Mathematica Slovaca

Milan Jasem
Weak isometries in directed groups

Mathematica Slovaca, Vol. 44 (1994), No. 1, 39--43

Persistent URL: http://dml.cz/dmlcz/131688

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

WEAK ISOMETRIES IN DIRECTED GROUPS

MILAN JASEM ${ }^{1}$
(Communicated by Tibor Katrinák)

Abstract

ABSTRAC"I. The main result of this paper is that every stable weak isometry in a directed group is an involutory group automorphism.

In ! 11$]$. S w a 111 y introduced the concept of an isometry in an abelian lattice ordered group (B as a surjection $f: G \longrightarrow(B$ such that

$$
\begin{equation*}
|x-y|=|f(x)-f(y)| \quad \text { for each } \quad x, y \in C \tag{1}
\end{equation*}
$$

and proved that every isometry g in an abelian lattice ordered group (i can be written micuely as $g(x)=T(x)+a$. where a is a fixed element of $(t$ and T is an involutory isometric group automorphism. Jakubík [2], [3] proved that for erery isometry f in a lattice ordered group (l-group) G such that $f(0)=0$ there exists a miquely determined direct decomposition $G=A \times B$ of C^{\prime} such that $f(x)=x_{A}-x_{B}$ for each $x \in G\left(x_{A}\right.$ and x_{B} are components of r in the direct factors A and B, respectively) and extended the above mentioned Siw a $\quad 11!$'s result to non-abelian l-groups. Isometries in l-groups investigated also II olland [1]. R achunek [10] generalized the notion of the isometry for any partially ordered group (po-group) and studied isometries in a certain class of Riesz groups. In [5], [6], [8], [9], was J a k ubík's result on the relation between isometries and direct decompositions of l-groups extended to some types of po-groups.

In |1|. Jakubík defined a weak isometry in an l-group G as a mapping $f:\left(i \cdots\right.$ (${ }^{\prime}$ satisfying the condition (1) and proved that each weak isometry in a representable l-group is a bijection. Analogous result concerning weak isometries in isolated Riesz groups and distributive multilattice groups (and hence also in l-groups) was obtained in [7], [9].

A MS Subject Classification (1991): Primary 06F15.
Key words: Weak isometry, Isometry, Directed group, Involutory group automorphism.
${ }^{1}$ Supported by SAV grant 362/91.

In this paper, it is proved that every stable weak isometry in a directed group) G is an involutory group automorphism, and that every weak isometry f in (i can be written as $f(x)=T(x)+a$, where a is a fixed element of G, and T is an involutory isometric group automorphism. From this it follows that every weak isometry in a directed group is a bijection. This generalizes the above mentioned extension S w a m y 's result by J a kubík and some results of [7]. [9].

First we recall some notions and notations used in the paper.

Let G be a po-group. The group operation will be written additively: We denote $G^{+}=\{x \in G ; x \geq 0\}$. If a, b are elements of G, then we denote by $U(a, b)$ and $L(a, b)$ the set of all upper bounds and the set of all lower bounds of the set $\{a, b\}$ in G, respectively. If for $a, b \in G$ there exists the least upper bound (greatest lower bound) of the set $\{a, b\}$ in G, then it will be denoted by $a \vee b(a \wedge b)$. For each $a \in G,|a|=U(a,-a)$.

If G is a po-group, then a mapping $f: G \rightarrow G$ is called a weak isometry if $|f(x)-f(y)|=|x-y|$ for each $x, y \in G$. A weak isometry f is called a stable. weak isometry if $f(0)=0$.

A po-group G is called directed if $U(x, y) \neq \emptyset$ and $L(x, y) \neq \emptyset$ for each $x, y \in G$.

1. TheOrem. Let G be a po-group, and let f be a stable weak isometry in G. Let $x \in G^{+}, x_{1}=x+f(x), x_{2}=-f(x)+x$. Then $x_{1}=f(2 x) \vee 0$. $x_{2}=-f(2 x) \vee 0,2 x=x_{1}+x_{2}=x_{2}+x_{1}=x_{1} \vee x_{2}, x_{1} \wedge x_{2}=0, f(2 x)==$ $x_{1}-x_{2}=2 f(x), f\left(x_{1}\right)=x_{1}, f\left(x_{2}\right)=-x_{2}, f^{2}(x)=x, f^{2}(-x)-x$. $x+f(x)=f(x)+x, f(-x)=-f(x)$.

Proof. Let $x \in G^{+}$. Then from $|x|=|f(x)|$ we get $x=-f(x) \vee f(x)$. Thus $x+f(x) \geq 0,-f(x)+x \geq 0$. From $|2 x|=|f(2 x)|$ we obtain $2 x=$ $-f(2 x) \vee f(2 x)$. Since $|x|=|2 x-x|=|f(2 x)-f(x)|$, we have $x \geq f(2 x)-f(x)$. $x \geq f(x)-f(2 x)$. This implies $x+f(x) \geq f(2 x),-f(x)+x \geq-f(2 x)$. $x+f(2 x) \geq f(x),-f(2 x)+x \geq-f(x)$. Hence $x_{1} \in U(f(2 x) .0)$. x_{2} 三 $U(-f(2 x), 0), 2 x+f(2 x) \geq x+f(x),-f(2 x)+2 x \geq-f(x)+x$. Let $t \in$ $U(-f(2 x), 0)$. Then $x_{1}+t \in U(f(2 x),-f(2 x))$. Thus $x_{1}+t \geq-f(2 x) \vee f(2 . x)==$ $2 x=x_{1}+x_{2}$. This implies $t \geq x_{2}$. Therefore $x_{2}=-f(2 x) \vee 0$. Analogously, we can show that $x_{1}=\bar{f}(2 x) \vee 0$. Clearly, $x_{1}+x_{2} \in U\left(x_{1}, x_{2}\right)$. Let $z \in U\left(x_{1}, x_{2}\right)$. Then $z \in U(-f(2 x), f(2 x))$. This yields $z \geq 2 x=r_{1}+r_{2}$. Hence $x_{1} \vee x_{2}=x_{1}+x_{2}$. Then we can easily get $x_{1} \wedge r_{2}=0 . r_{1}+r_{2}=$ $x_{2}+x_{1}$. Since $-x_{2}=f(2 x) \wedge 0$ and $f(2 x)=f(2 x) \vee 0+f(2 x) \wedge 0$. we have $f(2 x)=x_{1}-x_{2}=x+f(x)-x+f(x)$.

The relation $\left|x_{1}\right|=\left|f\left(x_{1}\right)\right|$ yields $x_{1} \geq f\left(x_{1}\right), x_{1} \geq-f\left(x_{1}\right)$. Then $f\left(x_{1}\right)+x_{2} \geq-x_{1}+x_{2}=x_{2}-x_{1}=-f(2 x)$. Further, from $\left|x_{2}\right|=\left|x_{1}+x_{2}-x_{1}\right|=$ $\left|2 x-x_{1}\right|=\left|f(2 x)-f\left(x_{1}\right)\right|=\left|x_{1}-x_{2}-f\left(x_{1}\right)\right|$ we obtain $x_{2} \geq x_{1}-x_{2}-f\left(x_{1}\right)$. Then $f\left(x_{1}\right)+x_{2} \geq-x_{2}+x_{1}=x_{1}-x_{2}=f(2 x)$. Hence $f\left(x_{1}\right)+x_{2} \geq$ $-f(2 x) \vee f(2 x)=x_{1}+x_{2}$. This implies $f\left(x_{1}\right) \geq x_{1}$. Therefore $f\left(x_{1}\right)=x_{1}$.

From $\left|x_{2}\right|=\left|f\left(x_{2}\right)\right|$ we get $x_{2} \geq f\left(x_{2}\right), x_{2} \geq-f\left(x_{2}\right)$. Hence $-f\left(x_{2}\right)+x_{1} \geq$ $-x_{2}+x_{1}=x_{1}-x_{2}=f(2 x)$. From $\left|x_{1}\right|=\left|2 x-x_{2}\right|=\left|f(2 x)-f\left(x_{2}\right)\right|$ we get $x_{1} \geq f\left(x_{2}\right)-f(2 x)$. Then $-f\left(x_{2}\right)+x_{1} \geq-f(2 x)$. Thus $-f\left(x_{2}\right)+x_{1} \geq$ $-f(2 x) \vee f(2 x)=x_{2}+x_{1}$. This yields $-f\left(x_{2}\right) \geq x_{2}$. Thus $-f\left(x_{2}\right)=x_{2}$, and hence $f\left(x_{2}\right)=-x_{2}$.

From $|x|=|x+f(x)-f(x)|=\left|f(x+f(x))-f^{2}(x)\right|=\left|x+f(x)-f^{2}(x)\right|$ we get $x \geq x+f(x)-f^{2}(x)$. Thus $f^{2}(x) \geq f(x)$. Then from $|f(x)-x|=\left|f^{2}(x)-f(x)\right|$ we get $x-f(x)=f^{2}(x)-f(x)$. Therefore $f^{2}(x)=x$.

From $|x|=|-x|=\left|f^{2}(-x)\right|$ we obtain $x \geq f^{2}(-x)$. Since $|2 x|=|x-(-x)|$ $=\left|f^{2}(x)-f^{2}(-x)\right|=\left|x-f^{2}(-x)\right|$, we have $2 x=x-f^{2}(-x)$. Therefore $f^{2}(-x)=-x$.

Since $|2 x-f(x)|=\left|f(2 x)-f^{2}(x)\right|$, we have $2 x-f(x) \geq x-f(2 x)$. Then $x-f(x) \geq-f(2 x)$. Because of $x-f(x) \geq 0$, we obtain $x-f(x) \geq-f(2 x) \vee 0 \geq$ $-f(x)+x$. This implies $f(x)+x \geq x+f(x), x-f(x)+x_{1} \geq-f(2 x) \vee f(2 x)=2 x$. From the last relation we have $x+f(x) \geq f(x)+x$. Hence $x+f(x)=f(x)+x$. Then $f(2 x)=2 f(x)$.

From $|x|=|-x|=|f(-x)|$ we get $x \geq f(-x)$. Since $|f(x)-(-x)|=$ $\left|f^{2}(x)-f(-x)\right|=|x-f(-x)|$, we have $x+f(x)=x-f(-x)$. Thus $f(-x)=-f(x)$.
2. Theorem. Let G be a po-group, and let f be a stable weak isometry in G. Let $x_{1}, x_{2} \in G^{+}$. Then

$$
\begin{gathered}
f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right), \quad f\left(x_{1}-x_{2}\right)=f\left(x_{1}\right)-f\left(x_{2}\right) \\
f\left(-x_{1}+x_{2}\right)=-f\left(x_{1}\right)+f\left(x_{2}\right)
\end{gathered}
$$

Proof. Let $x_{1}, x_{2} \in G^{+}$. In view of 1 , we have $x_{1}+x_{2}-f\left(x_{2}\right) \geq 0$, $\left|x_{1}+x_{2}-f\left(x_{2}\right)\right|=\left|f\left(x_{1}+x_{2}\right)-f^{2}\left(x_{2}\right)\right|=\left|f\left(x_{1}+x_{2}\right)-x_{2}\right|$. Hence $x_{1}+$ $x_{2}-f\left(x_{2}\right) \geq x_{2}-f\left(x_{1}+x_{2}\right)$. This implies $f\left(x_{1}+x_{2}\right)+x_{1}+x_{2}-f\left(x_{2}\right) \geq$ $f\left(x_{1}+x_{2}\right)+x_{2}-f\left(x_{1}+x_{2}\right) \geq 0$. According to $1, x_{1}+x_{2}+f\left(x_{1}\right) \geq x_{1}+f\left(x_{1}\right) \geq 0$, $\left|x_{1}+x_{2}+f\left(x_{1}\right)\right|=\left|x_{1}+x_{2}-f\left(-x_{1}\right)\right|=\left|f\left(x_{1}+x_{2}\right)-f^{2}\left(-x_{1}\right)\right|=\left|f\left(x_{1}+x_{2}\right)+x_{1}\right|=$ $\left|f\left(x_{1}+x_{2}\right)+x_{1}+x_{2}-x_{2}\right|=\left|f\left(f\left(x_{1}+x_{2}\right)+x_{1}+x_{2}\right)-f\left(x_{2}\right)\right|=\mid f\left(x_{1}+x_{2}\right)+$ $x_{1}+x_{2}-f\left(x_{2}\right)$. This yields $x_{1}+x_{2}+f\left(x_{1}\right)=f\left(x_{1}+x_{2}\right)+x_{1}+x_{2}-f\left(x_{2}\right)$. Then from 1 it follows that $f\left(x_{1}\right)+f\left(x_{2}\right)=f\left(x_{1}+x_{2}\right)$.

From $\left|x_{1}+x_{2}-x_{1}\right|=\left|x_{1}-\left(x_{1}-x_{2}\right)\right|=\left|f\left(x_{1}\right)-f\left(x_{1}-x_{2}\right)\right|$ we obtain $x_{1}+x_{2}-x_{1} \geq f\left(x_{1}-x_{2}\right)-f\left(x_{1}\right)$. According to $1,-f\left(x_{1}\right)+x_{1} \geq 0$. Then $x_{1}+$ $x_{2} \geq f\left(x_{1}-x_{2}\right)-f\left(x_{1}\right)+x_{1} \geq f\left(x_{1}-x_{2}\right)$, and hence $x_{1}+r_{2}-f\left(x_{1}-r_{2}\right) \geq 0$. In view of 1 , we also have $\left|x_{1}+x_{2}+f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f\left(x_{1}+x_{2}+f\left(x_{2}\right)\right)-f^{2}\left(x_{1}\right)\right|$ $\left|f\left(x_{1}\right)+f\left(x_{2}+f\left(x_{2}\right)\right)-x_{1}\right|=\left|f\left(x_{1}\right)+x_{2}+f\left(x_{2}\right)-x_{1}\right|=\mid f\left(x_{1}\right)+f\left(x_{2}\right)+x_{2} \cdots x_{1}$ $\left|f\left(x_{1}+x_{2}\right)-\left(x_{1}-x_{2}\right)\right|=\left|f^{2}\left(x_{1}+x_{2}\right)-f\left(x_{1}-x_{2}\right)\right|=\mid x_{1}+x_{2}-f\left(x_{1}-r_{2}\right)$.
Since 1 yields $x_{1}+x_{2}+f\left(x_{2}\right)-f\left(x_{1}\right) \geq 0$, we have $x_{1}+r_{2}+f\left(x_{2}\right)-f\left(x_{1}\right)=$ $x_{1}+x_{2}-f\left(x_{1}-x_{2}\right)$. Therefore $f\left(x_{1}-x_{2}\right)=f\left(x_{1}\right)-f\left(x_{2}\right)$.

By 1, $x_{1}+x_{2}-f\left(x_{2}\right)+f\left(x_{1}\right) \geq 0$. From $\left|x_{1}\right|=\mid x_{2}-\left(-x_{1}+r_{2}\right)$ $\left|f\left(x_{2}\right)-f\left(-x_{1}+x_{2}\right)\right|$ we get $x_{1} \geq f\left(-x_{1}+x_{2}\right)-f\left(x_{2}\right)$. In view of 1 . we have $x_{1}+x_{2} \geq f\left(-x_{1}+x_{2}\right)-f\left(x_{2}\right)+x_{2} \geq f\left(-x_{1}+x_{2}\right)$. Then, according to 1 . we obtais $\left|x_{1}+x_{2}-f\left(x_{2}\right)+f\left(x_{1}\right)\right|=\left|x_{1}+x_{2}-f\left(x_{2}\right)-f\left(-x_{1}\right)\right|=\mid f\left(x_{1}+r_{2}-f\left(x_{2}\right)\right)$ $f^{2}\left(-x_{1}\right)\left|=\left|f\left(x_{1}\right)+f\left(x_{2}-f\left(x_{2}\right)\right)+x_{1}\right|=\left|f\left(x_{1}\right)+f\left(x_{2}\right)-x_{2}+x_{1}\right|=\right| f\left(x_{1}+x_{2}\right)-$ $\left(-x_{1}+x_{2}\right)\left|=\left|f^{2}\left(x_{1}+x_{2}\right)-f\left(-x_{1}+x_{2}\right)\right|=\left|x_{1}+x_{2}-f\left(-x_{1}+x_{2}\right)\right|\right.$. This implies, $x_{1}+x_{2}-f\left(x_{2}\right)+f\left(x_{1}\right)=x_{1}+x_{2}-f\left(-x_{1}+x_{2}\right)$. Therefore $f\left(-x_{1}+x_{2}\right)==$ $-f\left(x_{1}\right)+f\left(x_{2}\right)$.
3. Theorem. Each stable weak isometry in a directed group is an incolutory group automorphism.

Proof. Let H be a directed group, and let f be a stable weak isometry in H. It is easy to see that f is an injection. Let $x, y \in H$. Then $x=r_{1}-r_{2}$. $y=y_{1}-y_{2}$, where $x_{1}, x_{2}, y_{1}, y_{2} \in H^{+}$. In view of 1 and 2 , we have $f(x+y)==$ $f\left(x_{1}+y_{1}-\left(y_{2}-y_{1}+x_{2}+y_{1}\right)\right)=f\left(x_{1}+y_{1}\right)-f\left(y_{2}-y_{1}+x_{2}+y_{1}\right)=f\left(x_{1}\right)+$ $f\left(y_{1}\right)-f\left(-y_{1}+x_{2}+y_{1}\right)-f\left(y_{2}\right)=f\left(x_{1}\right)+f\left(y_{1}\right)-f\left(x_{2}+y_{1}\right)+f\left(y_{1}\right)-f\left(y_{2}\right)=$ $f\left(x_{1}\right)-f\left(x_{2}\right)+f\left(y_{1}\right)-f\left(y_{2}\right)=f(x)+f(y)$. From this and 1 it follows that $f^{2}(x)=f^{2}\left(x_{1}-x_{2}\right)=f^{2}\left(x_{1}\right)-f^{2}\left(x_{2}\right)=x_{1}-x_{2}=x$. Therefore f is an involutory group automorphism.

If f is a weak isometry in a po-group G, then the mapping g defined by $g(x)=f(x)-f(0)$ for each $x \in G$ is a stable weak isometry in G. Hence we have the following two corollaries.
4. Corollary. For each weak isometry f in a directed group H there exist.s just one involutory isometric group automorphism g such that

$$
f(x)=g(x)+f(0) \quad \text { for each } \quad x \in H .
$$

5. COROLLARY. Each weak isometry in a directed group is a bijection.

WEAK ISOMETRIES IN DIRECTED GROUPS

6. THEOREM. Let G be a directed group and let f be a stable weak isometry in (i. Then

$$
x+f(x)=f(x)+x \quad \text { for each } \quad x \in G .
$$

Proof. Let $x \in G$. Then $x=x_{1}-x_{2}$, where $x_{1}, x_{2} \in G^{+}$. In view of 1 and 2. we have $x+f(x)=x_{1}-x_{2}+f\left(-x_{2}+x_{2}+x_{1}-x_{2}\right)=x_{1}-x_{2}-f\left(x_{2}\right)+$ $f\left(x_{2}+x_{1}-x_{2}\right)=x_{1}-f\left(x_{2}\right)-x_{2}+f\left(x_{2}+x_{1}-x_{2}\right)=x_{1}-f\left(x_{2}\right)-x_{1}-x_{2}+x_{2}+$ $r_{1}-x_{2}+f\left(x_{2}+x_{1}-x_{2}\right)=x_{1}-f\left(x_{2}\right)-x_{1}-x_{2}+f\left(x_{2}+x_{1}-x_{2}\right)+x_{2}+x_{1}-r_{2}=$ $x_{1}-f\left(x_{2}\right)-\left(x_{2}+x_{1}\right)+f\left(x_{2}+x_{1}\right)-f\left(x_{2}\right)+x_{2}+x_{1}-x_{2}=x_{1}-f\left(x_{2}\right)+f\left(x_{2}\right)+$ $f\left(x_{1}\right)-\left(x_{2}+x_{1}\right)+x_{2}-f\left(x_{2}\right)+x_{1}-x_{2}=x_{1}+f\left(x_{1}\right)-x_{1}-x_{2}+x_{2}-f\left(x_{2}\right)+x_{1}-r_{2}=$ $f\left(r_{1}\right)+r_{1}-x_{1}-f\left(x_{2}\right)+x_{1}-x_{2}=f\left(x_{1}\right)-f\left(x_{2}\right)+x_{1}-x_{2}=f\left(x_{1}-x_{2}\right)+x_{1}-x_{2}=$ $f(r)+r$.

REFERENCES

[1] H()LLAND, CH.: Intrinsic metrics for lattice ordered groups, Algebra Universalis 19 (1984), 142-150.
[2] JAKUBÍK, J.: Isometries of lattice ordered groups, Czechoslovak Math. J. 30 (1980), $1.42 \quad 152$.
[3] .JAKUIBÍK. J.: On isometries of non-abelian lattice order ed groups, Math. Slovaca 31 (1981), 171-175.
[1] JAKUBÍK, J.: Weak isometries of lattice ordered groups, Math. Slovaca 38 (1988), 133-138.
[5] JAKUBÍK, J.-KOLIBIAR, M.: Isometries of multilattice groups, Czechoslovak Nath. J. 33 (1983), 602-612.
[6] JASEM, M.: Isometries in Riesz groups, Czechoslovak Math. J. 36 (1986), 35-43.
[7] .JASEMI, M.: On weak isometries in multilattice groups, Math. Slovaca 40 (1990), 337-340).
$[8]$ JASEM, M.: Isometries in non-abelian multilattice groups, Czechoslovak Math. J. (To appear).
$|9|$.JASEMI, M.: Weak isometries and isometries in partially ordered groups. (Submitted).
[10] RACHUNEK, J.: Isometries in ordered groups, Czechoslovak Math. J. 34 (1984), 334-341.
[11] SWAMIY, K. L. N.: Isometries in autometrized lattice order ed groups, Algebra Universalis 8 (1978), 59-64.

Department of Mathematics
Faculty of Chemistry
Slovak Technical University
SK-812 37 Bratislava
Slovakia

