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A F E W R E M A R K S 

ON ALMOST C-POLYNOMIAL FUNCTIONS 

ZYGFRYD KOMÍNEK 

(Communicated by Lubica Holá) 

ABSTRACT. We give some sufficient conditions for a function transforming a 
commutative semigroup to a commutative group to be a polynomial function. 
Some stability results are also given. 

Introduction 

Let (X, -f) be a commutative semigroup and let (Y, +) be a commutative 
group. If / : X —•> y is a function and h G X , then we define the difference 
operator Ah in the following way 

A h / ( _ ) : = / ( _ + t i ) - / ( _ ) , 1 6 1 . 

The superposition of several operators A^ , . . . , A^ will be denoted briefly by 

Ahu...,hp •= A
hl-• • Ahp^ P = l , 2 , . . . . 

If h1 = • • • = h = h, we will write Ah instead of A^ h . It is well known 
([4], for example) that if / , g: X -> y , u,v,x G X , then 

-\.,» =-V«> A_u/(_) = -Au /(x-«), Au(/ + 5) = AU/ + Au5. 
A function / : X —.> y is called strongly polynomial function of p th order if and 
only if 

-V,...,/,p+J(*) = o (1) 
for all x, / i 1 , . . . , / i p + 1 G X . If we assume that condition (1) holds for all x, h G X 
and hx = h2 = • • - = h +1 = h, i.e. 

Ar7(*) = 0, (2) 
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then / is said to be a polynomial function of p th order. Let C be a subset of X. 
A function / : X -» Y is called strongly C -polynomial function of p th order if 
and only if condition (1) is satisfied for every x € X and all hx,..., hp+1 G C. 
Analogously, / is said to be C -polynomial function of p th order if and only if 
condition (2) is satisfied for every x G X and each h G C. 

It follows from D j o k o v i c ' s theorem ([2; Corollary 1], also [5]) that if Y 
has the property 

(Vy)([yeYA((p+l)\)y = 0] = > y = 0) , 

then / : X -> Y is a polynomial function of pth order if and only if it is strongly 
polynomial function of pth order as well. We say that / : X -> Y is a polynomial 
of pth order if there exist a constant a0 and symmetric i-additive functions 
a{: X1 -» y , i = l , . . . , p (i.e. additive in each variable) such that f(x) = 

v 
a o + E a>i(x,..-,x), x eX. 

i = i 

1. C-polynomial functions 

In [3] it is proven that if X and Y are uniquely divisible by (p+1)!, C — C = 
X, C + C C C and ( l^C C C, then every C-polynomial function of pth 
order is a polynomial of pth order. In this part of the paper, we will obtain some 
other results of this type. We start with the following lemma. 

LEMMA 1. Let X be a commutative semigroup and let Y be a commutative 
group. If f: X ->Y is a function, then for arbitrary x, hl- G X, j = 1, 2 , . . . , p, 
i = 0 ,1 . we have 

Aho+h{_ho+hlf(x)= Y.^h\\...,h£/f(x+ E ( l " ^ ) ^ ) . 
ei , . . . ,ep=0 k~1 

If, moreover, X is a group, then 

Aho_hl_ho_hpf(x) = j ^ ( - l ) £ l + - + £ p A^ ^ / ( ^ t hi)- (4) 
ei , . . . ,ep=0 k~1 

P r o o f . Induction. As an example, we give a proof of equality (4). For p = 1 
we have 

Afto_fti/(x) = / ( * + /.» - h\) -f(x-h\) + f(x - h\) - /(a.) 

= Ahof(x - h\) + A_h{f(x) = Ahof(x -h\)- Ah[f(x - h\) 

(3) 

= '£{-iy*Ah.1f{x-h\). 
є i = 0 
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Assume (4) and take arbitrary x, h%- G X , j = 1 , . . . , p + l , i = 0 , 1 . Then, 

Aho hi^ ho hi f(x) 
1 1' ' p + 1 p+1 

=-Vfci,...,ft--hj( E ( - ^ ^ / ( ^ - ^ i ) ) 
\£P+1=0 / 

= 5^ ( -I )^A C -H E(-1)£1+"'+£pvll,...,^/(^-^+i-i:^) 
£p + l = 0 P £1,..,£p = 0 k ~ l 

i ' ' p+i \ i—1 / 
e lv..,ep+i=0 / e ~ i 

which ends the proof. D 

The next two lemmas are consequences of Lemma 1. 

LEMMA 2. Let X be a commutative semigroup and let Y be a commutative 
group. If C C X satisfies the condition 

C + C = X: (5) 

then every strongly C -polynomial function of p th order f: X —» Y is strongly 
polynomial of p th order. 

P r o o f . Fix x, hx,..., h + 1 G X. According to (5), there exist hl- G C, 
j = 1 , . . . , p + l , 2 = 0 , 1 , such that h- = h°- + h1,, j = 1 , . . . , p + l . By virtue 
of (3) of Lemma 1 and our assumption we obtain 

A / i i , . . , f cp + i / ( x ) = A / i?+^ 1 i ' - '^+i+^p+i / ( x ) 

£ l , . . , £ p + 1 = 0 P k ~ l 

which finishes the proof. D 

In a similar way one can prove the following lemma. 

LEMMA 3. Let X and Y be commutative groups. If C C X satisfies the 
condition 

C-C = X , (6) 

then every strongly C -polynomial function of p th order f: X -> Y is strongly 
polynomial of p th order. 

Let m be a fixed positive integer. We say that a group X has a (m — C) -prop-
on 

erty if and only if each element h G X has a representation h = J^ hi, where 
i=i 
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hi ~ CU(—C), i = 1 , . . . , m. Note that if / : X -» Y is a strongly C-polynomial 
function of pth order, then it is also strongly (C U (—C)) -polynomial function 
of p th order. 

THEOREM 1. Let X and Y be commutative groups. If X has the (m—C) -prop­
erty with some positive integer m. then every strongly C -polynomial function 
of p th order f: X —» Y is strongly polynomial of p th order. 

P r o o f . Fix x, / i 1 , . . . , h + 1 € X. There exist a positive integer m and 
m 

h-k E C U (-C), j = 1 , . . . , p + l , k = 1 , . . . , m, such that h- — ^ fo. fc. Thus 
k=i 

AҺU...,ҺP+J(X) 

= Am m f(x) 
E hl.fc v » E bp+l,fc 

fc = l fc = l 

Jp+l \ / Jp+l-

h ?h E / - + E v J - / I + - - V i J 
. hi,k,...,22 hPtk .*--< \ \ k=1

 y / V fc=1 ^ / 
i fc = i j p + i ^ l 

m 7 + 1 — 1 

:/íl,fc,...,£/lp,fc E ^ ^ J ^ + S ^ . * ) 
1 fc = l J p + 1 —1 

j l - 1 jP + l - 1 

v~> \—> / J1~ Jp+1 \ = E • • • E ^^,.. . ,^+4* + £ V + • • • + £ ViJ = °• 
„' 1 „' i K — 1 K — 1 
Jl = l Jp+l = l 

because / is strongly (CU (—C)) -polynomial function of p th order. This ends 
the proof. • 

2. Stability in the sense of Ulam and Hyers 

Assume X is a commutative semigroup and Y is a real Banach space. Let 
us fix e > 0 and let / : X -» Y be a function. We are interested in solutions to 
the inequalities 

ll-V,...,fcp+J0-)ll<e> * e X , h1,...,hp+1eC, (7) 
and 

l |A£+ 1 /(*)ll<£, xex, heC, (8) 

where (7 is a subset of X. In the case of C = X , the problem was considered 
by many authors. In particular, M. A l b e r t and J. A. B a k e r [1] have proved 
the following theorem. 
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THEOREM A - B . Let X be a commutative semigroup with zero and let Y be a 
real Banach space. If f: X —» Y satisfies condition (7) with C = X, then there 
exists a unique (up to an additive constant) polynomial g: X —>Y of pth order 
such that 

\\f(x)-g(x)\\<s, xtX. 

The first theorem in this section reads as follows. 

THEOREM 2. Let X be a commutative semigroup with zero and let Y be a real 
Banach space. If f': X -» Y satisfies condition (7) where C C X satisfies one 
of conditions (5) or (6). then there exists a unique (up to an additive constant) 
polynomial g: X —> Y of pth order such that 

\\f{x)-g{x)\\<2V+le, x&X. 

P r o o f . Assume (5) (if (6) is satisfied, then the proof is similar). Let 
j , / i l r . . , / i p + 1 G X be arbitrary fixed. According to (5), there exist hl- G C, 
j = 1,... , p + l , i — 0 , 1 , such that h- = h® + hl-,j = l,... , p + l . By Lemma 1 
and (7) we get 

1 p+i 
I-V...lfcp+1/(*)ll < £ l ^ ^ ^ ^ / ^ + E í l - e , ) ^ ) <2p+lє. 

e i , . . . , £ p + i = 0 

Our assertion follows now from Theorem A-B. • 

J. H. B. Kemperman ([4; p. 369]) noticed that if X is a commutative group 
admitting division by (p + 1)!, then we can express values of the operator 
A^ h as linear combinations of iterates of the (p + l ) th order of difference 
operators depending only on one span. More precisely, if x, hx,..., h , 2 G X 
and / : X -+ Y is a function, then 

ni, 
f(x)= " (_1)^+-+^P+1ДP+1 f(x + h" t ) 

p+1- 7 1 - > L^l V ' ћє1,...,єp+1

J V Є l , . . . , Є p + l / 

where 

and 

P+i g. 

p+i 

<,..,eP+i = E є Л -
j=i 

The next theorem refers to inequality (8). 
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THEOREM 3. Let X be a commutative group admitting division by (p + 1)!, 
let Y be a real Banach space. Assume T - T T - C C C . C + C C C and (6). If 
f: X —>• Y satisfies condition (8). then there exists a unique (up to an additive 
constant) polynomial g: X -+ Y of pth order such that 

,!/(*)-$(*)!! <4p + 1e, xex. 

P r o o f . Fix arbitrary x, / i 1 5 . . . , tV+ 1 G X . There exist /V- G C, j — 

1 , . . . , p + l , z = 0 , 1 , such that h.=hQ.—hl.,j = l,... , p + l . For arbitrary 

£j,£j G {0,1}, j = 1 , . . . , p + l , let us define 

P + 1 U£3 
, £ i , . . . , £ p + i . _ V ^ r _ L 
^ i , . . . , < 5 p + i — _ _ ° j • > 

j=i ^ 
P+I P+I 

£i,...£p+i y , _ ^ i y , ^ ^i , - . ,eP + i 
d i , . . , d p + i / A J / j /__/ j 3 c h , . . , d p + i 

According to Lemma 1 we obtain 

Ahu...,hp+J(x) 
= \°-hl...,h°+l-hl+lf(x) 

= _ (--)ei+",+e'+1v....,w/(a;-|:(1-ei)^) 
e i , . . . , e p + i = 0 J 

= - _ (-i)-+-+^- _ (-i)'i+"-+''+iAp1.....^j(4\:.x^). 
e i , . . . , e p + i = 0 5 i , . . . , «Jp + i=0 * i . - . * P + i 

Hence 

ii-V...,fcp+Jo-)ii -- ^1AP-"^>/K l:::::l;:1
1)ll -

< 5 i , . . . , « S p + i 

which together with (8) implies that 

HA/,i,..,/tp+i/WII<4p+1
£. 

Now our assertion follows from Theorem A-B. • 

As a final remark note that we are able to repeat the argumentation used in 
the proof of Theorem 3 to obtain the following theorem. 
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THEOREM 4. Let X be a commutative group admitting division by (p + 1)! 
and let Y be a commutative group. If C is a subset of X such that 

(p+i) 
L e c C , C + CcC and c-c = x, 

then every C -polynomial function of p th order is a strongly polynomial function 
of p th order. 

Remark. Recall that ([2; Theorem 3]) if, moreover, Y is a commutative group 
such that for every y G F 

equation (p\)x = y has a unique solution x — -^, 

then every polynomial function / : X —> Y of pth order is a polynomial of p th 
order, too. 
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