Mathematic Slovaca

Robert Šulka

Nilpotency in semigroups and sublattices of their Boolean

Mathematica Slovaca, Vol. 37 (1987), No. 2, 147--158

Persistent URL: http://dml.cz/dmlcz/130743

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NILPOTENCY IN SEMIGROUPS AND SUBLATTICES OF THEIR BOOLEANS

ROBERT ŠULKA

1. Introduction.

Let S be a semigroup, S^{\prime} a subsemigroup of $S, M \subseteq S^{\prime}, N$ the set of all positive integers and $\langle\mathscr{P}(S), \subseteq\rangle$ the Boolean of S. We introduce the following notations
$N_{1}\left(S^{\prime}, M\right)=\left\{x \in S^{\prime} \mid x^{n} \in M\right.$ for almost all $\left.n \in N\right\}$,
$N_{2}\left(S^{\prime}, M\right)=\left\{x \in S^{\prime} \mid x^{n} \in M\right.$ for infinitely many $\left.n \in N\right\}$, $N_{3}\left(S^{\prime}, M\right)=\left\{x \in S^{\prime} \mid x^{n} \in M\right.$ fore some $\left.n \in N\right\}$.

With respect to the notations in the paper [5] if $M \subseteq S$, then $N_{i}(M)=N_{i}(S, M)$ for $i=1,2,3, N_{1}\left(S^{\prime}, M\right)$ is the set of all strongly M-potent elements of $S^{\prime}, N_{2}\left(S^{\prime}, M\right)$ is the set of all weakly M-potent elements of S^{\prime} and $N_{3}\left(S^{\prime}, M\right)$ is the set of all almost M-potent elements of S^{\prime}.

Further let
$\mathscr{N}_{12}\left(S^{\prime}\right)=\left\{M \subseteq S^{\prime} \mid N_{1}\left(S^{\prime}, M\right)=N_{2}\left(S^{\prime}, M\right)\right\}$,
$\mathscr{N}_{13}\left(S^{\prime}\right)=\left\{M \subseteq S^{\prime} \mid N_{1}\left(S^{\prime}, M\right)=N_{3}\left(S^{\prime}, M\right)\right\}$ and
$\mathscr{N}_{23}\left(S^{\prime}\right)=\left\{M \subseteq S^{\prime} \mid N_{2}\left(S^{\prime}, M\right)=N_{3}\left(S^{\prime}, M\right)\right\}$.
With respect to the notation in the paper [5] if $M \subseteq S$, then $\mathscr{N}_{i j}(S)=\mathscr{N}_{i j}$ for $i<j, i, j=1,2,3$.

From the paper [5] it follows that $\left\langle\mathscr{N}_{1}\left(S^{\prime}\right), \subseteq\right\rangle$ is a lattice and $\left\langle\mathscr{N}_{13}\left(S^{\prime}\right), \subseteq\right\rangle$ and $\left\langle\mathscr{N}_{2}\left(S^{\prime}\right), \subseteq\right\rangle$ are complete lattices. In the mentioned paper the structure of $\mathscr{N}_{12}(S), \mathscr{N}_{13}(S)$ and $\mathscr{N}_{23}(S)$ was studied in the case of a cyclic semigroup S.

The purpose of this paper is to elucidate the connections between the lattices $\mathscr{F}_{i j}(S)$ and the lattices $\mathscr{N}_{i j}\left(S_{k}\right)(k \in K)$ where S_{k} are subsemigroups of the semigroup S, to elucidate the connections between the lattices $\mathscr{N}_{i j}(S)$ and the lattices $\mathscr{N}_{j}\left(S^{\prime}\right)$, if S^{\prime} is a homomorphic image of S and to give characterizations of some classes of periodic semigroups by means of the notions mentioned above.

It will be shown that if $S=\cup\left\{S_{k} \mid k \in K\right\}, S_{k}$ are subsemigroups of S and $M \subseteq S$, then $M \in \mathscr{N}_{i},(S)$ iff for all $k \in K M \cap S_{k} \in \mathscr{N}_{i}\left(S_{k}\right)$ holds. Hence the knowledge of the lattices $\mathcal{V}_{i,}\left(S_{k} k \in K\right)$ allows to test, whether the set M belongs to $\mathscr{V}_{i j}(S)$ or not. Therefore the knowledge of the lattices $\mathscr{N}_{i j}\left(S_{k}\right)(k \in K)$ allows to construct the lattices $\mathcal{N}_{i j}(S)$.

Since every semigroup S is a union of some system of its cyclic subsemigroups $\left\langle a_{k}\right\rangle(k \in K)$ and the structure of lattices $\mathscr{N}_{i,}\left(\left\langle a_{k}\right\rangle\right)$ is known, we get a tool for the construction of the lattices $\mathcal{N}_{i j}(S)$ of an arbitrary semigroup S.

As we shall see the above mentioned construction of the lattices $\mathscr{N}_{1},(S)$ can be essentialy simplified if $S=\cup\left\{S_{k} \mid k \in K\right\}$, where every two subsemigroups S_{k}, $S_{l}, k, l \in K, k \neq l$ are disjoint. In this case $M \in V_{i j}(S)$ iff $M=\cup\left\{M_{k} \mid k \in K\right\}$ and $M_{k} \in \mathscr{N}_{i j}\left(S_{k}\right)$ for every $k \in K$. This will be particularly true in the case of a free semigroup \mathscr{F}_{x} on a set X, because this semigroup is a union of a system of its cyclic subsemigroups that are mutually disjoint.

If $\varphi: S \rightarrow S^{\prime}$ is a homomorphism of a semigroup S onto a semigroup S^{\prime}, then $\mathcal{V}_{i j}\left(S^{\prime}\right)=\left\{M^{\prime} \subseteq S^{\prime} \mid \varphi^{-1}\left(M^{\prime}\right) \in \mathcal{F}_{i j}(S)\right\}$ holds for $i, j=1,2,3, i<j$.

This result may be also applied to the free semigroup $\mathscr{\mathscr { F }}_{X}$ on a set X and its arbitrary homomorphic image.

2. $\mathscr{N}_{i}(S)$ for a cyclic semigroup S.

For completeness we have to mention that it follows from the paper [5]
Proposition 1. Let $S=\langle a\rangle$ be the cyclic semigroup generated by the element a. Then $\square \neq M \in \mathcal{N}_{23}(S)$ iff M is a union of countably many sets $\left\{x, x^{k_{1}}, x^{k_{1} k_{2}}, \ldots, x^{k_{1} k_{2} \ldots k_{n}}, \ldots\right\}, x \in S$, where $\left(k_{n}\right)_{n=1}^{\infty}$ is a sequence of positive integers $k_{n}, k_{n}>1$.
Proposition 2 and Proposition 3 are also consequences of the paper [5].
Proposition 2. Let $S=\langle a\rangle$ be a cyclic semigroup of infinite order Then $\square \neq M \in V_{1}(S)$ iff M is the complement of a finite subset of S.

Let $\mathrm{S}=\langle\mathrm{a}\rangle$ be a cyclic semigroup of finite order. Then $\square \neq M \in \mathscr{V}_{13}(S)$ iff M contains the maximal subgroup G of S.

Proposition 3. Let $S=\langle a\rangle$ be a cyclic semigroup of infinite order. Then $M \in \mathscr{N}_{12}(S)$ iff either M is a finite subset of S or M is the complement of a finite subset of S.

Let $S=\langle a\rangle$ be a cyclic semigroup of finite order. Then $M \in \mathfrak{F}_{1_{2}}(S)$ iff either $M \cap G=\square$ or $M \supseteq G$.

3. $\mathscr{N}_{23}(\langle a\rangle)$ in the case if $\langle a\rangle$ is a cyclic semigroup of finite order

Proposition 4. Let G be a group. Then every finite cyclic subsemigroup of G is a group.

Proof. Let $\langle a\rangle=\left\{a, a^{2}, \ldots, a^{r-1}, a^{r}, \ldots, a^{r+m-1}\right\} \subseteq G$ and r be the index and m the period of the semigroup $\langle a\rangle$. Then $a^{r+1}=a^{r+m+1}$. In G there exists $\left(a^{\prime}\right)^{-1}$, hence $a=a^{m+1}$. This means that $\langle a\rangle$ is a group.

Let $\langle a\rangle=\left\{a, a^{2}, \ldots, a^{r-1}, a^{r}, \ldots, a^{r+m-1}\right\}$ be the cyclic semigroup of finite order with index r and with period m. We denote $P(a)=\left\{a, a^{2}, \ldots, a^{r-1}\right\}$ and $G(a)=\left\{a^{r}, \ldots, a^{r+m-1}\right\}$. It is known that $G(a)$ is the maximal subgroup of the semigroup $\langle a\rangle$ and $G(a)$ is a cyclic group.

Proposition 5. Let $\langle a\rangle$ be a cyclic semigroup of finite order. Then for every cyclic semigroup $\langle b\rangle, b \in\langle a\rangle$ there holds: $P(b) \subseteq P(a), G(b) \subseteq G(a)$.

Proof. Since $G(b)$ is a cyclic group of finite order, $\langle x\rangle$ is a cyclic group for all $x \in G(b)$. Hence for every $x \in G(b)$ there exists a $t \in N$ such that $x^{t}=x$, therefore $G(b) \cap P(a)=\square$. This implies that $G(b) \subseteq G(a)$.

If $x \in G(a) \cap P(b)$, then $\langle x\rangle \subseteq G(a) \cap\langle b\rangle$. Therefore $\langle x\rangle$ is a cyclic group of finite order of $\langle b\rangle$, hence $x \in G(b)$. However, this is a contradiction with the assumption $x \in P(b)$. This means that $G(a) \cap P(b)=\square$, hence $P(b) \subseteq P(a)$.

Theorem 1. Let $S=\langle a\rangle$ be a cyclic semigroup of finite order. Then the following statements hold:
i) The lattice $\mathscr{N}_{23}(S)$ is atomic.
ii) The atoms of $\mathcal{V}_{23}(S)$ are exactly all one-element sets $\{b\}, b \in G(a)$.
iii) The lattice $\mathscr{N}_{2}(S)$ contains all sets of the form $\left\{b, b^{k}\right\}, b \in P(a), b^{k} \in G(a)$.
iv) The lattice $\mathscr{N}_{2}(S)$ contains exactly all unions of all subsystems of the system of all sets mentioned in ii) and iii).

Proof. i) is evident, since $\mathscr{N}_{23}(S)$ is finite.
a) We shall prove that all sets mentioned in ii) belong to $\mathscr{N}_{2}(S)$. Let $b \in G(a)$ and $x \in N_{3}(S,\{b\})$ hold. Then there exists a $p \in N$ such that $x^{p}=b$. Since $\langle b\rangle$ is a cyclic group of finite order, there exists a $q \in N, q>1$ such that for all $s \in N$ we have $(b)^{q^{s}}=b$. Hence $x^{p q^{s}}=\left(x^{p}\right)^{q^{s}}=b$, for all $s \in N$. This means that infinitely many powers of x are equal to b, therefore $x \in N_{2}(S,\{b\})$. We have $N_{3}(S,\{b\})=N_{2}(S,\{b\})$, hence $\{b\} \in \mathcal{N}_{2}(S)$.
b) Now we shall prove that all sets mentioned in iii) belong to $\mathscr{N}_{2}(S)$.

Let $x \in N_{3}\left(S,\left\{b, b^{k}\right\}\right), b \in P(a)$ and $b^{k} \in G(a)$. Then either there exsits a $p \in N$ such that $x^{p}=b \in P(a)$ or there exists a $p \in N$ such that $x^{p}=b^{k} \in G(a)$.
a) Let $x^{p}=b^{k} \in G(a)$. Then like in a) infinitely many powers of x are equal to b^{k}, hence $x \in N_{2}\left(S,\left\{b, b^{k}\right\}\right)$.
β) Let $x^{p}=b \in P(a)$. Then $x^{k p}=b^{k} \in G(a)$ and again like in a) infinitely many powers of x are equal to b^{k}. Hence $x \in N_{2}\left(S,\left\{b, b^{h}\right\}\right)$.
We have $N_{3}\left(S,\left\{b, b^{k}\right\}\right)=N_{2}\left(S,\left\{b, b^{k}\right\}\right)$, i.e. $\left\{b, b^{h}\right\} \in \mathscr{N}_{2}(S)$.
c) Since $\left\langle\mathscr{N}_{2}(S), \subseteq\right\rangle$ is a complete upper subsemilattice of the complete semilattice $\langle\mathscr{P}(S), \subseteq\rangle$, the unions of arbitrary subsystems of the system of sets mentioned in ii) and iii) are elements of $\mathfrak{V}_{2}(S)$.
d) Finally we shall prove that $\mathscr{N}_{23}(S)$ does not contain sets that are not unions of a subsystem of the system of sets mentioned in ii) and iii).
Let $M \subseteq S$ not be a union of a subsystem of the system of sets mentioned in ii) and iii). Then M contains an element $x \in P(a)$, but M contains no power of x that is in $G(a)$. Therefore $x \in N_{3}(S, M)$ and M can contain only powers of x that belong to $P(a)$. This means that M contains only a finite number of powers of x, hence $x \notin N_{2}(S, M)$. This implies that $M \notin \mathfrak{1}_{2}{ }_{3}(S)$.

From these results it follows immediately that all sets $\{b\}, b \in G(a)$ are exactly all atoms of the lattice $\cdot_{\mathcal{F}_{2}}(S)$.

Corollary. Let $S=\langle a\rangle$ be a cyclic group of finite order. Then $\mathcal{V}_{23}(S)=\mathscr{P}(S)$.
Proof. Evidently all atoms of $\mathfrak{V}_{2}(S)$ are exactly all sets $\{b\}, b \in\langle a\rangle$, hence $\mathfrak{A}_{2}{ }_{3}(S)=\mathscr{I}(S)$.

Example 1. Let $S=\langle a\rangle=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ be the cyclic semigroup of finite order with index 3 and period 3 .

Then $P(a)=\left\{a, a^{2}\right\}$ and $G(a)=\left\{a^{3}, a^{4}, a^{5}\right\}$. Further $\left\langle a^{2}\right\rangle=\left\{a^{2}, a^{3}, a^{4}, a^{5}\right\}$, $P\left(a^{2}\right)=\left\{a^{2}\right\}$ and $G\left(a^{2}\right)=\left\{a^{3}, a^{4}, a^{5}\right\}$.

The atoms of $\mathcal{1}_{2}(S)$ are: $\left\{a^{3}\right\},\left\{a^{4}\right\},\left\{a^{5}\right\}$.
Other elements of $\mathfrak{1}_{2}(S)$ are:
$\left\{a, a^{3}\right\},\left\{a, a^{4}\right\},\left\{a, a^{5}\right\}$,
$\left\{a^{2}, a^{3}\right\},\left\{a^{2}, a^{4}\right\},\left\{a^{2}, a^{5}\right\}$.
Any element of $\mathcal{I}_{2}{ }_{2}(S)$ is a union of a subsystem of the system of the above mentioned sets.

In this case all apirs $\{b, c\}, b \in P(a), c \in G(a)$ belong to $\mathscr{N}_{2}(S)$.
Example2. Let $S=\langle a\rangle=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}, a^{9}, a^{10}\right\}$ be the cyclic semigroup of finite order with index 5 and period 6.

Then $P(a)=\left\{a, a^{2}, a^{3}, a^{4}\right\}$ and $G(a)=\left\{a^{5}, a^{6}, a^{7}, a^{8}, a^{9}, a^{10}\right\}$. Further $\left\langle a^{2}\right\rangle=\left\{a^{2}, a^{4}, a^{6}, a^{8}, a^{10}\right\}, P\left(a^{2}\right)=\left\{a^{2}, a^{4}\right\}$ and $G\left(a^{2}\right)=\left\{a^{6}, a^{8}, a^{10}\right\}$,
$\left\langle a^{3}\right\rangle=\left\{a^{3}, a^{6}, a^{9}\right\}, P\left(a^{3}\right)=\left\{a^{3}\right\}$ and $G\left(a^{3}\right)=\left\{a^{6}, a^{9}\right\}$,
$\left\{a^{4}\right\}=\left\{a^{4}, a^{6}, a^{8}, a^{10}\right\}, P\left(a^{4}\right)=\left\{a^{4}\right\}$ and $G\left(a^{4}\right)=\left\{a^{6}, a^{8}, a^{10}\right\}$. The atoms of $\mathscr{N}_{23}(S)$ are:
$\left\{a^{5}\right\},\left\{a^{6}\right\},\left\{a^{7}\right\},\left\{a^{8}\right\},\left\{a^{9}\right\}$ and $\left\{a^{10}\right\}$.
Other elements of $\mathfrak{1}_{2}(S)$ are:

$$
\begin{aligned}
& \left\{a, a^{5}\right\},\left\{a, a^{6}\right\},\left\{a, a^{7}\right\},\left\{a, a^{8}\right\},\left\{a, a^{9}\right\},\left\{a, a^{10}\right\}, \\
& \left\{a^{2}, a^{6}\right\},\left\{a^{2}, a^{8}\right\},\left\{a^{2}, a^{10}\right\}, \\
& \left\{a^{3}, a^{6}\right\},\left\{a^{3}, a^{9}\right\} \\
& \left\{a^{4}, a^{6}\right\},\left\{a^{4}, a^{8}\right\},\left\{a^{4}, a^{10}\right\}
\end{aligned}
$$

All elements of $\mathscr{N}_{23}(S)$ are unions of a subsystem of the system of all sets mentioned above.

The set $\left\{a^{2}, a^{9}\right\} \notin \mathscr{N}_{23}(S)$ because $a^{2} \in N_{3}\left(S,\left\{a^{2}, a^{9}\right\}\right)$ but $a^{2} \notin N_{2}\left(S,\left\{a^{2}, a^{9}\right\}\right)$, since $a^{9} \notin\left\langle a^{2}\right\rangle$.

We can see that not all pairs $\{b, c\}, b \in P(a), c \in G(a)$ belong to $\mathscr{N}_{23}(S)$.

4. Semigroup and its subsemigroups

Theorem 2. Let S be a semigroup, M a subset of $S, S_{k}(k \in K)$ subsemigroups of S and let $S=\cup\left\{S_{k} \mid k \in K\right\}$. Then $N_{i}(S, M)=\cup\left\{N_{i}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\}$ for $i=1,2,3$.

Proof. We give the proof only for $i=3$. For $i=1$, 2 the proofs are similar.
a) Let $x \in N_{3}(S, M)$ hold. Then there exists an $n \in N$ such that $x^{n} \in M$. Since $S=\cup\left\{S_{k} \mid k \in K\right\}$, there exists a $k \in K$ such that $x \in S_{k}$, hence for all $n \in N$ we have $x^{n} \in S_{k}$. This means that there exists an $n \in N$ such that $x^{n} \in M \cap S_{k}$. However, since $x \in S_{k}$, this implies that $x \in N_{3}\left(S_{k}, M \cap S_{k}\right) \subseteq$ $\subseteq \cup\left\{N_{3}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\}$ and we have $N_{3}(S, M) \subseteq$ $\subseteq \cup\left\{N_{3}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\}$.
b) Let $x \in \cup\left\{N_{3}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\}$ hold. Then there exists a $k \in N$ such that $x \in N_{3}\left(S_{k}, M \cap S_{k}\right)$. Hence there exists an $n \in N$ such that $x^{n} \in M \cap S_{k} \subseteq M$. This means that $x \in N_{3}(S, M)$ holds and we have $\cup\left\{N_{3}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\} \subseteq$ $\subseteq N_{3}(S, M)$.
From a) and b) we get $N_{3}(S, M)=\cup\left\{N_{3}\left(S_{k}, M \cap S_{k}\right) \mid k \in K\right\}$. Next we shall need the following statement of paper [5].

Proposition 6. Let S be a semigroup, S^{\prime} a subsemigroup of S and M a subset of S. Then $N_{i}(S, M) \cap S^{\prime}=N_{i}\left(S^{\prime}, S^{\prime} \cap M\right)$ holds for $i=1,2,3$.

Now we can prove
Theorem 3. Let S be a semigroup, $S_{k}(k \in K)$ subsemigroups of $S, S=$ $=\cup\left\{S_{k} \mid k \in K\right\}, i, j=1,2,3, i<j$. Then $M \in \mathscr{N}_{i j}(S)$ iff $M \cap S_{k} \in \mathscr{N}_{i j}\left(S_{k}\right)$ holds for all $k \in K$.

Proof. a) Let $M \in \mathscr{N}_{i j}(S)$, i.e. $N_{i}(S, M)=N_{j}(S, M)$. Then Proposition 6 implies that $N_{i}\left(S_{k}, M \cap S_{k}\right)$ for all $k \in K$. This means that $M \cap S_{k} \in \mathscr{N}_{i j}(S)$ for all $k \in K$.
b) Let $M \cap S_{k} \in \mathscr{N}_{i j}\left(S_{k}\right)$ for all $k \in K$, i. e. $N_{i}\left(S_{k}, M \cap S_{k}\right)=N_{j}\left(S_{k}, M \cap S_{k}\right)$ for all $k \in K$. Then Theorem 2 implies that $N_{i}(S, M)=\cup\left\{N_{i}\left(S_{k}, M \cap S_{k} \mid k \in K\right\}=\right.$
$=\cup\left\{N_{j}\left(S_{k}, M \cap S_{k} \mid k \in K\right\}=N_{j}(S, M)\right.$. This means that $M \in \mathscr{N}_{i j}(S)$ holds.
From the paper [5] we have
Proposition 7. Let S be a semigroup, S^{\prime} a subsemigroup of S and $M \subseteq S^{\prime}$. Then $M \in \mathscr{N}_{23}\left(S^{\prime}\right)$ implies $M \in \mathscr{N}_{23}(S)$.

Now we can prove
Theorem 4. Let S be a semigroup, $S_{k}(k \in K)$ subsemigroups of S, $S=\cup\left\{S_{k} \mid k \in K\right\} \quad$ and $\quad M_{k} \in \mathscr{N}_{23}\left(S_{k}\right) \quad$ for all $k \in K$. Then $M=\cup\left\{M_{k} \mid k \in K\right\} \in \mathcal{N}_{2}(S)$.

Proof. By the assumption $M_{k} \in \mathscr{N}_{23}\left(S_{k}\right)$ holds for all $k \in K$. Hence Proposition 7 implies that $M_{k} \in \mathscr{N}_{23}(S)$ for all $k \in K$. Since $\left\langle\mathcal{N}_{23}(S), \subseteq\right\rangle$, is a complete upper sublattice of $\langle\mathscr{P}(S), \subseteq\rangle, M=n \cup\left\{M_{k} \mid k \in K\right\} \in \mathscr{N}_{2}(S)$ holds.

Corollary 1. Let S be a periodic semigroup and every cyclic subsemigroup of S a group. Then $\mathscr{N}_{23}(S)=\mathscr{P}(S)$.

Proof. $S=\cup\{\langle a\rangle \mid a \in S\}$, where $\langle a\rangle$ is a cyclic group of finite order. By Corollary of Theorem 1 and by Theorem $4 \mathscr{N}_{23}(S)$ contains all sets $\{a\}, a \in S$. Since $\left\langle\mathcal{V}_{23}(S), \subseteq\right\rangle$ is a complete upper sublattice of $\langle\mathscr{P}(S)\rangle, \subseteq, \mathscr{N}_{23}(S)$ contains all elements of $\mathscr{P}(S)$.

Corollary 2. Let S be a band. Then $\mathcal{N}_{23}(S)=\mathscr{P}(S)$.
Theorem 5. Let S be a semigroup, $S_{k}(k \in K)$ subsemigroups of S, $S=\cup\left\{S_{k} \mid k \in K\right\}$ and $M \subseteq S$. Then $M \in \mathscr{N}_{2}{ }_{3}(S)$ iff $M=\cup\left\{M_{k} \mid k \in K\right\}$ and $M_{k} \in \mathfrak{I}_{2}{ }_{3}\left(S_{k}\right)$ for every $k \in K$.

The proof follows from Theorem 3 and Theorem 4. In the following example it is shown that a similar Theorem does not hold for the other two kinds of lattices.

Example 3. Let $S=S_{1}=\langle a\rangle$ be the cyclic semigroup of infinite order and $S_{2}=\left\langle a^{2}\right\rangle=\left\{a^{2 k} \mid k=1,2,3, \ldots\right\}$. Then $S=S_{1} \cup S_{2}$. Further let $M_{1}=\square$ and $M_{2}=\left\{a^{2 \eta} \mid n=2,3,4, \ldots\right\}$. Then $M_{1} \subseteq S_{1}, M_{2} \subseteq S_{2}$ and $M=M_{1} \cup M_{2}=M_{2}=$ $=\left\{a^{2 n} \mid n=2,3,4, \ldots\right\}$.

Since $M_{1}=\square$, we have $M_{1} \in \mathscr{N}_{13}\left(S_{1}\right)$ and $M_{1} \in \mathscr{N}_{12}\left(S_{1}\right)$. The fact that M_{2} is a complement of a finite set in S_{2} implies that $M_{2} \in \mathscr{N}_{13}\left(S_{2}\right)$ and $M_{2} \in \mathscr{N}_{12}\left(S_{2}\right)$. But since M is neither a finite set nor a complement of a finite set in S we have $M \notin \mathcal{F}_{13}(S)$ and $M \notin \mathcal{N}_{12}(S)$. Nevertheless the following Thorem holds.

Theorem 6. Let S be a semigroup, $S_{k}(k \in K)$ subsemigroups of S. Let $S=\cup\left\{S_{k} \mid k \in K\right\}$ and every two subsemigroups $S_{k}, S_{1}(k, l \in K), k \neq l$ be disjoint. Then $M \in \cdot \mathfrak{I}_{i j}(S)$ iff $M=\cup\left\{M_{k} \mid k \in K\right\}$ and $M_{k} \in \mathscr{N}_{i j}\left(S_{k}\right)$ for every $k \in K$.

Proof. With respect to the fact that the subsemigroups $S_{k}(k \in K)$ are mutually disjoint it is clear that if $M=\cup\left\{M_{k} \mid k \in K\right\}$, then $M_{k}=S_{k} \cap M$ for all $k \in K$. Now it is sufficient to use Theorem 3.

Corollary 1. Let $\left\{S_{k} \mid k \in K\right\}$ be a semilattice decomposition of a semigroup S, $M \subseteq S$ and $i, j=1,2,3, i<j$.Then $M \in \mathscr{N}_{i j}(S)$ iff $M=\cup\left\{M_{k} \mid k \in K\right\}$ and $M_{k} \in \mathcal{V}_{i}\left(S_{k}\right)$ for every $k \in K$.

Proposition 8. Let \mathscr{F}_{X} be the free semigroup on a set X. Let $A=\left\{a \in \mathscr{F}_{X} \mid\right.$ a not be a power of any other element of $\left.\mathscr{F}_{x}\right\}$. Then $\mathscr{F}_{X}=\cup\{\langle a\rangle \mid a \in A\}$ and if $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$, then $\left\langle a_{1}\right\rangle \cap\left\langle a_{2}\right\rangle=\square$.

Proof. Let $a_{1}=u_{1} u_{2} \ldots u_{m}, u_{1}, u_{2}, \ldots, u_{m} \in X, a_{2}=v_{1} v_{2} \ldots v_{n}, v_{1}, v_{2}, \ldots$, $v_{n} \in X, a_{1} \neq a_{2}$. Let a_{1} be a power of no other element of \mathscr{F}_{X} and a_{2} be a power of no other element of \mathscr{F}_{X}.

Let us suppose that $a_{1}^{k}=a_{2}^{l}$ for some $k, l \in N$. We shall prove that this is impossible. This will imply that $\left\langle a_{1}\right\rangle \cap\left\langle a_{2}\right\rangle=\square$.

Let Z be the set of all integers.
We can define two functions:
$f: Z \rightarrow X, f(1)=u_{1}, f(2)=u_{2}, \ldots, f(m)=u_{m}$ and $f(s)=f(s+m)$, for all $s \in Z$. This function is periodic with a positive period m.
$g: Z \rightarrow X, g(1)=v_{1}, g(2)=v_{2}, \ldots, g(n)=v_{n}$ and $g(s)=g(s+n)$, for all $s \in Z$. This function is periodic with a positive period n.

With respect to the condition
$a_{1}^{k}=\left(\begin{array}{lll}u_{1} & u_{2} & \ldots \\ u_{m}\end{array}\right)^{k}=\left(\begin{array}{lll}v_{1} v_{2} & \ldots & v_{n}\end{array}\right)^{\prime}=a_{2}^{\prime}$ and since \mathscr{F}_{X} is a free semigroup, $f(i)=g(i)$, for all $i \in Z$.

The function $f: Z \rightarrow X$ is therefore periodic and has positive periods m and n.

Since a_{1} is not a power of another element of \mathscr{F}_{X} and a_{2} is not a power of another element of \mathscr{F}_{X}, both m and n are the smallest positive periods of the function $f: Z \rightarrow X$, hence $m=n$.

This means that $a_{1}=u_{1} u_{2} \ldots u_{m}=v_{1} v_{2} \ldots v_{m}=a_{2}$. But this is a contradiction because we have supposed that $a_{1} \neq a_{2}$.

Corollary 2. Let \mathscr{F}_{X} be the free semigroup on a set $X, M \subseteq \mathscr{F}_{X}$ and $i, j=$ $=1,2,3, i<j$.

Then $M \in \mathscr{N}_{i j}\left(\mathscr{F}_{X}\right)$ iff $M=\cup\left\{M_{a} \mid a \in A\right\}$ and $M_{a} \in \mathscr{N}_{i j}(\langle a\rangle)$ for every $a \in A$.
Corollary 3. Let S be a union of mutually disjoint, cyclic groups of finite order, $G_{k}=\left\langle a_{k}\right\rangle(k \in K)$ and $j=2,3$. Then the following statements hold:
i) $M \in \mathscr{N}_{1 j}(S)$ iff $M=\cup\left\{\left\langle a_{1}\right\rangle \mid l \in L\right\}$ and L is an arbitraly subset of K.
ii) $\mathscr{N}_{23}(S)=\mathscr{P}(S)$.

Proof. The proof of i) follows from the fact that if $\langle a\rangle$ is a cyclic group of finite order, then $\mathscr{N}_{1 ;}(\langle a\rangle)=\{\square,\langle a\rangle\}$. ii) is a direct consequence of the Corollary of Theorem 1. (See also Corollary 1 of Theorem 4.)

Corollary 4. Let S be a band. Then $\mathscr{N}_{i j}(S)=\mathscr{P}(S)$ for $i, j=1,2,3, i<j$. (See also Corollary 2 of Theorem 4.)

5. Examples.

We shall give some examples showing how Theorem 6 can be uused.
Example 4. Let G be the cyclic group of infinite order generated by the element a with the identity e. Then G is the union of mutually disjoint, cyclic semigroups $\langle a\rangle,\langle e\rangle,\left\langle a^{1}\right\rangle$, i. e $G=\langle a\rangle \cup\langle e\rangle \cup\left\langle a^{1}\right\rangle$. We can use Theorem 6 and we get the following results. $M \in i_{13}(G)$ iff $M=M_{1} \cup M_{2} \cup M_{3}$, where $M_{1} \in \mathcal{I}_{13}(\langle a\rangle), M_{2} \in \mathcal{1}_{1}{ }_{3}(\langle c\rangle)$ and $M_{3} \in \mathcal{A}_{13}\left(\left\langle a^{\prime}\right\rangle\right)$ holds. This means that $M \in \mathfrak{I}_{13}(G)$ iff $M=M_{1} \cup M_{2} \cup M_{3}$, where M_{1} is either the empty set or M_{1} is a complement of a finite subset of $\langle a\rangle, M_{2}$ is either the empty set or $M_{2}=\{e\}$ and M_{3} is either the empty set or M_{3} is a complement of a finite subset of $\left\langle a^{-1}\right\rangle$. $M \in \mathcal{1}_{12}(G)$ iff $M=M_{1} \cup M_{2} \cup M_{3}$, where $M_{1} \in \mathcal{1}_{1}{ }_{12}(\langle a\rangle), M_{2} \in \mathcal{1}_{12}(\langle e\rangle)$ and $M_{3} \in \mathfrak{V}_{1}{ }_{3}\left(\left\langle a^{-1}\right\rangle\right)$. This means that $M \in \mathcal{1}_{1} ;_{2}(G)$ iff $M=M_{1} \cup M_{2} \cup M_{3}$, where M_{1} is either a finite subset of $\langle a\rangle$ or M_{1} is a complement of a finite subset of $\langle a\rangle$, \boldsymbol{M}_{2} is either the empty set or $M_{2}=\{e\}$ and M_{3} is either a finite subset of $\left\langle a^{ }\right\rangle$ or M_{3} is a complement of a finite subset of $\left\langle a^{1}\right\rangle$.

Remark1. Let $S_{h}, k \in K, 0 \notin K$ be mutually disjoint semigroups and $S_{0}=\{0\}$ be a semigroup disjoint with every semigroup $S_{k}, k \in K$. Let $S=\cup\left\{S_{k} \mid k \in K\right\} \cup S_{0}$. Then S is a semigroup and $\left\{S_{h} \mid k \in K\right\} \cup S_{0}$ is a semilattice decomposition of S if $x y=y x=0$ for $x \in S_{l}, y \in S_{,}, i \neq j, i, j \in K \cup\{0\}$ and the multiplication in every semigroup $S_{1}, l \in K \cup\{0\}$ remains as before.

Example 5. Let the semigroup $S=\cup\left\{\left\langle a_{i}\right\rangle \mid i \in I\right\} \cup\{0\}$ be the union of mutually disjoint cyclic semigroups $\left\langle a_{i}\right\rangle, i \in I$ and of the semigroup $\langle 0\rangle$ that is disjoint with every semigroup $\left\langle a_{i}\right\rangle, i \in I$. Let $x y=0$ in the case if x and y belong to distinct subsemigroups of the partition $\left\{\left\langle a_{i}\right\rangle \mid i \in I\right\} \cup\langle 0\rangle$ of the semigroup S. Then we can use Theorem 6 and we have:
i) $M \in \mathfrak{N}_{13}(S)$ iff $M=\cup\left\{M_{\|} \mid i \in I\right\} \cup M_{0}$, where $M_{i} \in \mathscr{N}_{1}{ }_{3}\left(\left\langle a_{i}\right\rangle\right)$ and $M_{0} \in \mathcal{V}_{1}{ }_{3}(\langle 0\rangle)$,
ii) $M \in \mathcal{N}_{12}(S)$ iff $M=\cup\left\{M_{i} \mid i \in \Gamma\right\} \cup M_{0}$, where $M_{i} \in \mathcal{F}_{12}\left(\left\langle a_{i}\right\rangle\right)$ and $M_{0} \in \mathcal{I}_{12}^{2}(\langle 0\rangle)$.
Remark2. Let S_{1} and S_{2} be disjoint semigroups and $S=S_{1} \cup S_{2}$. Then S is a semigroup and $\left\{S_{1}, S_{2}\right\}$ is a semilattice decomposition of S if $x y=y x=x$ for all $x \in S_{1}$ and $y \in S_{2}$ and the multiplication of two elements of S_{1}, resp. of two elements of S_{2} remains as before.

Example 6. Let $S=\langle a\rangle \cup\langle b\rangle$, where $\langle a\rangle$ and $\langle b\rangle$ are disjoint cyclic semigroups, generated by a and b, respepcively, and $x y=y x=x$ in the case if $x \in\langle a\rangle$ and $y \in\langle b\rangle$.

In this case Theorem 6 can be also used.
Remark 3. Combining the constructions of Remark 1 and Remark 2 we get other semigroups, where Theorem 6 may be used.

6. Semigroup and its homorphic image

Proposition 9. Let S and S^{\prime} be semigroups and let $\varphi: S \rightarrow S^{\prime}$ be a surjective homomorphism. Let $M \subseteq S$. If $x \in S$ and $x^{n} \in M$ for some $n \in N$, then $(\varphi(x))^{n} \in \varphi(M)$.

Proof. $(\varphi(x))^{n}=\varphi\left(x^{n}\right) \in \varphi(M)$.
Proposition 10. Let S and S^{\prime} be semigroups and let $\varphi: S \rightarrow S^{\prime}$ be a surjective homomorphism. Let $M^{\prime} \subseteq S^{\prime}$. If $x^{\prime} \in S^{\prime},\left(x^{\prime}\right)^{n} \in M^{\prime}$ for some $n \in N$ and $\varphi(x)=x^{\prime}$, then $x^{n} \in \varphi^{-1}\left(M^{\prime}\right)$.

Proof. $\varphi\left(x^{n}\right)=(\varphi(x))^{n}=\left(x^{\prime}\right)^{n} \in M^{\prime}$, hence $x^{n} \in \varphi^{-1}\left(M^{\prime}\right)$.
Corollary 1. Let S and S^{\prime} be semigroups and $\varphi: S \rightarrow S^{\prime}$ be a surjective homomorphism. Let $M^{\prime} \subseteq S^{\prime}$. Then for $i=1,2,3$ there holds:
i) $N_{i}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)=\varphi^{-1}\left(N_{i}\left(S^{\prime}, M^{\prime}\right)\right)$,
ii) $N_{i}\left(S^{\prime}, M^{\prime}\right)=\varphi\left(N_{i}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)\right)$.

We give the proof only for $i=2$. Let $\varphi^{-1}\left(M^{\prime}\right)=M$, then $\varphi(M)=M^{\prime}$.
a) If $x \in N_{2}(S, M)$, then $x^{n} \in M$ holds for infinitely many $n \in N$, hence by Proposition 9 we have $(\varphi(x))^{n} \in \varphi(M)=M^{\prime}$ for infinitely many $n \in N$ i.e. $\varphi(x) \in N_{2}\left(S^{\prime}, M^{\prime}\right)$, hence $x \in \varphi^{-1}\left(N_{2}\left(S^{\prime}, M^{\prime}\right)\right)$. Therefore $N_{2}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right) \subseteq$ $\subseteq \varphi^{-1}\left(N_{2}\left(S^{\prime}, M^{\prime}\right)\right)$.
b) Let $x \in \varphi^{-1}\left(N_{2}\left(S^{\prime}, M^{\prime}\right)\right)$. This means that $x^{\prime}=\varphi(x) \in N_{2}\left(S^{\prime}, M^{\prime}\right)$, i. e. $\left(x^{\prime}\right)^{n}=$ $=(\varphi(x))^{n} \in M^{\prime}$ for infinitely many $n \in N$. By Proposition 10 we have $x^{n} \in \varphi^{-1}\left(M^{\prime}\right)$ for infinitely many $n \in N$ i. e. $x \in N_{2}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)$. Hence $\varphi^{-1}\left(N_{2}\left(S^{\prime}, M^{\prime}\right)\right) \subseteq N_{2}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)$.
This means that $N_{2}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)=\varphi^{-1}\left(N_{2}\left(S^{\prime}, M^{\prime}\right)\right)$ and evidently also $N_{2}\left(S^{\prime}, M^{\prime}\right)=\varphi\left(N_{2}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)\right)$.

Corollary 2. Let S and S^{\prime} be semigroups and $\varphi: S \rightarrow S^{\prime}$ be a surjective homomorphism. Then $\mathscr{N}_{i j}\left(S^{\prime}\right)=\left\{M^{\prime} \subseteq S^{\prime} \mid \varphi^{-1}\left(M^{\prime}\right) \in \mathscr{N}_{i j}(S)\right\}$ holds for $i, j=1,2,3$, $i<j$.

Proof. a) Let $M^{\prime} \in \mathscr{N}_{i j}\left(S^{\prime}\right)$, i. e. $N_{i}\left(S^{\prime}, M^{\prime}\right)=N_{j}\left(S^{\prime}, M^{\prime}\right)$. Then Corollary 1 i) implies that $N_{i}\left(S, \quad \varphi^{-1}\left(M^{\prime}\right)\right)=\varphi^{-1}\left(N_{i}\left(S^{\prime}, \quad M^{\prime}\right)\right)=\varphi^{-1}\left(N_{j}\left(S^{\prime}, \quad M^{\prime}\right)\right)=$ $=N_{f}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)$, hence $\varphi^{-1}\left(M^{\prime}\right) \in \mathscr{N}_{i j}(S)$.
b) Let $\varphi^{-1}\left(M^{\prime}\right) \in \mathcal{N}_{i j}(S)$ i. e. $N_{i}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)=N_{j}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)$. Then Corollary 1 ii) implies that $N_{i}\left(S^{\prime}, M^{\prime}\right)=\varphi\left(N_{i}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)\right)=\varphi\left(N_{j}\left(S, \varphi^{-1}\left(M^{\prime}\right)\right)\right)=$ $=N_{j}\left(S^{\prime}, M^{\prime}\right)$ hence $M^{\prime} \in \mathscr{N}_{i j}\left(S^{\prime}\right)$.

Remark 4. It is known that every semigroup S is a homomorphic image of some free semigroup \mathscr{F}_{X} on a set X. This implies the following

Theorem 7. Let S be a homomorphic image of a free semigroup \mathscr{F}_{X} on a set X by the homomorphism $\varphi: \mathscr{F}_{x} \rightarrow S$. Let $M \subseteq S$. Then the following statements hold:
i) $N_{1}\left(\widetilde{F}_{\chi}, \varphi^{1}(M)\right)=\varphi^{\prime}\left(N_{l}(S, M)\right)$,
ii) $\left.N_{(}(S, M)=\varphi\left(N_{(} \mathscr{F}_{X}, \varphi^{-1}(M)\right)\right)$,
iii) . $1,(S)=\left\{M \subseteq S \mid \varphi{ }^{\prime}(M) \in \mathcal{V}_{1},\left(\mathscr{F}_{X}\right)\right\}$, for $i, j=1,2,3, i<j$.

7. Application to characterizations of some classes of semigroups

Theorem 8. Let S be a semigroup. Then the following statements are equivalent:
i) $\{a\} \in, 1_{13}(S)$ for all $a \in S$.
ii) S is a band.
iii) $\quad \mathfrak{V}_{13}(S)=\mathscr{P}(S)$.

Proof. i) \Rightarrow ii). Since $a \in\{u\} \in \mathcal{V}_{13}(S)$, we have $a \in N_{3}(S,\{a\})=N_{1}(S,\{a\})$, hence there exists an $n_{0} \in N$ such that $a^{n} \in\{a\}$ holds for all $n \geq n_{0}$, i. e. $a^{n}=a$ for nill $n \geq n_{0}$. Therefore $a=a^{n_{0}}=a^{n_{0}+1}=a^{n_{0}} a=a^{\text {2 }}$; i. e. a is an idempotent.
ii) \Rightarrow iii). Let S be a band and let $M \subseteq S$. If $x \in N_{3}(S, M)$, then $x^{n_{0}} \in M$ for some $n_{0} \in N$. Since x is an idempotent, we have $x^{n}=x^{n_{0}} \in M$ for all $n \in N$, hence $x \in N_{1}(S, M)$. This means that $N_{1}(S, M)=N_{3}(S, M)$, therefore $M \in \mathscr{N}_{1}(S)$. (See also Corollary 4 of Theorem 6.) iii) \Rightarrow i) is evident.

Theorem 9. Let S be a semigroup. Then the following statements are equivalent:
i) $\{a\} \in \mathscr{F}_{2}{ }_{3}(S)$ for all $a \in S$.
ii) S is a periodic semigroup and each cyclic subsemigroup of it is a group.
iii) $\mathfrak{F}_{23}(S)=\mathscr{P}(S)$.

Proof. i) \Rightarrow ii). From $\{a\} \in \mathfrak{H}_{2}{ }_{3} S$) we have $N_{2}(S,\{a\})=N_{3}(S,\{a\})$. Since $a \in N_{3}(S,\{a\})=N_{2}(S,\{a\}), a^{n}=a$ holds for infinitely many $n \in N$, hence $a^{n}=a$ holds for at least one $n>1$. This means that $\langle a\rangle$ is a finite, cyclic group.
ii) \Rightarrow iii). Let $M \subseteq S$ and let $x \in N_{3}(S, M)$. Then $x^{n_{0}} \in M$ for some $n_{0} \in N$. By the assumption $\left\langle x^{n_{0}}\right\rangle$ is a finite cyclic group. Hence there exists an $m \in N, m>1$, such that $x^{n_{0} m^{k}}=\left(x^{\left.n_{0}\right)^{m^{k}}}=x^{n_{0}} \in M\right.$ for all $k \in N$. This means that $x^{n} \in M$ for infinitely many $n \in N$, therefore $x \in N_{2}(S, M)$.

We have $N_{3}(S, M) \subseteq N_{2}(S, M)$. This together with $N_{2}(S, M) \subseteq N_{3}(S, M)$ gives $N_{3}(S, M)=N_{2}(S, M)$ for all subsets $M \subseteq S$. Hence $\mathscr{N}_{2}(S)=\mathscr{P}(S)$. iii) $\Rightarrow \mathrm{i}$) is evident.

Theorem 10. Let S be a semigroup. Then the ffollowing statements are equivalent:
i) $\langle a\rangle \in \mathcal{N}_{12}(S)$ all $a \in S$.
ii) S is a periodic semigroup and each its cyclic subsemigroup has period 1 .
iii) $\mathscr{N}_{12}(S)=\mathscr{P}(S)$.

Proof. i) \Rightarrow ii). Let $a \in S$. By the assumption we have $\left\langle a^{2}\right\rangle \in \mathscr{N}_{12}(S)$, i.e. $N_{1}\left(S,\left\langle a^{2}\right\rangle\right)=N_{2}\left(S,\left\langle a^{2}\right\rangle\right)$. Hence $a \in N_{2}\left(S,\left\langle a^{2}\right\rangle\right)=N_{1}\left(S, D\left\langle a^{2}\right\rangle\right)$, therefore
there exists an $n_{0} \in N$ such that $a^{n} \in\left\langle a^{2}\right\rangle$ holds for all $n \geq n_{0}$. This means that an even power of a is equal to an odd power of a, hence the cyclic semigroup $\langle a\rangle$ is of finite order for every $a \in S$. This means that the semigroup S is periodic.

Since every subsemigroup $\langle a\rangle$ of the semigroup S is of finite order, $\langle a\rangle$ contains an idempotent $e=a^{r}$. Evidently $\left\langle a^{r}\right\rangle=\left\{a^{r}\right\}$ and by the assumption $\left\langle a^{r}\right\rangle \in \mathscr{N}_{12}(S)$. Hence $a \in N_{2}\left(S,\left\langle a^{r}\right\rangle\right)=N_{1}\left(S,\left\langle a^{r}\right\rangle\right)=N_{1}\left(S,\left\{a^{r}\right\}\right)$. Therefore there exists an $n_{0} \in N$ such that $a^{n}=a^{s}$ holds for all $n \geq n_{0}$, i. e. $a^{n_{0}}=a^{s}=a^{n_{0}+1}$. This implies that the period of $\langle a\rangle$ is equal to 1 , for all $a \in S$.
ii) \Rightarrow iii). Let $M \subseteq S, S$ be a periodic semigroup and let every cyclic subsemigroup of S have a period $m=1$. Let $x \in N_{2}(S, M)$, i. e. $x^{n} \in M$ for infinitely many $n \in N$. Let r the index of the semigroup $\langle x\rangle$. Then there exists a $k_{0} \in N$ such that $x^{r}=x^{r+k_{0}} \in M$. Since the semigroup $\langle x\rangle$ has period $m=1, x^{r}=x^{r+k} \in M$ for all $k \in N$, hence $x \in N_{1}(S, M)$. Therefore we have $N_{2}(S, M) \subseteq N_{1}(S, M)$. This together with $N_{1}(S, M) \subseteq N_{2}(S, M)$ gives $N_{1}(S, M)=N_{2}(S, M)$. This means that $M \in \mathscr{N}_{12}(S)$ for all $M \subseteq S$, i. e. $\mathscr{N}_{12}(S)=\mathscr{P}(S)$.
iii) $\Rightarrow i)$ is evident.

Remark 5. If $S=\langle a\rangle$ is the cyclic semigroup of infinite order, then $\{a\} \in \mathscr{N}_{12}(S)$ for all $a \in S$, but $\mathscr{N}_{12}(S) \neq \mathscr{P}(S)$.

Theorem 11. Let S be a semigroup. Then the following statements are equivalent:
i) $N_{3}\left(S,\left\{a^{2}\right\}\right)=\left\{a^{2}\right\}$ for all $a \in S$.
ii) S is a band.
iii) $N_{3}(S, M)=M$ for all $M \subseteq S$.
iv) $N_{3}(S,\{a\})=\{a\}$ for all $a \in S$.

Proof. i) \Rightarrow ii). If $a \in S$, then $a \in N_{3}\left(S,\left\{a^{2}\right\}\right)=\left\{a^{2}\right\}$. Hence $a=a^{2}$.
ii) \Rightarrow iii) \Rightarrow iv) \Rightarrow i) is evident.

Theorem 12: Let S be a semigroup. Then the following statements are equivalent:
i) For every $a \in S$ there exists $a k \in N$ such that $N_{2}\left(S,\left\{a^{k}\right\}\right)=\left\{a^{k}\right\}$.
ii) S is a band.
iii) $N_{2}(S, M)=M$ for all $M \subseteq S$.

Proof. Let $a \in S$. Then $a^{k} \in N_{2}\left(S,\left\{a^{k}\right\}\right)=\left\{a^{k}\right\}$ for some $k \in N$. This means that $a^{k n}=\left(a^{k}\right)^{n}=a^{k}$ holds for infinitely many $n \in N$. Hence the semigroup $\left\langle a^{k}\right\rangle$ is a cyclic group with a unit $e=a^{k r}=a^{k n r}$ and this equality holds for infinitely many $n \in N$. Therefore $a \in N_{2}(S,\{e\})=\{e\}$. Hence $a=e$ and this implies $a^{2}=a$.

We have proved i) \Rightarrow ii).
ii) \Rightarrow iii) \Rightarrow i) is evident.

Theorem 13. Let S be a semigroup. Then the following statements are equivalent:
i) $N_{1}(S,\{a\})=\{a\}$ for all $a \in S$.
ii) S is a band.
iii) $N_{1}(S, M)=M$ for all $M \subseteq S$.

Proof. i) \Rightarrow ii). If $a \in S$, then $a \in N_{1}(S,\{a\})=\{a\}$. Therefore there exists an $n_{0} \in N$ such that $a^{n}=a$ for all $n \geq n_{0}$. Hence $a=a^{n_{0}}=a^{n_{0}+1}=a^{n_{0}} a=a a=a^{2}$. We have $a=a^{2}$ for all $a \in S$, therefore S is a band.
ii) \Rightarrow iii) \Rightarrow i) is evident.

REFERENCES

[1] CLIFFORD, A. H. PRESTON, G. B.: The Algebraic Theory of Semigroups, I. Providence 1961.
[2] SCHWARZ, Š.: K teorii periodičeskich polugrupp. Czech. Math. J. 3 (78), 1953, 721.
[3] ŠULKA, R.: On the nilpotency in semigroups, Mat. časopis $18,1968,148157$.
[4] ŠULKA, R.: The maximal semilattice decomposition of a semigroup, radicals and nilpotency, Mat. časopis $20,1970,172180$.
[5] ŠULKA, R.: On three lattices that belong to every semigroup, Math. Slovaca 34, 1984, 217-228.

Received June 19, 1985

Katedra matematiky Elektrotechnickej fahulty SVŠT Mlynská dolina, blok A 81219 Bratislava

НИЛЬПОТЕНТНОСТЬ В ПОЛУГРУППАХ И ТРИ РЕШЕТКИ ИХ БУЛЕАНОВ

Robert Šulka
Резюме
С помощю понятия нильпотентности определены три решетки. Дана конструкция этих решеток для полугрупп, являющихся объединением непересекающихся циклических полугрупп, и характеризация некоторых классов периодических полугрупп.

