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DIEUDONNE P R O P E R T Y 

S U R J I T S I N G H K H U R A N A 

(Communicated by Miloslav Duchoň ) 

ABSTRACT. Let X0 be a locally compact Hausdorff space, C0(X0) the space 
of all scalar-valued bounded continuous functions on X0 vanishing at infinity, 
and X a one-point compactification of X 0 . We derive the Dieudonne property 
of C0(X0) from the Dieudonne property of C(X). The result is extended to 
C0(X0,E), E a Banach space. 

1. Introduction and notations 

In [7], for a locally compact space X 0 , the Dieudonne property of C 0 (X 0 ), 
endowed with the sup-norm topology, is proved. In this paper, this property is 
established as a simple consequence of the known Dieudonne property of C(X) 
when X is compact. The result is then extended to C0(X0)E), E being a 
Banach space. 

In this paper, X0 is a locally compact Hausdorff space, K the field of real or 
complex numbers (called scalars), C0(X0) the space of all scalar-valued bounded 
continuous functions on X0 vanishing at infinity, and X a one-point compact
ification of X0; this point is called the point at infinity and we will denote it 
by p. C(X) will denote the space of all if-valued continuous functions on X. 
We have C0(X0) = {/ G C(X) : f(p) = 0}. C0(X0) and C(X) are taken with 
the sup-norm topology. The duals of C0(X0) and C(X) are denoted by M0(X0) 
and M(X). Also M0(X0) = {fieM(X): \»\({p}) = 0}. 

We fix an increasing net of functions {ga} in C 0(K 0), 0 < ga t V For a 
[i e M0(X0), we have 

(V/€C(X)) (M ( / ) = limM/<?J). 

For locally convex spaces, the notations and results of [8], [6] will be used. 
For topological spaces, we refer to [2]. For topological measure theory, notations 
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and results of [10], [9], [5] will be used. All locally convex spaces are assumed to 
be Hausdorff and over K. 

For a locally convex space E, Ef, E" will denote its dual and bidual; let 

H={feE": (3{xk}cE)(Xk^^\f)}. 

H is called the Baire subspace of E" of first class ([1; p. 646]). 

E is said to have Dieudonne property if every equicontinuous, absolutely 
convex subset of E1, compact in a(E'', H) topology, is also compact in a(E'', E") 
topology. It is well-known ([3]) that C(X) has Dieudonne property. 

2. Main results 

LEMMA 1. Suppose H is the Baire subspace of first class of (C(Ar)) and let 
F = (M(X),T(M(X),H)) . Then F is quasi-complete. 

P r o o f . Take a Cauchy, bounded net {va} in F. It is norm bounded. By 
tctking subnets, if necessary, we assume that va —> \i G M(X) in 
a(M(X), C(X)) -topology. Assume also that va —>• v G F , the completion 
of F. We want to prove that v = fi. They are evidently equal on C(X). Take 
an / G H and a sequence {/n} C C(X) such that 

/ „ - > / in ((C(X))",a((C(X))",M(X))). 

Smce ( (C(X) ) " , r ( (C(X) ) " ,M(A r ) ) ) is complete, 

OO 

I n = l 7i=l J 

is absolutely convex and compact in ( ( C ( X ) ) ^ a ( ( C ( X ) ) ^ M ( A ' ) ) ) ([6; p. 249, 
20.9.(6)]). Since P C H, va -* v uniformly on P. Thus /i(f) = v(f), and so 
ji = v on H. This proves the result. • 

THEOREM 2. C0(X0) has Dieudonne property. 

P r o o f . Let H0 be the Baire subspace of (C0(N0)) of first class. This 
means elements of H0 are limits of bounded, pointwise convergent sequences in 
C0(X0). Thus H0 C (C(X))". Let H be the subspace of (C(X))", generated 
by 1 and H0. H is the Baire subspace of (C(A^)) of first class. By Lemma 1, 
(M(X),T(M(X),H)) is quasi-complete. 

Take a bounded, absolutely convex, compact P C M0(A"0) with the topology 
cr(M0(A^0), H0). Now we will prove that P is compact in (M(X), a(M(X), H)). 
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Take a sequence {nn} in P and let / / ^ be a cluster point of this sequence in 
O-(M0(X0), HQ). Take an increasing sequence {gn} C {ga} such that lim Hn(gk) 

k—>oo 

= / i n ( l ) , l < n < o o . Now limgn = gQ e HQ. This proves that fi^ is the cluster 
point of {fin} in (M(X) , a(M(X),H)). Since C(X) has Dieudonne property, 
the proof is complete. • 

Now we come to the vector case. Let E be a Banach space such that for 
every compact Hausdorff space Y, C(Y, E), with the sup-norm, has Dieudonne 
property. We will prove that CQ(XQ,E) has Dieudonne property. 

We denote by C0(XQ, E) the space of all F^-valued continuous functions on 
XQ vanishing at infinity, and by C(X,E), the space of all E-valued continuous 
functions on X , both with the supremum norm topology. We have C0(A"0, E) = 
{/ G C(X,E) : f(p) = 0} . The dual of C(X,E) is denoted by M ( X , E') ([5]). 

It is a routine to prove that (CQ(XQ,E))' = {/iG M(X,E') : |/x|({p}) = 0 } . 
Since elements of E can be considered as constant functions in C(X, E), we 
have C(X,E) = C0(XQ:E)®E. 

As in the scalar case, for a ji G (CQ(XQ)E)) , we have 

(Vf e C(X,E))(n(f) = \imfi(fga)). 

We begin with a simple lemma: 

LEMMA 3. Suppose {fn} is a bounded sequence in C(X,E) such that fn(x) is 
weakly Cauchy for each x in X . Then lim /x(/n) exists for every fi G M(X, E'). 

n—>-oo 

P r o o f . We consider C(X, E) as a subspace of C(X x S), S being the 
closed unit ball of E' with weak*-topology. Take a / i G M(X,E') and extend 
/i to C(X x 5) without increasing its norm. Since {fn} is pointwise Cauchy on 
X x 5 , the result follows from the dominated convergence theorem. • 

Now we come to Dieudonne property of CQ(XQ)E). 

THEOREM 4. If E is a Banach space such that, for every compact Hausdorff 
space Y, C(Y,E) has Dieudonne property, then C0(X0,E) has Dieudonne prop
erty. 

P r o o f . Let HQ be the Baire subspace of (C0(X0,E)) of first class. This 
means elements of HQ are the limits of bounded, pointwise, weakly Cauchy se
quences in C0(X0, E). Thus HQ C (C(X, E)) (Lemma 3). Let Ex be the limits, 

in E", of weak Cauchy sequences in E, and H be the subspace of (C(X,E)) , 
generated by Ex and H0. As in the scalar case, H is the Baire subspace of 
(C(X, E)) of first class. Proceeding exactly as in Lemma 1, we can prove that 
(M(X,E'),T(M(X,E'),H)) is quasi-complete. 
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Now for a bounded, absolutely convex, compact 

Pc((C0(X0,E)y,a((C0(X0,E))',H0)), 

to prove that P is compact in (M(X, E'), G(M(X, £"), H)), we take a sequence 
{/in} in P. Let / /^ be a cluster point of this sequence in 

((C0(X0,E))',a((C0(X0,E)У,H0)) 

Take an increasing sequence {gn} c {ga} such that lim \vn\(gk) = |/i n | ( l), 
k—>oo 

1 < n < oo. Fix an x0 e Ex and take a sequence { x J c E such that xk -> x0 in 
{E",a(E",E')). Put 0 = \\m^xkgk (note { r r ^ J is point-wise weakly Cauchy 
in C(X,E)). From |jz((l - g,)^)| < |/x|((l - g,)||xj|) -> 0 for every /i G 
M(X,£ ' ) , it follows that fin(^)) = /in(.x0), 1 < n < oo. This proves that /i is 
a cluster point of {lxn} in (M(.Y, JS;), cr(M(X, £ ') , H)). This proves the result. 

• 
Remark 5. It is proved in [4] that if a Banach space does not contain £l, then, 
for every compact Hausdorff space F , C(Y, E) has Dieudonne property. 
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