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COMPARISON THEOREMS FOR NONLINEAR ODEs 

JOZEF DZURINA 

ABSTRACT. In this paper the asymptotic properties of the solutions of the 
nonlinear differential equation 

Lnu(t) + p(t)f(u[g(t)]) =0 

are deduced from those of the differential equation 

Mnz(t) + q(t)h(z[r(t)]) = 0 . 

As application of this comparison principle the sufficient conditions for the linear 
differential equation 

Lnu(t)+p(t)u(g(t)) = 0 

to have certain asymptotic behaviour are presented. 

1. Introduction 

On the basis of suitable comparison theorems this paper presents results 
concerning oscillatory and asymptotic properties of solutions of linear differential 
equations of the form 

Lnu(t) + p(t)u(t) = 0, (1) 

and 
Lnu(t) + p(t)u(g(t))=0, (2) 

where n > 2 and Ln denotes the disconjugate differential operator 

_ d , , d d d 
L * = s d * r " - l ( ' ) d * r » - - ( ' ) - d * P l ( ' ) d * -

It is assumed that: 

(3) ri(t) are continuous and positive on [to, oo), and 

t 

1 Гi{S) 
<0 

oo as t —» oo, 1 < t < rt — 1. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34C10. 
K e y w o r d s : Comparison, Deviating argument. 
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(4) p(t) is continuous and with constant sign on [t0, oo) , 
(5) g(t) is continuous on [t0, oo) and g(t) —• oo as t —> oo . 

In the sequel we will restrict our a t tent ion to those solutions of equat ions con
sidered which exist on some ray [t0, oo) and are nontrivial in any ne ighbourhood 
of infinity. Such a solution is called oscillatory if it has arbi trar i ly large zeros, 
and nonoscillatory otherwise. Considered equations are said to be oscillatory if 
all their solutions are oscillatory. 

Throughou t the paper we will use the following functions: 

ro(t) = rn(t) = 1 on [ r 0 , oo ) . 

T h e following nota t ion is employed: 

D0(u; r0)(t) = u(t) 

Di(u; r0,...,ri)(t) = n(t)[Di-i(u] r 0 , . . . ,r,-.-i)(t)] , 1 < i < n. 

Equat ion (2) can then be rewrit ten as 

Dn(u; r0,..., rn)(t) + p(t)u(g(t)) = 0 . 

If u(t) is a nonoscillatory solution of (2), then according to a generalization 

of a l emma o f K i g u r a d z e (Lemma 1 in [7]), there is an integer £, 0 < £ < n 

such tha t £ = n - \ (mod 2) if p(t) > 0 , and £ = n (mod 2) if p(t) < 0 , and 

Ц ť ) D , ( u ; r0,...,n)(t)>0, 0 < i < i , 

{-ìy-tuiĄDiiщ r0,...,n)(t) > 0 , Ł<i<n, 

for all sufficiently large t. A function u(t) satisfying (6) is said to be a function 
of degree £ . 

D E F I N I T I O N 1. Equation (2) is said to have property (A) if for n even equa
tion (2) is oscillatory and for n odd, every nonoscillatory solution u(t) of (2) 
satisfies 

D,-(u; r0,...,rt)(t) --> 0 as r - ^ oo, 0 < i < n - l . ( P 0 ) 

D E F I N I T I O N 2. Equation (2) is said to have property (B) if, for n even, every 
nonoscillatory solution u(t) of equation (2) satisfies either ( P Q ) or 

\Di(u\ r0,... ,rt)(t)\ —> oo as r — > o o , 0<i<n — 1, ( P n ) 

300 



COMPARISON THEOREMS FOR NONLINEAR ODEs 

and, for n odd, every nonoscillatory solution u(t) of (2) satisfies ( P n ) -

We shall transfer some asymptot ic propert ies of solutions of the Euler equa
t ion 

tBy(B)(«)+ «y(0 = o (7) 

to the equat ion (2). 

It is known tha t if 6 is a real root of the algebraic equat ion 

-k(k- l ) . . . ( J f c - n + 1) = a , (8) 

then y(t) = th is a nonoscillatory solution of (7) and if b + \c is a complex 

root of (8), t han y\(t) = r 6 c o s ( c l n r ) and y2(t) = tb sin(c\nt) are a couple of 

oscillatory solutions of (7). 

In the next three lemmas we introduce some propert ies of the polynomial 

Pn(k) = -k(k-l)...(k-n + l) 

to be able to solve the equat ion (8) (and also ( 7 ) ) graphically. 

L E M M A 1. The polynomial Pn(k) 

(i) has, for n even, n/2 local maxima and n/2 — 1 local minima, 
(ii) has, for n odd, (n — l ) / 2 local maxima and (n — l ) / 2 local minima. 

L E M M A 2 . The graph of Pn(k) 

(i) is, for n even, symmetrical with respect to the line x = (n — l ) / 2 , 

(ii) is, for n odd, symmetrical with respect to the point [(n — l ) / 2 , 0] . 

L E M M A 3 . Let Vi be the local extreme of Pn(k) on the interval [i, i + 1], for 

i = 0 , 1 , . . . ,7i — 2 . Then the sequence ( |V, |) . 

(i) is, for n even, decreasing for i = 0 , 1 , . . . , n / 2 — 1 and increasing for 
i = n/2 — 1, n / 2 , . . . , n — 2 , 

(ii) is, for n even, decreasing for i = 0 , 1 , . . . , (n — 3) /2 and increasing for 
i = (n - 3 ) / 2 , (n - l ) / 2 , . . . , n - 2 . 

T h e proofs of the preceeding lemmas are simple and can be omit ted . Now it 
is easy to see tha t the Euler equation (7) has for certain a value of pa ramete r a , 
in addi t ion to the solutions u(t) satisfying either condition (Po) or ( P n ) also 
the solutions u(t) satisfying for some & E { l , 2 , . . . , n — 1} the inequalities 

|Di(it; To,. • . , r , ) ( r ) | —> co as t —> co for 0 < z < A: — 1 , 
(p0 

D t (u ; To,..., Ti)(0 —> 0 as t —> co for k<i<n— 1 , 
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which for the equation (7) gain the form 

\u(i)(t)\ -> oo as t -+ oo for 0 < i < fc - 1 , 

u (t) —> 0 as r —> oo for k < i < n — 1 . 

R e m a r k 1. Conditions ( P 0 ) , ( P n ) and (P*) are equivalent to the condi

tions Do(u; r 0 ) ( r ) —• 0 as t —> oo, |D n _ i ( i / ; r o , . . . , r n _ i ) ( £ ) | —> oo as £ —> oo 

and 

|Djt__i(u; r 0 , . . . , r j k _ i ) ( t ) | —• oo as * —• oo , 

Djk(w;r 0 , . . . , r j t ) (<) —• 0 as * —• oo , 

respectively . 

R e m a r k 2 . If a function u(t) satisfies condition (Pjt) for some k G { 0 , 1 , 
..., n] , then u(t) is a function of degree £ = k . 

From the above it is obvious that we can characterize the solutions of the 
Euler equat ion (7) more exactly than the above mentioned propert ies (A) and 
(B) pe rmi t . We define next properties of the equation (2) and investigate when 
(2) has those new propert ies . 

Let m be a positive integer number, let ki, k2,... , fcm be all mutual ly dif
ferent integer numbers such that 1 < k, < n — 1 and k, = n — 1 (mod 2) if 
p(t) > 0 , ki = n (mod 2) if p(t) < 0 , for 1 < i < m. 

D E F I N I T I O N 3 . Equation (2) is said to have property Akl,k2,...,km if for n 
even, every nonosdilatory solution u(t) of (2) satisfies some kind of conditions 
(Pj t , ) , where 1 <i < m . and for n odd, every nonoscillatory solution u(t) of 
(2) satisfies either (Po) or some kind of conditions ( P * , ) , where 1 < i < m. 

D E F I N I T I O N 4 . Equation (2) is said to have property Bkl,k2,...,km if for n 
even, every nonoscillatory solution u(t) of (2) satisfies either (Po) or ( P n ) 
or some kind of conditions (P*,-), where 1 < i < m and for n odd, every 
nonoscillatory solution u(t) of (2) satisfies either ( P n ) or some kind of condi
tions (Pfc,.). where 1 < i < m. 

It is clear from the above definitions that properties (A) and (B) are a special 
case of propert ies Akuk2,...,km and Bk1,k2,...,km • Those new propert ies admit 
for the equation (2) to have special solutions of degree £ — k. , where i £ 
{ l , 2 , . . . , m } . 

We have defined properties (A), (B), Akl,k2,...,km and Bkl,k2,...,km only for 
the linear differential equation (2), but we can use those definitions also for all 
equat ions and inequalities considered in the sequel (cf. (12), (14), (15) e t c ) . 
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2. Preliminaries 

The following lemma is elementary but quite useful in the sequel. 

LEMMA 4. Suppose that U(t) is a continuous, positive and nondecreasing func
tion on [to, oo). Let p(t) > 0 and q(t) > 0 and 

oo oo 

/ p(s) ds > / q(s) ds , for t > to . 

t t 

Then 
oo oo 

Ip(s)U(s)ds> J q(s)U(s)ds, for t > t0 . 

t t 

To recall a result from [6] we need the functions r(t) and R(t) satisfying the 
following conditions: 

(9) r(t) is continuous and positive on. [to, oo) and 

R(t) = I —--.г —• oo as t - » o o . 
_ds_ 

r(«) 

THEOREM 1. Let (9) hold. Then y(t) is a solution of the equation 

(r(t)...(r(t)y'(t))'...)'+p(t)y(t) = 0 (10) 

if and only if the function v(t) = y(R"l(t)) is a solution of the equation 

u<n>(t) + p(R-1(t))r(R-i(t))v(t) = 0. (11) 

Moreover there holds 

D,(y; r , . . . , r)(t) = v{i) (R(t)) , 0 < i < n - 1. 

For the proof see Theorem 1.3 in [6]. 

In the sequel we will need a modification of the well-known result of T . 

K u s a n o and M . N a i t o (see Theorem 2 and Corollary 1 in [3]). 

Let us consider the more general differential equation 

Lnu(t)+p(t)f(u(g(t)))=0, (12) 

for which (3) - (5) are assumed to hold and we suppose that 

(13) / is continuous on ( — oo, oo) and uf(u) > 0 for u ̂  0. 
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THEOREM 2. Suppose that f is nondecreasing. 

(i) Let p(t) > 0. 
Then the equation (12) has the property Akl,k2,...,krn if and only if the inequality 

{Lnu(t)+p(t)f(u(g(t)))}sgnu(g(t))<0 (14) 

has such a property. 
(ii) Let p(t) < 0. 

Then the equation (12) has the property Bkl,k2,...,krn if and only if the inequality 

{Lnu(t)+p(t)f(u(g(t)))}Sgnu(g(t))>0 (15) 

has such a property. 

P r o o f . 

(i) Suppose that (12) has the property Aklyk2,...,km • Let u(t) be a nonoscil-
latory solution of (14). Without loss of generality we may suppose that u(t) is 
eventually positive. According to a modification of the Kiguradze lemma there 
exist a t\ and an integer £ E { 0 , 1 , . . . , n — 1} such that £ __ n — 1 (mod 2) and 
the inequalities (6) hold. 

Let ^ £ { l , 2 , . . . , n — 1}. An integration of (14), with the aid of (6) yields 

t »t-\ 

u(t) > u(U) + ce [—}-T . . . / —^-dse...dsl (16) 
J r^(Sl) J re(se) 
tx <1 

t S / _ i oo oo 

+ / ———••• / ~~T~\ / 1 \'" / P(sn)f(u(g(sn)))dsn...dsu 

J r^Sl) J re(se) J r £ + 1 ( ^ + 1 ) J 
t\ ti St S n - 1 

where ce = lim D^(tr, r o , . . . , re)(t). Then proceeding as in the proof of Theorem 
t—>-oo 

2 in [3] we obtain that the integral equation 

t 5 / _ ! 

z(t) = u(U) + ce [—}—... [ —}—dS£...dsl (17) 
J r^si) J re(se) 
ti <i 

t S / _ i oo oo 

+ / - 7 - V " / - T - T / 7 V- - / P(sn)f(z(g(sn)))dsn...dsu 

J ri(si) J re(se) J r /+ 1(s*+ 1) J 

ti <! St 5 n _ i 

has a solution z(t) satisfying 

u(ti),< z(t) <u(t) for te[tuoo). (18) 
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It is easy to verify that z(t) is a solution of (12), is a function of degree t 
and by integration of (14) and differentiation of (17) with the help of (18) we 
can see that 

D.(z; To,..., rt)(t) < Dt-(u; r 0 , . . . , n)(t) for 0 < i < t - 1, 

n f ™ ^ ( 1 9 ) 

Dt(z] r0,...,re)(t) > ct. 
As z(t) is a function of degree t > 1, then z(t) must satisfy condition (Pfc<) 
for some i E { 1 , 2 , . . . , m} and so £ -= k,. From (19) if follows that u(t) satisfies 
(Pjfc.) too. 

Next let t = 0. Note that it is possible only when n is odd. We shall show 
that u(t) satisfies (Po)- Let us admit that u(t) —* c > 0 as t —• oo. Then 
repeated integration of (14) provides 

oo oo oo 

U(t) > C + / . . . / - / p ( 3 n ) / ( t i ( f l f ( s n ) ) ) d 3 n . . . d 6 i , 
J n i ^ l j J rn — H^n-l) J 
t Sn-2 « n - l 

for t > t\ . Arguing as in the proof of the Theorem 2 in [3] we get that the 
integral equation 

oo oo oo 

2 ( 0 = C + / - 7 - T '•• / 7 x [ P(Sn)f(z(g(sn)))dsn...ds\ 
J rl(Sl) J rn-l(sn-l) J 
t Sn-2 »n-\ 

has a solution z(t) with the property 

c/2 < z(t) < u(t) for t E [t\, oo). 

Since z(t) is a function of degree t = 0 and is a solution of (12), the last 
inequality contradicts the hypothesis. 

We have verified that the inequality (14) has the property Akl,k2,...,km • The 
converse implication is obvious. 

(ii) Let u(t) be an eventually positive solution of (15). By a modification of 
the Kiguradze lemma we can find a t\ and an integer t G { 0 , l , . . . , n } such that 
t = n (mod 2) and the inequalities (6) hold. If t E { 1 , 2 , . . . , n - 2} or t = 0, 
then exactly as in Case (i) (we only replace the function p(t) in all formulas by 
|p(*)| ) it can be shown that u(t) satisfies either (P*.) for some i £ {1, 2 , . . . , m} 
or ( P 0 ) . 

Let t = n. We shall verify that u(t) satisfies ( P n ) . Suppose that 
-Jn-i(u; r 0 , . . . ,rn_l)(t) is bounded. Integrating an inequality (15), we have 

" (<)-" (" )+/^)- 7";db) TH-M'H-M* "*" 
-1 t\ 
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Taking the proof of the Theorem 2 from [3] into account we see that the integral 
equation 

* Sn-2 3 „ - l 

Z{t) = U{h) + jris7)- J rZ^WT) j ^)\fH9(Sn)))dsn...dSl 
-1 t\ u 

has a solution z(t), such that 

u(tx) < z(t) < u(t) for t e [ti, oo) . 

It is obvious that z(t) is a solution of (12), and is a function of degree £ = n. 
On the other hand, since Dn_i(w; r 0 , . . . , r n _i)( t ) is bounded, integrating the 
inequality (15), we have 

oo 

/_K*)l/(«(-(*)))d<<oo . 

Noting that / is nondecreasing, the last inequality implies 
oo 

jW)\f(z(g(t)))dt<cx>. (20) 

An integration of (12) with u = z yields 

t 

D n_i(z; r 0 , . . . , r n _ i ) ( t ) - D n _ i ( ; r , r 0 , . . . , rn_i)(*i) = / |P(^)|/(2:(^(.s)) ) d^ , 

t i 

which with the aid of (20) implies that Dn_i(z; r 0 , . . . , r n _i ) ( t ) is bounded. It 
contradicts the hypothesis. The proof is complete. 

R e m a r k 3. An analogous assertion concerning the properties (A) and (B) 
can be found in [3]. 

THEOREM 3 . (Theorem 1 in [2]). Let p(t) < 0 and f be nondecreasing. Then 
the equation (12) has a nonoscillatory solution u(t) satisfying 

lim |Dn_i(u; r 0 , . . . , rn_i)(*) | = const > 0 
t—•oo' ' 

if and only if 
oo 

J\p(t)f(c(J(g(t))))dt\<tt, (21) 

( 1 » n - 2 1 

for some c ^ 0, where J(t) = f —;—- . . . f ; d5„_, . . . d^i . 
.. n (« i ) /„ r„_! («„_,) 

306 



COMPARISON THEOREMS FOR NONLINEAR ODEs 

3. Main results 

The following comparison theorem enables to extend some properties of the 
Euler equation (7) to equation (1). 

We are interested in comparing the oscillatory and asymptotic properties of 
the equation (12) with those of the equation 

Mnz(t) + q(t)h(z(r(t)))=0, (22) 

where 

Mn = ^tVn-lit)JtVn-2it)---iVlit)^ 
and the following conditions are assumed to hold: 

(23) Vi(t) are continuous and positive on [to, oo), and 

t 
ds 

oo as t —> oo , 1 < г < n — 1, J VІ(З) 

(24) q(t) is continuous and with constant sign on [to, oo), 
(25) r(t) is continuous on [to, oo) and r(t) —> oo as t —* oo, 
(26) h is continuous on ( — oo, oo) and uh(u) > 0 for u ^ - 0 , 

We put formally v0(t) = 1 on [to, oo). 

THEOREM 4. Suppose that the following conditions are satisfied: 

(27) n(t) < Vi(t) for t > t 0 , 1 < i < n - 1, 
(28) g(t) > T(t) for t > t0 , 
(29) /i, r are nondecreasing, > 

oo oo 

(30) / \p(s)\ ds > J \q(s)\ ds ,fort>t0, 
t t 

(31) f(u)sgnu > h(u)sgnu for u E (—oo, oo). 

(i) Let p(t) > 0 and q(t) > 0. 
Then the equation (12) has the property Ajt1,jt2,...,fcm if the equation (22) has 
this property. 

(ii) Let p(t) < 0, q(t) < 0 and f be nondecreasing. 
Then the equation (12) has the property B)t1,fc2,...,ibm if the equation (22) has 
this property. 
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P r o o f . 

Part (i). Let u(t) be a nonoscillatory solution of (12). Without loss of gen
erality we may suppose that u(t) > 0 on [to, oo). There is an integer £ G 
{ 0 , 1 , . . . , n — 1} , £ = n — 1 (mod 2) and a number t\ > to such that (6) holds 
for t > t\ . Assume that £ > 1. Successive integrating (12) we have, for t > t\ , 

t * / - i 

u(t) >ce I —l—, . . . I —J-r dst... dSl (32) 
J ri(si) J rt(st) 
U <i 

t s / _ i oo oo 

+ / —7—T--- / ~T~\ \ 1 \"' \ P(sn)f(u(g(sn)))dsn...dsi, 
J r i (a i ) J re(st) J r / + i (6 / + i ) J " ' 

where c/ = lim D/(u; r 0 , . . . ,r/)(£). Since u(t) is increasing (£> 1), from (31), 
t—+oo 

(29) and (28) we conclude that 

oo oo 

Jp(s)f(u(g(s)))ds> Jp(s)h(u(r(s)))ds. 

t t 

As composite function /i(u(r)) is nondecreasing, Lemma 4 and (30) imply 

oo oo 

jp(s)f(u(g(s)))ds> Jq(s)h(u(T(s)))ds, t>U. (33) 

t t 

Combining (33) and (27) with (32) we see that 

t s / - i 

u(t)>ctl—}-T... f —}—dst...ds1 (34) 
J v\(sx) J vt(st) 
ti tx 

t s / _ i oo oo 

+ / —(—7--- / —7—T / 7 x--- / q(sn)h(u(T(sn))) dsn ... dsi. 
J vi(si) J ve(st) J ve+i(st+i) J v v n j 

t\ st 

Let us denote the right-hand side of (34) by y(t). Repeated differentiation of 
y(t) gives us 

Mny(t) + q(t)h(u(T(t))) = 0, t > ri , 
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and we see that y(t) is a function of degree i. Since u(r(t)) > y(r(t)) , for 
£ __ £2 , provided t2 is large enough, we obtain 

{Mny(t) + q(t)h(y(T(t)))}Sgny(T(t))<0, t>t2. (35) 

It follows from Theorem 2 that the inequality (35) has the property Akl,k2,...,krn • 
We supposed that i > 1 and thus y(t) satisfies (Pjt,) for some i G { 1 , 2 , . . . , m } 
and so i =- ki. Repeated differentiation of y(t) and integration of (12) leads to 

D^_i(y; u0 , . . . , t>/- i)(-) < D^_i(w; r 0 , . . . ,r*_i)(*) , t > t2 , 

D/(y; v0,..., vi)(t) >ct, t>t2, 

where we have used (33) and (27). From the above inequalities we see that u(t) 
obeys condition (Pjk,). 

Let i = 0. Our aim is to verify that (P0) holds. If u(t) —> c > 0 as t —> oo, 
then there exists a t2 > t\ such that 

3c/2 > u(g(t)) >c, for t > t2. (36) 

Integrating (12), we see that 

oo oo oo 

U(t)-C + fr^T)--- f r n - tC- - - , ) f P(*n)f(u(g(sn)))dsn...dSl. 
t Sn-2 * n - l 

Noting 
oo oo 

/ P M / M S W ) ) 4s > Jp(«)*(«(,W)) d» 

(37) oo 

> Íp(s)h(c)ds> íq(s)h(c)ds, 

t t 

and using (27) with (36) we can write for t > t2 

oo oo oo 

c > c / 2 + / - - — . . . / I q(sn)h(c)dsn...dSl. (38) 
j v\(si) J vn-i(sn-i) J 
t « n - 2 * n - l 

Denote the right-hand side of (38) by y(t). Then 

Mny(t) + q(t)h(c) = 0, t>t2. 
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We may suppose that y(r(t)) < c and then we can see that y(t) is a solu
tion of the inequality (35) and moreover lim y(t) = c/2, which contradicts 

t—>co 

the hypothesis as Theorem 2 insures that the inequality (35) has the property 

Part (ii). Let u(t) be a nonoscillatory solution of (12) which is eventually 
positive. Then u(t) is a function of degree £ £ {0 ,1 , . . . , n} , £ = n (mod 2) 
and (6) holds for all large t, say t > ti . If £ £ {1 ,2 , . . . , n — 2} or £ = 0, then 
exactly as in Part (i) it can be shown that u(t) satisfies either (P*,-) for some 
i £ {1, 2 , . . . , ra} or (Po) • We only replace the function p(t) in all formulas by 
\p(t)\ and use the inequality 

{Mny(t) + q(t)h(y(T(t)))} sgny(r(<)) > 0, t > t2 . 

instead of (35). 

Assume £ = n. We will show that u(t) satisfies (P n ) . Let us suppose that 
lim Dn_i(it; To,... , r n_i)(r ) -= const > 0. Applying Theorem 3 we see that 

t—*oo 

(21) holds for some c ^ 0. It is clear that 

J(g(t))>J(T(t))>l(T(t)): t > h , 

t ^ sn-2 ^ 

where I(t) = J ——- . . . / d^n_i . . . d^! , t > tA . 
to M*l) to ^ n - l ( ^ n - l ) 

That is why 

\f(cJ(g(t)) ) | > \h(cJ(g(t))) | > \h(cl(r(t)) ) | , t > U • 

Consequently 

oo > 

oo oo oo 

J\p(s)f(cJ(g(s)) )\ds> J\p(s)h(cI(T(t)) )\ds> J\q(s)h(cl(T(s)) ) | ds 

We have also used Lemma 4 to obtain the last inequality, which is according 
to Theorem 3 sufficient for the equation (22) to have a nonoscillatory solution 
y(t) of degree £ = n such that lim Dn_i(y; t>o, • . . , vn-i)(t) = const > 0 . 

(—+oo 

This is a contradiction with the fact that the equation (22) has the property 
Bjk1,fc2,...,itm • The proof of Theorem 4 is complete. 
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COROLLARY 1. The above comparison theorem remains valid also for the prop
erties (A) and ( B ) . 

T h e above comparison theorem provides the following results for the equat ion 

Let (Mi)?=1 be the decreasing sequence of all mutual ly different local m a x i m a 
of the polynomial Pn(k) = —k(k — l)... (k—n+1). Let (N i )* = 1 be the increasing 
sequence of all mutual ly different local min ima of the polynomial Pn(k). Let us 
suppose tha t the functions r(t) and R(t) are given in (9) and 

r(t) > max {n(t) \ i = 1 , 2 , . . . , n - 1} . (39) 

Denote 

CO o o 

/3 = (n-l)liminiRn~1(t) [p(s)ds, i = (n - l)\imsupRn-\t) [p(s)ds, 
'—°° J t—oo J 

t t 

then the following theorems hold: 

T H E O R E M 5 . Let (39) hold. 

(i) If f3 > M\ , then the equation (1) has the property ( A ) , 
(ii) If 7 < Ni and n>3, then the equation (1) has the property ( B ) . 

THEOREM 6. Let (39) hold. Let n be even. 

(i) If Mi > (3 > Mi+\ , for some i E { 1 , 2 , . . . • cr — 1} , then the equation 

(1) has the property Ai,3 , . . . ,2i- i ,n-2i+i, . . . ,n-i • 

(ii) 7/ Ni < 7 < Nj+i , / o r .some i G { 1 , 2 , . . . , A — 1 } , then the equation 

(1) has the property B2,4,...,2i,n-2i,...,n-2-

T H E O R E M 7 . 7et (39) KoW. 7e* n be odd. 

(i) 7/ Mi > f3 > M2 , then the equation (1) has the property A n _ i . 
(ii) If N\ < 7 < N2 , ^ e n tfh-e equation (1) Aa* */te property B\ . 

(iii) 7/ M, > /? > Afj+i, / o r some i £ { 2 , 3 , . . . ,<7 —1} and * is even (odd), 
then equation (1) /MM *Ae property A2,4,...,i.n-^,+i,...,n-i (^Ae property 

A2 ,4 , . . . , i -1 , n - i , . . . , n - l )• 
(iv) 7/ iVf- < 7 < N;+i, / o r Aome i G { 2 , 3 , . . . , A — 1} and i is even (odd), 

then equation (1) has tht property Bi )3 ) . . . , i - i ) n_i, . . . ,n-2 (the property 

Bi ,3 , . . . , t ,n - i+ l , . . . , n -2 )• 
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T H E O R E M 8. Let (39) hold. 

(i) If Ma > ft > 0 and n is even (odd), then equation (1) has the property 

Ai,3 , . . . ,n-i (the property A2 ,4 , . . . ,n-i )• 
(ii) If N\ < 7 < 0 and n is even (odd), then equation (1) has the property 

B2,4,...,n-2 (the property B i | 3 n - 2 ) . 

We give the outl ine of the proof of Theorem 5. For details the reader is 
referred, e.g., to paper [6]. Taking Lemmas 1 - 3 into account it is not difficult to 
verify t ha t the Euler equation (7) has the property (A) if a G ( M i , ft) • Not ing 
tha t 

OO CO 

liminfiZ"-1^) / p (5 )d3 = l imin f f - 1 / p ( R - \ s ) ) r ( R - \ s ) ) ds , 
t—•OO J t—*CO J V 

Theorem 4 permi ts to transfer the property (A) from the equat ion (7) onto 
equat ion (11) under condition ft > M\ . Theorem 1 insures tha t the equat ion 
(10) also has the proper ty ( A ) . Applying Theorem 4 to the equat ions (10) and 
(1) we can transfer the property (A) onto equation (1) as (39) holds. 

Theorems 5 (i), (6), (7) and (8) are proved similarly. 

We ment ion tha t Theorem 5 extends a result of J . O h r i s k a (see [6]), 

concerning (1) for n = 3 and 4 and par t (i) of the Theorem 5 covers a result of 

T . A v C h a n t u r i j a (see [1]), which is known for equation t / n I + p(t)y = 0 • 

Moreover Theorems 6 - 8 provide an information about the asymptot ic behaviour 

of the solutions of (1) even if (1) has not the proper ty (A) nor ( B ) . 

T h e next comparison theorem will serve to transfer the above ment ioned 

propert ies from equation (1) onto equation (2). 

T H E O R E M 9 . Let g(t) G Ca([<o, 00 ) ) , g'(t) > 0 and g(t) < t. Suppose that 

f is nondecreasing. 

(i) Let p(t) > 0 . 

Then the equation (12) has the property Aki,k2l...,km if equation 

Lnu(t)+^^f(u(t))=0, (40) 

has. 

(ii) Let p(t) < 0 . 
Then the equation (12) has the property Bkiik2,...,krn if the equation (40) has. 
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P r o o f . 

Part (i). We can proceed similarly as in the proof of Theorem 4. Let u(t) be 
a positive solution of (12) on [to, oo), which is a function of degree £ > 1. Then 
u(t) satisfies (32). Since g'(t) > 0 and g(t) < t we have for all large t 

P(9-1(*)) rf..t^\A^ fP(9~X(s)) 

9(t) 

Putting (41) into (32) we conclude 

/*,/(.«.») d. > / $Җл+)) љ Ì / Ц w ) <- • 
(41) 

u(t) >C£ ——- . . . / d ^ . . . dsi 
J ri(3i) J r£(si) 
ti *i 

+I^W)-J ^ y / ^ i k o - - / ^fej)/(M(s"))d5--dSi-
<1 <1 3 / S n _ i 

(42) 
Again, denote the right-hand side of (42) by y(t), verify that y(t) is a solution 

of the inequality 

{LnV{t) + gi-l{(t))f(yit))}Sgny(t) ~ °" 
Proceed as in Theorem 4, it can be shown that £ = k{ for some i G { 1 , . . . ,ra} 
and u(t) satisfies (Pjb,)-

For 1 = 0 we can proceed exactly as in the proof of Theorem 4 and show 
that u(t) satisfies (Po)-

Part (ii). Let u(t) be a positive solution of (12) on [to, oo) , which is a function 
of degree £ = n (in the case when £ < n , we can proceed exactly as above). 
Let us assume that lim Dn_i(u; r 0 , . . . , r n _i ) ( t ) = const > 0. Then Theorem 

t—»-oo 

3 implies that (21) holds for some c =j-= 0. After the substitution g(t) = s we 
have 

P(9-\S)) /I g'(g-Чs)) 
f(cĄs)) ds < 00 . 

Theorem 3 shows that the last inequality is sufficient for the equation (40) to 
have a nonoscillatory solution y(t) satisfying 

liin | D n _ i ( y ; r 0 , . . . , r n - 1 ) ( * ) | = const > 0. 
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A contradiction. The proof is complete now. 
The purpose of the following comparison theorem is to reduce the condition 

of smoothness and monotonicity on g(t) imposed in Theorem 9. 
Let function Q(t) satisfies the conditions: 

Q(t) e C1 ([t0, oo)) , Q'(t) > 0 , Q(t) < g(t) and Q(t) < t. (43) 

THEOREM 10. Suppose that f is nondecreasing. 

(i) Let p(t) > 0. 
Then the equation (12) has the property Aki,k2,...,km if equation 

L -" ( < ) + IPI) / w ' ) ) = 0 , (44) 

has. 

(ii) Let p(t) < 0. 
Then the equation (12) has the property Bklik2i...ikm if the equation (44) has. 

P r o o f . It follows immediately from Theorem 4 and Theorem 9. 

COROLLARY 2. The above comparison theorem remains valid also for the prop
erties (A) and (B). 

Theorem 10 extends a result of W . M a h f o u d (Theorem 3 in [4]) con
cerning equation y (n )(r) + p(t)f(y(g(t)) ) = 0. 

Applying Theorem 10 to the equation (2) we see that this equation can 
"inherit" the property ^kuk2,...,krn (Bkl,k2,...,krn ) from equation 

"̂̂ P̂fr̂ 0- (45) 

On the other hand, Theorems 5 - 8 provide sufficient conditions for the equation 
(45) to have the property Afc1,fc2,...,fcm (Bklik2,...,krn )• Consequently, the following 
theorem holds: 

Let us denote 
oo 

A = (n - l)limmiRn~l(Q(t)) f p(s)ds, 

and 
oo 

7l ^n- l j l imsupir-^o t í ) ) íp(s)ds. 
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T H E O R E M 1 1 . Let (39) and (43) hold. 

(i) If (i\ > M\ , then equation (2) has the property ( A ) . 

(ii) If 71 < Ni and n > 3 , then equation (2) has the property ( B ) . 

(iii) If M{ > f3\ > Mi+i , then equation (2) has the property Akl,k2,...,k„ 

(iv) If N{ < 71 < -Ni+1 • then equation (2) has the property B^1,Ar2,...,itm 

where the numbers i and k\, k2,. • •, km are the same as in Theorems 6 - 7 . 

E x a m p l e 1. Let us consider the equation 

y(4Ч<) + 
0.6 

t2лД 
,(Vt) = o, t>i. (46) 

Note t h a t M . N a i t o 's result (see [5]) cannot be applied for (46). For this 

equat ion we can p u t r(t) = 1 and so R(t) = t — 1 a n d 

oo 

0i = 3 1 i m i n f Q 3 ( * ) ip(s)ds = l.2. 
ř—oo J 

As M i = 1 for the polynomial P4(k) = -k(k - l)(k - 2)(k - 3 ) , T h e o r e m 11 

secures t h a t the equat ion (46) has the property (A) (i.e. (46) is oscil latory) . 
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