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CONVERGENCES PRESERVING 
THE FIXED POINT PROPERTY 

IVAN K U P K A 

(Communicated by Bubica Holá) 

ABSTRACT. Coincidence theorems for very general (non-Hausdorff) topological 
spaces X and Y are proved. E.g., if { / 7 } 7 < E r , {g 7 } 7 G r a r e t w 0 n e t s of functions 
from X to Y satisfying ( V 7 G T ) ( 3 x 7 € K)(/7(x7) = g7(x7)), { / 7 } 7 G r con
verges strongly to / and {<?7}7 er converges strongly to g, then (under certain 
conditions posed on / and g) the equation f(x) = g(x) has a solution . The 
paper shows tha t strong convergence and some other convergences preserve the 
fixed point property. 

1. Introduction 

In this paper, three coincidence theorems (Theorems 1, 2 and 4) are proved. 
We also show that for some convergences the property / : X -> X has a fixed 
point is preserved. Four types of convergences are investigated. First wre obtain 
some results concerning strong convergence (Definition 2). Then, wre investigate 
convergences with respect to the fine topology, graph topology, and open-cover 
topology. 

Before giving an exact definition of strong convergence, let us describe it in 
simple terms. It could be compared writh the uniform convergence as follows: 
Uniform convergence of a sequence of functions with values in a metric space Y 
is defined using e -covers of Y, i.e. using the open covers of Y containing all 
open balls with radius e > 0. The use of all covers, not only of the £-ones, will 
give us a stronger convergence, which can be defined without using a uniform 
structure on Y. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 54H25; Secondary 54A20, 54C35, 
54C60. 
K e y w o r d s : fixed point, strong convergence, fine topology, graph topology, open-cover 
topology . 
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DEFINITION 1. Let X be a topological space, let c be an open cover of X 
and let o G l . We denote 

c*(a) = {zeX : (3Vec)({a,z}CV)} = (J{V : V 6 c & a G V} . 

The following definition appeared in [KuT]. 

DEFINITION 2. ([KuT; Definition 3]) Let (X, T), (Y, r ) be topological spaces. 
Let { / 7 } 7 G r be a net of functions from X to Y. Let p be an open cover of Y . 
We say, that a net { / 7 } 7 € r converges to a function f:X-±Y p-uniformly if 

(37o€r)(VxGX)(V7>7o)(/7(2:)ep*(/(x))). (u) 

We say that a net { / 7 } 7 G F converges to a function f:X -» Y strongly if 
and only if { / 7 } 7 G r converges to / p-uniformly for every open cover p of the 

space Y, and we write / -^ f. 

The definition of the strong convergence was published for the first time in 
[KuT]. Nevertheless, as Peraire later communicated us, a very similar kind of 
convergence was used back in 1940 by T u k e y in [Tu] (for more details, see 
[Pe]). T u k e y did not consider all open covers as we did, but only a special 
family of covers. This enabled him to define a uniformity on the target space. 
Our goal, unlike T u k e y ' s , is to work with non-uniformizable target spaces. 

Some results concerning the strong convergence were published in [GK], [Ku], 
[KuT], [Pe] and [To]. 

2. Coincidence theorems and strong convergence 

First we present a topological condition which is necessary and sufficient for 
the existence of a solution of an equation F(x) = G(x). In what follows, if 
H: X —> Y is a multifunction, we denote 

GxH = {[x,y]: y € H(x)} . 

If X is a topological space, by X x X we denote the topological space A" x X 
endowed with the product topology. 

In this paper we consider mainly (multi)functions with closed graph. Prop
erties of such functions are studied for example in [HM1] and [Sm], 

LEMMA 1. Let X, Y be arbitrary topological spaces, let F: X —v Y aid 
G: X —> Y be two multifunction such that F(X) C G{X) and Gr(G l o F 
is a closed subset of the space X x A". Then the following two properties a 
equivalent: 
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(i) There exists x from X such that F(x) D G(x) 7-- 0 . 
(ii) For every open cover c of X there exists O from c such that F(O) n 

G ( O ) ^ 0 . 

P r o o f . It is easy to see that (i) implies (ii). 
Assume that (ii) is satisfied. We show that (i) holds. Put A = G r ( G - 1 o F), 

D = {[x,x] : x G X}. Suppose that, contrary to what we wish to prove, for 
every x from X, F(x) H G(x) = 0 . Then ADD = ft). Since A is closed, the set 
W = X x X — A is an open neighborhood of D in the space X x X. Then for 
every x from X there exists an open set Ux such that x G Ux and Ux x Ux is 
a subset of TV, so (Ux x Ux) D A is empty. 

Let p = {Ux : x G X} be an open cover of X. Since (ii) is true, there exists 
Ux G p such that F(UX) D G(UX) ^ 0 holds. Hence there exist three points 
y G T . a, 6 G Ux such that y G F(a) n G(6). Therefore & G G" 1 o F(a ) and 
[a, 6] G .4 . So {[a, 6]} C -4n(Ux x [ / J C AnVV and the set AnW is nonempty. 
This is a contradiction. • 

Lemma 1 implies the following assertion, proved by the author in 1993 
in [GK]. 

COROLLARY 1. ([GK; Lemma 1]) Let X be an arbitrary topological space and 
let F: X —> X be a multifunction with a closed graph. Let p be an open cover 
of X. Then F has a fixed point if and only if 

(wP)(3UeP){F(U)nu^<D). (*) 

Before presenting one of our main results we need some more definitions. 

DEFINITION 3. Let X, Y be topological spaces, let n = {/7}7Gr>
 m = 

{ g 7 } 7 e r be two nets of functions / : X -> Y, g1: X -> Y. Let c be an open 
cover of Y. We say that m and n are approaching each other if and only if 

(Vc)(3a € r ) ( V 0 >a)(3xeX)(3Ue c){{f0(x),g0(x)} C U). 

R e m a r k 1. Of course, the assumption there exists an index a such that for all 
indices 7 > a there exists a point x such that / 7 ( ^ 7 ) = ^ 7 (^ 7 ) is a sufficient 
condition for m and n to be approaching each other. 

DEFINITION 4. (See [Ke]) A topological space X is called fully normal if and 
onlv if for every open cover r of X there exists an open cover u of X such that 

(VxeX)(3Ver)(u*(x) CV). 

Such a co\er u is said to be a star refinement of r . 

We are now ready for the following theorem. 
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THEOREM 1. Let X be a topological space. Let Y be a fully normal topological 
space. Let m = { g 7 } 7 G r , n = { / 7 } 7 G r

 be two nets of functions g^\ X -» Y, 
f : X -» Y such that m and n are approaching each other. Let / : X —r Y be 
a function with a closed graph, let g: X —> Y be an injective, continuous, open 
function such that g(X) D f(X). 

Let f —s-> f and g —•> g. Then there exists x from X such that 
f(x) = g(x). 

P r o o f . We shall prove that / and g satisfy the conditions of Lemma 1. 

I. First we show that H = Gr(a _ 1 of) is closed in X x X. Let {[xQl y*]} 39 v 

be a net of points of FT, converging to a point [x,H]. We have to show that 

[x,y] G H. Since [x^y^[ G H for each (3 G A, the point 7T3 is an element 

of the set g~1(f(xj3)), so g(y@) = f(x^). Since g is continuous and the net 

{yp}(3eA converges to y, then the net { / ( a ^ ) } ^ = {5(^/3)}5GA converges to 

g(y). Hence the net { ^ , / ( ^ ) } . A converges to [x,g(y)]. and since G r / is 

closed, [x,g(y)] is an element of G r / . Therefore / (x ) = g(y). But this implies 

y G (g_ 1 o / ( x ) ) , so [x,y] G ff. Thus H is proved to be closed. 

II. It suffices to prove now that for every open cover p of X there exists O 
from p such that f(0) n g(O) 7̂  0 . Let p be an open cover of X. We define 

r = { f l(V): Vep}u{Y-f(X)}; 

r is an open cover of Y. Since Y is fully normal, there exists an open cover c of 
Y which is a star refinement of r . Nowr let us take an open cover u of Y which 
is a star refinement of c . Since the nets n and m converge strongly to / and g 
respectively, there exists an index 70 G T such that 

(VxeX)(\/1>70)(3O,Weu){{f(x),f1(x)}CO & {g(x),g^(x)}CW). 

Since m and n are approaching each other, there exists an index a G T such 
that 

(V/3 > a) (3 x e X) (3 £/ € «) ({/5(», <?3(x)} C v). 

Let us take an index 8 such that 8 > 70 and J > a . Then there exists a point z 
from X and an open set Z from H, such that {f$(z),g5(z)} C Z . Moreover, since 
(5 > 7 0 , there exist two open sets Vx, V2 from H such that {/^(z), f(z)} C V̂  
and {^(z),g(z)} C V2. The three inclusions mentioned above imply 

{/(*), / * 0 ) , </,(*)} C u* (/,(*)) : {5(2), / , ( * ) . % ( z ) } C u* (gs(z)) . 

So there exist two open sets \\\, W2 from c such that 

{f{z),fs(z),gs(z)}CW1 and {5(~), fs(z),gs(z)} C W2 . 
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Hence {f(z),g(z),f6(z),gs(z)} Cc*(gs(z)). 

Therefore there exists an open set V from r such that c*(g5(z)) C V. Since 
f(z) e V, then V ^ Y - f(X), so there exists an open set O from p such that 
g(0) = V. Since #(z) G V we have * G O . Therefore / ( z ) G f(0)ng(0). This 
completes the proof. • 

The next example shows that the hypothesis g(X) D f(X) is not superfluous 
in the statement of Theorem 1. 

E X A M P L E 1. Let X = Y = R. Let f,fn,g,gnhe functions from R to R 
defined as follows: 

ffx\ - { ~x for x e (~°°'0)' 
I[X)~ I 0 for xe (0 ,+oo) ; 

for all integers n > 2, 
fn(x) = f(x) for xeR; 

f 2 - x for x G ( -co , 1), 
g(x) = > i 

for all n > 2, 

Øní*) = 4 

for x Є (1, + o o ) ; 

g(x) for x Є (-oo, n - £ ) U (n + ì , + o o ) , 

7pг=T * ( n ~ ^) f o г x є ( n ~ n ' n ) ' 

Ş̂-j-ү • (x - n) for x Є (n, n + £ ) . 

In other words, if we consider the function gn restricted on the interval 
(n — ^ , n + ^ ) , then its graph consists of two segments, joining the point (n, 0) 
with the points (n-\,g(n - ±)) and (n + ^,g(n + ^ ) ) . 

The space R is fully normal. Since for each n > 2 gn(n) = fn(n) = f(n), 
the sequences {gn}n

<
=2 and {fn}n

<
=2 are approaching each other. Only one hy

pothesis of Theorem 1 is not fulfilled. 

The set f(X) is not a subset of g(X). The equation g(x) = f(x) has no 
solution. The example can be regarded also in a different way. Put gx = f, 
fx = g. We have gx(X) D fx(X). The sequence {gn}n=2 converges strongly to 
fx and the sequence {/n}^L2 converges strongly to g1. Only two hypothesis of 
Theorem 1 are not satisfied. Namely, the function g1 is not injective and it is 
not open. 

From Theorem 1, we get a number of previously published results. We recall 
a definition and a lemma. 

487 



IVAN KUPKA 

DEFINITION 5. ([GK; Definition 1]) Let X be a topological space, let n = 
{/7}7Gr be a net of functions / 7 : X -» X: and let c be an open cover of X. 
We say that n is approaching the diagonal if and only if 

(Vc)(3a)(V/? > a)(3x G X)(3U e c)({/^(x) ,x} C C/). 

In what follows, G G F (X) means, that G is a multifunction (function) 
from X to X which has the fixed point property. The proof of the following 
lemma is trivial. 

LEMMA 2, ([GK; Lemma 2]) Let X be an arbitrary topological space, let f G 
F (X) and let m = {/7}7 ( E r be a net of functions from X to X converging to 
f pointwise (f —.> / ) . Then m is approaching the diagonal. 

COROLLARY 2. ([GK; Theorem 1]) Let f: X -+ X have a closed graph. Let 
X be a fully normal topological space. Let f —^ / and let the net { / 7 } 7 G r is 
approaching the diagonal. Then f £ F (X). 

P r o o f . Put g(x) = x for each x in X and define g1 — g for all 7 G T. It 
is easy to see that the nets {f^}ieT and {g7}7 (- r

 a r e approaching each other. 
Since g is the identity function on A". also all other hypotheses of Theorem 1 
are satisfied. • 

The following theorem and its corollary, concerning the preservation of the 
fixed point property are variants of Theorem 1. 

THEOREM 2. Let X, Y be arbitrary topological spaces. Let n = {/7}7Gp ^e a 

net of functions f : X -+Y. Let f:X-±Y be a function with a closed graph. 

let g: X —> Y be an infective, continuous, open function such that g(X) 5 f(X) 
holds. Let there exist an index a G T such that for each 7 > a there exists x1 

such that f^(x ) = g(x ) . Let / 7 —--.> / . Then there exists x from X such that 
f(x) = g(x). 

P r o o f . It suffices to verify that all hypotheses of Lemma 1 are satisfied. 
Let p be an open cover of X. We define 

r={g(V): V€P}u{Y-f(X)}; 

r is an open cover of Y. Since the net n is converging to / strongly, there exists 
an index 7 > a such that for all x in X f (x) G r*(f(x)) holds. Choose x1 

such that /7(«r7) = g(x^). Since fry(x1) G r*(f(x )) holds, there exists an open 
set V G r such that {fy(xfy),f(xfy)} C V. But / 7 ( x 7 ) = g(x^), and due to the 
definition of r there exists an open set O G p such that g(0) = V. So we obtain 
{ / 7 (x 7 ) , s (x 7 )} C g(0) and x^ G O. Therefore f(Xfy) G f(0)Dg(0). We have 
found a set O in p such that f(0) H g(0) is nonempty. The rest is obvious, or 
similar to the proof of Theorem 1. • 
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COROLLARY 3 . Let X be a topological space, let f: X —> X has a closed 
graph, let { / 7 } 7 G F be a net of functions from X to X which converges to f 
strongly. Suppose there exists 7 G T such that (Va > 7) (fa G F (X)) . Then 
f£Fp(X). 

Two results similar to our Corollary 3 can be found in [FG; Statement 1.2] 
and [GK; Theorem 3]. 

The following example shows that uniform convergence does not preserve the 
fixed point property. 

E X A M P L E 2 . Let X = ( l , + o o ) . Let / : X -> X be defined by f(x) = x + ± 
for all x i n l . Let for every integer n > 2 a function fn: X -t X be defined 
as follows: 

\ f(x)=x+l for i G ( l , n ) , 

fn(x)=l n + l + (n + l-x)(±-l) for x£ <n,n + l ) , 

^ x for x G (n + l , + o o ) . 

Then the sequence / n converges to / uniformly, (Vn > 2) ( / n G - ^ P O ) , but / 
has no fixed point. 

3. Fixed points and some function spaces 

In what follows, let X and Y be topological spaces and C(X, Y) be the space 
of all continuous functions from X to Y. If Y is a uniform space, then strong 
convergence of a net of functions always implies uniform, and if X is compact 
then the converse is true ([KuT]). In what follows, we discuss some other function 
space topologies and their relations with strong convergence. At the end of this 
section, we showT that if C(X, X) is equipped with some appropriate topologies, 
then the set of the functions from C(X, X) which have a fixed point is closed 
in C(X, X). 

The open-cover topology r* on C(X,Y) (see [Ir] or [DHHM]) can be denned 
as follows. Let G(Y) denote the set of all open covers of Y, and for each c G 
G(Y) and each / G C(X,Y) let 

c(f) = {ge C(X,Y) : (Vx G X) (g(x) G c*( / (*)) )} . 

The open-cover topology is generated by the subbase 

{«( / ) : ueG(Y) & feC(X,Y)}. 

The graph topology r r was introduced by N a i m p a l l y in [Na] and has, as 
its basic open sets, sets of the form {/ G C(X, Y) : G r / C G } , where G is an 
open subset of X x Y. 
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Further topologies on graphs of continuous functions can be found in the 
literature (see [Be], [DHH]). 

To define the fine topology T^ , let (Y, d) be a metric space. Then a base for 
r , consists of sets of the form 

B(f, e) = {g£ C(X, Y) : ( V x e l ) (d(f(x), g(x)) < e(x))} , 

where e: X -» R is a strictly positive continuous function. (See [DHHM], [Ho]). 
In what follows, when we write CT(X, Y) or C^(X, Y), we suppose X and 

Y to be topological spaces, and we denote by CT(X,Y) (C^(X,Y)) the space 
of all continuous functions from X to Y equipped with the graph (open-cover) 
topology. The symbol CU(X, Y) will denote the space of all continuous functions 
from a topological space X to a metric space Y, equipped with the fine topology. 

It is easy to see that if a net of functions {/7}7Gp converges to a function / in 
a space C^(X,Y), then it converges to / strongly. The following two assertions 
say when convergences in CT(X, Y) and CUJ(X, Y) are stronger than the strong 
one. 

THEOREM 3 . Let X, Y be topological spaces. Let f e C(X,Y) and let 

{/7}7Gr be a net of functions; f1 £ C(X, Y) for all 7 eT. If { / 7 } 7 G r converges 

to f tnCT(X,Y), then f ^ f . 

P r o o f . Let u be an open cover of Y. Define G C X x Y by G = 
U { / - 1 (^0 x V}- Then G is an open neighborhood of / in the topology 

V€u 
TT . So there exists (3 e T such that (V7 > (3) (Gr f1 C G). So for such an index 
7 the following holds: 

(MxeX)(3Veu)((x,f1(x))c(r\v),v)). 

But this implies (\fx e X)(3V e u)({f(x),f^(x)} C 7 ) , s o {/7}7 ( E r converges 
to / strongly. • 

COROLLARY 4. Let X be a countably paracompact normal space and (Y, d) 
be a metric space. Let f G C(X,Y) and let {/7}7 ( E r be a net of functions 
f1 E C(X,Y) for all 7 G T. If {/7}7(=r converges to f in C^X^Y), then 

j 7 J ' 

P r o o f . Under these conditions the fine topology TU and the graph topology 
r r on C(X,Y) coincide ([DHHM]). • 

The next example shows that even if the spaces X and Y are very nice 
(equal to R), the strong convergence of a net of functions need not imply the 
convergence of this net with respect to the topology r* or r r or r^,. 
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EXAMPLE 3 . Let functions g, / , fn from R to R are defined as follows. 

/ = 0 ; 

fn = — for all positive integer n; 

f 0 for all x < 0, 

y(x) = < - f for all x , 0 < x < 2 , 

i i - 1 for all x > 2 . 
V x — 

First we show that the sequence {/n}^-! does not converge to / in the open-
cover topology. Let us consider the following open cover p of R: 

p = { ( - l + e,e): e G (0,1)} U {(-oo, - | ) , (§, +oo)} . 

The function / is an element of the open set 

p(g) = {he C(R,R) : (Vx G R) (/i(x) G P*(g(*)))} . 

To verify this, it suffices to realise that 

Wx<0){f(x) = g(x)), 
( V x e ( 0 , 2 ) ) ( { / ( x ) , f l ( x ) } C ( - | , I ) ) , 

( V x > 2 ) ( 3 e € ( 0 , l ) ) ( e < i & { 0 , - 1 + ± } C ( - l + e,e)). 

Now let m be an integer, m > 2. We shall show that / m $. p(g). Suppose, 
contrary to what we wish to prove, that fm G p(g). Then there exists V G p 
such that {/m(7n),g(7Ti)} C V so there exists e G (0,1) such that {^-, ^- — 1} C 
(—1 + £,£). The last inclusion implies: ^- < 6 and ^ — 1 > £ — 1 at the same 
time. This is a contradiction. 

Now let us consider a function e: R —> R defined as follows: 

f 1 for XG( -1 ,1 ) , 

I R for x G R - ( - l , l ) . 

Denote by G the set {[a, 6] : a G R and |6| < e(a)}. Then the set TV = 
{h G C(R,R) : Gih C G}, is an open neighbourhood of / in the graph 
topology. For no index n is / n G TV. 

Similarly, the set P = B(/,e) = {/z G C(R,R) : d(f(x),h(x)) < e(x) 
for all x E X} is an open neighbourhood of / in the fine topology and for all 
positive integers n, fn G C(R,R) - P. So the sequence {/n}^=1 converges to 
/ neither in the graph topology nor in the fine one. Of course, it converges to / 
strongly (see also Remark 2 below). 

The following assertion says that the convergence with respect to the fine 
topology is coincidence preserving. It wrill be also used in the proof of our final 
theorem. 
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THEOREM 4. Let X be an arbitrary topological space. Let (Y, d) be a metric 
space. Let m = {g7} 7 ep, n = {/^}7Gp be two nets of continuous functions 

g : X —r y . / : X —r Y. Le£ / , g G C ( X y ) . Let the net m converge to f and 
let n converge to g, both with respect to the fine topology TU . Let e be a strictly 
positive function and 

(Ve € C(X,R)) (37o € T) (V7 > 7o) (3x7) K/7(*7),<77(*7)) < e(s,)) . (*) 

Then there exists x from X such that f(x) ~ g(x). 

P r o o f . Let us suppose, to the contrary, that for all x i n l , d(f(x),g(x)) 
> 0. Let us define a function e: X -> R by e(x) — \ • d(f(x),g(x)) for 
all x in X. Since £ is a strictly positive continuous function, the set Ox — 
{h G C(X,Y) : (Vx G X)(d(h(x)J(x)) < s(x))} (02 = {h G C(X, y ) : 
(Vx G X)(cf(/i(x),g(x)) < e(x))}) is an open neighborhood of / (g) in 
CW(.X", y ) . So there exists an index a €T such that for all /? > a . f0 G Ox and 
g* £ 02. Moreover, by (*), there exists 70 G T such that 

(V7 > 7o)(3x7)(d(/7(x7),57(x7)) < e(x7)). 

Take 5 > max{a, 7 0 } . Then there exists xs such that d(fs(xs),gs(xs)) < 
s(xs). Since fs G OJL and gs € 02, we obtain: 

d(f(xs),g(xs)) < d(f(xs) Js(xs)) + d(fs(xs),gs(xs)) + d(gs(xs),g(xs)) 

<3'E(xs)<d(f(xs),g(xs)). 

This is a contradiction. The proof is complete. D 

The problem to determine conditions under which the strong convergence is 
topologizable has been recently solved in [Pe]. 

PROPOSITION 1. ([Pe; Theorem 3]) Let X be a set, let (Y, r ) be a fully normal 

topological space. Then there exists an uniformity Us on Y such that 

(a) r is finer than the topology TS of Us; 
(b) If Y is Tx or regular, then TS is identical with r ; 
(c) A net {/ } 7 G r of functions f : X -> Y converges strongly to a function 

f: X —> Y if and only if it converges to f relatively to Us. 

In what follows, the above mentioned uniformity Us wTill be called Tukey's 
uniformity. By CT(X,Y) we shall denote the space of all continuous functions 
from a topological space X to a fully normal topological space y , equipped 
with Tukey's uniformity. 

Our last theorem speaks about fixed point property preserving convergences 
on the space C(X, Y). 
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THEOREM 5. Let X be a T2 topological space. Then CF(X), the set of all 
continuous functions from X to X which have the fixed point property, is a 
closed subset of the spaces CT(X, X) and C^(X, X). If X is fully normal, then 
the set CF(X) is closed in CT(X, X), and if X is a metric space, then CF(X) 
is a closed subset of CU(X,X). 

P r o o f . 

(I) Let n = {/7}7 6r be a net of functions. Let for all 7 G T, / G CF(X). 
Let n converges to a continuous function / in CT(X,X). Put g = i d x , i.e. 
(VxG X) (g(x) = x). Then the net n and the functions / and g satisfy the 
hypothesis of Theorem 2, So there exists an x in X such that f(x) = g(x) = x. 

(II) Our assertions concerning C^(X,X) and CT(X,X) can be proved by 
the same arguments. 

(III) Let n = {/7}7Gp be a net of functions. Let for all 7 G T, / G CF(X). 
Let n converges to a continuous function / in CUJ(X,X) with respect to the 
topology r^ . Put g = id^ and n = {g^ = g}7Gp, and apply Theorem 4. • 

Theorem 5 deals with closed subsets of some function spaces. In [HM2] some 
results concerning compact subsets of some of these spaces can be found. 

OPEN QUESTION. As we have seen, if a net of functions from C(X, Y) con
verges to a function / with respect to the open cover topology r* (or the 
graph topology r r ) , then it converges to / strongly. It is an open question 
whether, in general, for every topological space X and every metric space Y 
the TU -convergence in C(X, Y) imply strong convergence. 

R e m a r k 2. Strong convergence has another good property, which the conver
gences mentioned above do not have. It is target respecting. We mean by this 
the following property: 

Let X be a set, let Y be a topological space. Let {y7}7 Gr be a net 
converging to a point y €Y. Then the net of constant functions {/7}7Gp 
denned by (V7 G T)(Vx G X)(f (x) = y^) converges strongly to the 
constant function / = y. 

To see this, let us consider an open cover u of Y. There exists V G u such that 
y G V. Then 

(3a E T ) (V 7 > a) (Vx G X) ({f^(x) = y7, / ( * ) } C V) . 

So { / 7 } 7 E r is proved to converge strongly to / . 

Example 3 shows that the convergences induced by the topologies r^ , r r , r^ 
are not target respecting, even if X and Y are very nice. 
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