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O N P R O J E C T I O N M E A S U R A B I L I T Y 

O F F U N C T I O N S A N D M U L T I F U N C T I O N S 

JOZEF DRAVECKÝ — IVAN KUPKA — MIROSLAV PAKANEC 

ABSTRACT. The notion of projection measurable multifunction is defined and 
studied. The article generalizes some results concerning projection measurable 
functions, some projection measurability-preserving convergencies are studied . 

In paper [1] one of us introduced the notion of a projection measurable func
tion and established some conditions for the projection measurabi l i ty to imply 
or be implied by the usual measurability. In the present paper , the not ion of a 
projection measurable multifunction is defined and studied. 

We begin with recalling the original definition from [1]. 

DEFINITION 1. Let K, Y be nonempty sets, X any family of subsets of X 

and V any family of subsets of X x Y. We say that a function g: X —• Y is 

(X, V) -projection measurable if and only if the set {x: (x, g(x)) E V} is in X 

for each V G V. 

As the n a m e suggests a function / : X —• Y is projection measurable if and 
only if the projection into X of the intersection of the graph of / wi th any 
"measurable" (i.e. belonging to V) set in X x Y is measurable (i.e. in X ). This 
proper ty can easily be formulated for multifunctions in the following definition . 
By a multifunction F: X —> F we mean a mapping of X into 2 y , which here 
will denote the family of all nonempty subsets of Y. 

DEFINITION 2 . Let K, Y be nonempty sets, X any family of subsets of X 
and V any family of subsets of X xY . A multifunction F: X —* Y is said to 
be (X, V) -projection measurable if and only if the set {x: {x} x F(x)C\V ^ 0} 
is in X for every V G V . 

T h e following theorem is analogous to Theorem 1 in [1]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 28A20. Secondary 54C60. 
K e y w o r d s : Projection measurability, Measurable multifunction. 
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T H E O R E M 1. Let X, y , Z be nonempty sets and let X C 2X V C 2XxY 

and Z C 2 . Let F: X xY --> Z be a (V, Z)-measurable multifunction, 

that is, \/BeZ F"l(B) G V, where F~\B) = {(x, y): F(x, y) n B ^ 0} . 

Let G: X —> Y be an (X, V) -projection measurable multifunction. Then the 

multifunction H: X —> Z defined by H(x) = F(x, G(x)) = (J F(x, y) for 
yeG(x) 

all x G X, is (X, Z) -measurable. 

P r o o f . If P e Z, then the set 

H~l(P)={x: F(X) G(x))nP^0} = {x: {x} x G(x) n F~\P) ^ 0} 

is in X, because F~l(P) G V and G is an (A*, V)-project ion measurable 
multifunction. • 

It is well known tha t pointwise limits of sequence of (real valued) measurable 
functions are measurable. An answer to the na tura l question whether a limit 
function of a sequence of projection measurable functions or multifunctions is 
itself project ion measurable will be given in Theorem 2. To simplify its formu
lation and proof let us first introduce some notat ion. 

D E F I N I T I O N 3 . Let X, Y be nonempty sets. We shall use the notation Dx 

for an x-section of a set D C X x Y, i.e., for a given x G X, Dx = {y G Y: 

(xi y) £ D} . If Y is a topological space and V C X x Y, we shall denote by V 

the set (J ({x} x Vx) , where the bar denotes closure in Y . 
xex 

In order to produce our results we must specify in what sense a sequence of 
multifunctions converges to a function. Here is one of the most frequently used 
topologies in which the convergence may be considered. 

D E F I N I T I O N 4 . Let Y be a topological space, denote V(Y) = [C dY: C = 

C 7̂  0} . The topology whose base is formed by all sets of the form 

(U, Ui,...,U„) = {C eV(Y): C C U andCPiUi^d) for all t = 1 , 2 , . . . , n } , 

where n is a positive integer and U, Ui,..., Un are open subsets of Y, is called 
the Vietoris topology on V(Y) . 

T H E O R E M 2 . Let X C 2X be a a -ring, let Y be a T\ topological space. 
Assume that V is a a -ring in X X Y generated by a family Vo such that for 
any V G Vo there is a sequence of sets Vk G V satisfying 

(i) \fxeX {y eY: (x, y) G Vk} is open in Y 
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(ii) V = IJ Vk = U vk. 
k=l k=i 

If a sequence of (K, V) -projection measurable multifunction Fn: X —• Y with 
closed nonempty values converges pointwise in the Vietoris topology to a function 
f: X —• Y, then f is (X', V) -projection measurable. 

P r o o f . It is sufficient to prove that, for each V G Vo, the set f~l(V) = 
{x: (x, f(x)) G V} is in X. Let V G Vo and let {V*}]^ be such a sequence 
that the sets V, V* satisfy the assumptions (i) and (ii). Put A = / _ 1 ( V ) and 

oo oo oo 

fc=l t = l n=i 

Evidently, B G A*. We are going to show that A = B. 

It is easy to verify that 

oo 

A=[j{x: f(x)eVk
x} = {x: f(x) G V*} 

k=i 

and 
oo oo oo 

B=\J\jr\ix: F»{x)nvk'?i>}. 
k=l 1=1 n=i 

If x G -4, then for some positive integer k we have f(x) G Vjf , that is, {f(x)} fl 
Vfc

x 7- 0. Since {C: C n V^1 ^ 0} is a neighbourhood of {/(>)} in the Vietoris 
topology, we infer that there is a positive integer i such that for every n > i 
we have Fn(x) fl Vfc

x ^ 0. Hence x e B. 
Conversely, let x G B . Then 

(*) there are positive integers i, / such that Fn(x)C\Vl
x ^ 0 for all n > i. 

Let fc be arbitrary and assume that f(x) eY -VJ. Then {C: C fl Vjf = 0} 
is a neighbourhood of {/(>c)} and since Fn(x) converge to {f(x)} , we obtain, 
for some positive integer j and every n > j , the inclusion Fn(x) C y — V£ , 
which contradicts (*). Therefore f(x) G Vfc

x for some fc, and hence a: belongs 
to A. • 

R e m a r k . The assumptions of Theorem 2 sound naturally especially for 
any regular topological space. 
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COROLLARY. If X and Y satisfy the assumptions of Theorem 2, then every 
function which is a pointwise limit of a sequence of (X, V) -projection measurable 
functions fn: X —• Y is (X, V) -projection measurable. 

T h e following example shows tha t if the hypotheses of Theorem 2 are not 
met , a sequence of projection measurable functions may have a limit t h a t is not 
project ion measurable . 

E x a m p l e 1. Y>ut X = R, X = {E C X: E is countable ov X - E 
is countable} . Let Y = M be endowed with the cofinite topology S = {G CY: 

Y — G is finite} and let V be the cr-ring generated by {E x G: E £ X and 
G G S} . As usual , let the function sign(x) be defined by 

1 for x > 0 , 

sign(x) = ^ 0 for x = 0 , 

- 1 for x < 0 . 

T h e n evidently the functions fn(x) = \x\* sign(x) are bijections of X onto Y 

and hence they are (X, V)-projection measurable, while the sign function is 
not . But lim fn(x) = sign(x) also in the cofinite topology. • 

n—KX> 

It is an open problem whether "function / " may be replaced by "multifunc
t ion F" in the s ta tement of Theorem 2. The authors conjecture t ha t the answer 
is negative. 

REFERENCES 

[1] DRAVECKY, J . : On measurability of superpositions, Acta Math. Univ. Comenian. 44—45 
(1984), 181-183. 

Received April 8, 1991 Department of Mathematical Analysis 

Faculty of Mathematics and Physics 

Comenius University 

Mlynskd dolina 

842 15 Bratislava 

Czecho-Slovakia 

278 


		webmaster@dml.cz
	2012-08-01T07:32:05+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




