radical classes of linearly ordered groups were investigated by C. G. Chehata
and R. Wiegandt [1]. J. Jakubik [5] studied radical classes of abelian linearly
ordered groups.

All linearly ordered groups dealt with in this note are assumed to be abelian;
thus the words linearly ordered group will in the following always mean abelian
linearly ordered group.

Let R, be the lattice of all radical classes of linearly ordered groups (for
definitions, cf. § 1 below). For each X € &, we denote by a(X) the collection of all
Y € R, such that Y covers X (i.e., the interval [ X, Y] of the lattice @, is prime).
Put

R, ={X € R,: X is principal and a(X) =0}.

In [5] it was proved that whenever X is a principal radical class generated by an
archimedean linearly ordered group, then X belongs to %&,. From this it follows
that the class R, is infinite. In this note it will be shown that R, is a large class (in
the sense that there exists an injective mapping of the class of all cardinals into R,).

1. Preliminaries

For the basic definitions concerning linearly ordered groups cf. Fuchs [2] and
Kokorin and Kopytov [6]. The group operation in a linearly ordered group will
be written additively. In this paragraph we recall for the sake of completeness some

363



definitions and results from [5] concerning radical classes of linearly ordered
groups.
Let 9, be the class of all linearly ordered groups, G € ¥,. Let

{0}=G,cG;c...cG,c... (a<d)
be an ascending chain of convex subgroups of G. Put
H= Uﬂ<5Ga.

For each <6 let G} be a linearly ordered group isomorphic to Gs/U,<sG,. Then
H is said to be a transfinite extension of linearly ordered groups G4 (B <48). Let
{Gi}ic:1 be the set of those G4 which are distinct from {0} ; if this set is nonempty,
then we also say that H is a transfinite extension of linearly ordered groups
Gi(iel).

1.1. Definition. A nonempty class X of linearly ordered groups is called a radical
class if

(a) X is closed under homomorphisms, and

(b) X is closed with respect to transfinite extensions.

Let X be a radical class and G € 9,. Further let { H,} be the set of all convex
subgroups of G belonging to X. We put

X(G)=uU,H,.

1.2. Proposition. (Cf. [5].) Let X be a radical class and G € 4,. Then X(G)
belongs to X.

Let us denote by %R, the collection of all radical classes of linearly ordered
groups. For X, Ye R, we put X=Y if X is a subclass of Y. Then ¥, is the greatest
element of R, and R,={{0}} is the least element of &,. Moreover, under the
partial order =, &, is a complete lattice.

For each nonempty subclass Y of ¥, let us denote by

TY — the intersection of all radical classes R with Yc R ;

HomY — the class of all homomorphic images of linearly ordered groups
belonging to Y;

ExtY — the class of all transfinite extensions of linearly ordered groups
belonging to Y.

TY is the least radical class containing Y as a subclass; it is said to be the radical
class generated by Y. If Y={G} is a one-element set, then we also write
TY = T(G); the radical class T(G) is called principal.

1.3. Proposition. (Cf. [5].) Let Y be a nonempty subclass of %§,. Then
TX =Ext Hom X.

1.4. Proposition. (Cf. [5].) Let J be a nonempty class and for each j e J let X; be
a radical class. Then v;¢;X; =Extu;:X,.
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1.5. Proposition. (Cf. [5], 4.6.) Let H be an archimedean linearly ordered group,
X =T(H). Then X R,.

1.6. Corollary. The class R, is infinite.

Proof. It is easy to verify that there exists an infinite set S={G.};e: of
archimedean linearly ordered groups such that whenever i, j are distinct elements
of I, then G; fails to be isomorphic to G;. Put X; = T(G;) foreach ieI. Let i, je,
i# j and assume that G; € T(G;). Hence in view of 1.3 we have G; € Ext Hom {G;}.
Because G; is o-simple, G; belongs to Hom{G;}. Since G; is o-simple, G; is
isomorphic either to G; or to {0} ; thus G; = {0}. Therefore for each k € I with k+ i
we have G, ¢ T(G;). Hence the set { T(Gi)}«e: is infinite. According to 1.5 each
T(G:) belongs to R,.

2. Lexicographic products

We recall the notion of the lexicographic product of linearly ordered groups. Let
I be a linearly ordered set and for each i € I let G; be a linearly ordered group. The
lexicographic product H =T G; of the system {G:};., is defined to be the set of
all functions f: I—u,,G; such that (i) f(i) € G; for each i eI, and (ii) the set
{ieI: f(i)# 0} is either empty or is dually well-ordered ; the group operation in H
is defined coordinate-wise and for 0 # f € H we put f>0 if f(j)> 0, where j is the
greatest element of the set {ieI: f(i)#0}. In the case I={1, 2, ..., n} we write
also H= G]OGzo...oG,,.

For each linearly ordered group G we have G = G-{0} = {0}.G. If from G, G,
G:€%,, G=G,0G;, it follows that G,={0} or G,={0}, then G is said to be
lexicographically indecomposable.

Let H=T;.,G:. We shall apply the following denotations: For each ieI we
denote by G, the set of all h e H such that h(j) =0 for each j € I with j>i; then G;
is a convex subgroup of H. For K< H and ie I, K(G;) is defined to be the set
{k(i): k € K} ; if K is a subgroup of H, then K(G)) is a subgroup of G;. Further, we
identify G; with the set {he H: h(j)=0 for each je I with j#i}.

. Let G¢ be the set of all elements h € G, with h(i)=0; G is a convex subgroup of
G: and the factor linearly ordered group G,/G$ is isomorphic with G;. Thus if I is
a well-ordered set, then H is a transfinite extension of linearly ordered groups G;
(iel). .

Let us consider the case when there are given two lexicographic decompositions
of H:

H=FielGi, H=F]e1Ki-

The following lemma is a corollary of the MalIcev Theorem ([7]; cf. also [2]) on
the existence of isomorphic refinements of two lexicographic decompositions.
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2.1. Lemma. Let H, G; and K,-' be as above. Assume that all G; are non-zero and
lexicographically indecomposable. Then there is a (unique) partition I = U; . ,I; such
that

(i) if ji, j2€J, | <Jo ir€ ], i€ I, then iy<i,;

(ii) for each je J there exists a lexicographic decomposition K;=T',.; Gi such

that G is isomorphic with G; for each i€ I,.

2.2. Lemma. Let H, G, and K; be as in 2.1. Assume that

(i) there exists a partition I=1'uI" with I' + @+ I" such that if i,, i,el', i,
iseI", then G, and G, are isomorphic, G,, and G,, are isomorphic, G, fails to be
isomorphic with G, and i,<i,;

(i) all K; are isomorphic.

Then J is a one-element set.

Proof. From 2.1 it follows that there are j', j"€ J with I'nI, #@, I"nL.#0. If
there exists jeJ such that either (a) L=I’, or (b) ij=I", then we have
a contradiction with 2.1 (since K; is isomorphic to K;- and to K; ). Hence for each
jeJ both [nI’" and ;1" are nonempty. Assume that cardJ>1. Let j, and j, be
distinct elements of J with j, <j,. Then there are elements i"e [,nI", i' e [,nI".

In view of i’ € I,, i" € I, we have i"<i'; on the other hand, from i€ I', i"€ I" we
obtain i’ <i”, which is a contradiction. Hence cardJ =1.

3. The class R,

In the following lemmas 3.1—3.3 we assume that G € 9,, B=T(G), A € &, and
that A covers B in the lattice R,.

3.1. Lemma. There exists He A\B such that B(H)= {0} and BvT(H)=A.

Proof. Since B is covered by A, there is H, € A\B. Hence (cf. 1.2) B(H,) # H,
and B(H,) e B. Denote H=H,/B(H,). Then He A. From H € B it would follow
H, € B (with regard to 1.1, (b)), which is a contradiction; therefore He A\B. In
view of 1.4 we have H,e€ T(H)v B, hence B< T(H)vB= A and thus T(H)vB =
A. Moreover, from 1.2 we easily obtain that B(H)= {0} is valid.

Let a be an infinite cardinal. We denote by w(«a) the least ordinal having the
property that the power of the set of all ordinals less than w(a) is a. For each
G € 9, we put

Ga = riel(a)Gl’

where I(a) is a linearly ordered set isomorphic with w(a) and G; is a linearly
ordered group isomorphic with G for each i€ I(a).

3.2. Lemma. Let H be as in 3.1 and let a >card H. Then H, € B.
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Proof. By way of contradiction, suppose that H, does not belong to B. Since
H e A and because H, is a transfinite extension of H, we have H, € A. From this
and from the fact that B is covered by A we infer that T(H,)v B = A is valid.
Hence He T(H,)v B. In view of 1.4, H e Ext(Hom{H,}uUB). If G,e Hom{H,},
G, # {0}, then card G,>card H. Hence H e ExtB = B, which is a contradiction.

3.3. Lemma. There exists G, € Hom(G), G, # {0} such that G, can be expressed
as a lexicographic product G,=T;<;H; of factors H; isomorphic to H, where J is
a well-ordered set.

Proof. According to 3.2 we have H,eB=T(G). Hence is view of 1.3
H, € Ext Hom{G}. Thus there exists a convex subgroup G, of H, with G, # {0}
such that G, € Hom(G).

From the definition of H, it follows that G, can be expressed uniquely as

G,=P.Q

such that (i) either P = {0} or P =T;;H;, where J is a well-ordered set and each H;
is isomorphic to H, and (ii) either Q ={0}, or Q is isomorphic to a convex
subgroup of H and Q is not isomorphic to H.

Suppose that Q# {0}. Since G, e Hom(G), we have G,€ B and hence Qe B
(because of Q e Hom(G,)). Thus B(Q) = Q and hence B(H) # {0} ; in view of 3.1,
this is a contradiction. Hence Q = {0} and therefore P+ {0}, completing the proof.

Now let K, and K; be non-zero archimedean linearly ordered groups such that
K, is not isomorphic to K,. Let B and y be infinite cardinals. Denote

G(ﬁs Y) = (Kl)ﬂO(Kz)yOKz.

3.4. Lemma. T(G(B, v)) has no cover in the lattice ®R,.

Proof. Put G(8, Y) = G, B = T(G) and assume that A is a cover of B. Let H be
as in 3.1 and let G, be as in 3.3. Since both K, and K, are archimedean, G, can be
expressed in the form

Gl=Pl°Ql

such that (i) either P, = {0} or P, =T K;, where I is a well-ordered set and each
K, is isomorphic to K, ; (if) Q; =T, .sK., where S is a well-ordered set and each K|
is isomorphic to K. ’

First assume that P,+# {0}. Then from 3.3 and 2.2 we obtain that G,=H
implying H € B, which is a contradiction.

Now suppose that P,={0}. Thus G,= Q,. From this and from the Malcev
Theorem on the existence of isomorphic rafinements (cf. [7] or [2]) it follows that
H can be written as H =TI, .,K.., where M is a well-ordered set and each K, is
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isomorphic to K,. Hence He T(K:). From the definition of G we nfer that
K, e T(G), hence H e T(G), which is impossible.

3.5. Lemma. Let f3,, 3, be distinct infinite cardinals, §,>card K, (i=1, 2). Then
T(G(B1, v)) # T(G(B., )

Proof. Let f,<pf,. It suffices to verify that G(Bi, y) does not belong to
T(G(B,, v)). By way of contradiction assume that G(Bi, y) € T(G(B,, v)). Thus
G(B:, v) e Ext Hom(G(B., v)). Hence there exists a convex subgroup G, # {0} of
G(Bi, y) and a homomorphic image G, of G(,, v) such that G, is isomorphic to
G..

From the structure of G(f:, y) and G(B., y) it follows that

I=PI°QI9

such that either (i) P, =(K,)s, and Q, is a convex subgroup of (K.),.Ko, or (ii) P,
is a convex subgroup of (K;)s, and Q,={0}; further G, is isomorphic to

PzOOZ

such that either (i") P, is a homomorphic image of (K,)s, and Q, is isomorphic to
(K>),0Ks, or (ii’) P,={0) and Q, is a homomorphic image of (K;),.K:.

In view 6f (i) and (ii), the condition (ii’) cannot hold. From (i’) it follows that
the condition (i) must be valid and that G, is isomorphic to G(f,, y); this implies
that P, is isomorphic to P,. However, this is impossible, because card P, = 3, < 3, =
card P,.

From 3.4, 3.5 and from the fact that K, belongs to T(G(f, y) we obtain:

3.6. Theorem. Let K+ {0} be an archimedean linearly ordered group. There
exists C = R, such that:
(i) if X e C, then X is principal and has no cover in R, ;
(iif) T(K)<X for each XeC;
(iii) there exists an injective mapping of the class of all cardinals into C.

3.7. Corollary. There exists an injective mapping of the class of all cardinals into
%1.

We conclude by remarking that for each X € C there exists X' € &, such that X
covers X'; moreover, X' is the join of all radical classes less than X (the proof is
analogous to that of Propos. 4.7, [5] and therefore it will be omitted).
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[TOKPBITUSA B PEMIETKE PAIUKAJIBHBIX KJIIACCOB JIMHEVIHO
YIOPSTOYEHHBIX TPYTIIIT

Gabriela Pringerova
Pe3iome

IMycts R, — pelleTKa BceX PagMKAJIbHBIX KJIacCOB aGesieBbIX JNMHEWHO YNMOPAXOYEHHBIX TPYIM.
ITycts, nanee, &, — knacc Bcex X € R, Takux, 4to a) X SABAAETCS [JIABHBIM PaAMKAIBHBIM KIIaCCOM,
u 6) X He uMeeT NMOKpbLITHIA B R,. B cTaThe a0Ka3aHo, 4To R, — cOGCTBEHHBIN Kilacc.
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