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WEAK ISOMETRIES IN DIRECTED GROUPS 

MILAN J A S E M 1 

(Conumimcated by Tibor Katrindk) 

ABSTRACT. The main result of this paper is that every stable weak isometrv 
in a directed group is an invohitory gi'oup automorphism. 

Iii !1 1]. S \v a m v introduced the concept of an isometrv in an abelian lattice 
ordered group G as a surjection / : G —» G such t ha t 

!•'• - !J\ = !/(•'•) - / ( . ' / ) l for each .r, </ 6 a (1) 

and proved that every isometry (j in an abelian lat t ice ordered group G can be 
writ t (Mi uniquely as g(.v) = T(.v) -f- O. where a is a fixed element of G and F 

is an invohitory isometric group au tomorph i sm. J a k u 1) 1 k [2], [3] proved that 
for every isometrv / in a lat t ice ordered group (1-group) G such tha t /(()) — 0 
there exists a uniquely determined direct decomposi t ion G = A x B of G such 
that /(./*) •- .I'A — .r [j for each ./' £ (7 ( x A and ;T/j are components of .r in 
the direct factors A and £ , respectively) and extended the above mentioned 
S w a in y *s result to non-abelian 1-groups. Isometrics in l-grou])s investigat( id 
also H o l l a n d [1]. R a c h u n e k [10] generalized the notion of the isoniet r\T 

for any partially ordered group (po-group) and studied isonietries in a certain 
class of Hiesz groups. In [5], [6], [8], [9], was J a k u b f k 's result on the relation 
b(i\\(HMi isometrics aii(3 direct decomposi t ions of 1-groups extended to some types 
of po-groups. 

In [1|. .J a k u b f k defined a weak isometry in an 1-group G as a mapping 
/ : G - G satisfying the condit ion ( l) and proved t h a t each weak isometrv in a 
represent able 1-group is a Injection. Analogous result concerning weak isoniet ries 
in isolated Hiesz groups and dis t r ibut ive mult i la t t ice groups (and hence also in 
1-groups) was obtained in [7], [9]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 06F15. 
K e y w o r d s : Weak isometry, Isometry, Directed group, Invohitory group automorphism. 
1 Supported by SAV grant 362/91 . 
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In this paper, it is proved that every stable weak isometry in a directed group 
G is an involutory group automorphism, and that every weak isometry / in G 
can be written as f(x) = T(x) + a , where a is a fixed element of G , and T is ;m 
involutory isometric group automorphism. From this it follows that every weak 
isometry in a directed group is a bijection. This generalizes the above mentioned 
extension S w a m y 's result b y J a k u b i k and some results of [7]. [9j. 

First we recall some notions and notations used in the paper. 

Let G be a po-group. The group operation will be written additivelv. We 
denote G + = {x £ G; x > 0} . If a, b are elements of G, then we denote by 
U(a,b) and L(a,b) the set of all upper bounds and the set of all lower bounds 
of the set {a, b} in G, respectively. If for a, 6 £ G there exists the least upper 
bound (greatest lower bound) of the set {a, 6} in G , then it will be denoted by 
a V b (a Ab). For each a £ G , \a\ = U(a, —a). 

If G is a po-group, then a mapping f: G —> G is called a weak isometry if 
| / (x) — f(y)\ = \x — y\ for each x,y £ G. A wreak isometry / is called a stable 
weak isometry if / (0) = 0 . 

A po-group G is called directed if U(x,y) ^ 0 and L(x,y) / 0 for each 
x,H£ G. 

1. THEOREM. Let G be a po-group, and let f be a stable weak isometry in 
G . Let x £ G+ . X! = x + f(x), x2 = -f(x) + x . Then x{ = f(2x) V 0 . 
x2 = -f(2x) V 0 . 2x = xi + x2 = x2 + xi = xi V x2 , xx A x2 = 0 , / (2x) = 

xx-x2 = 2f(x), f(Xl) = xг, f(x2) = -x2, fл(x) = x, f-(-x) 
x + f(x) = f(x) + x, f(-x) = -f(x) . 

X 

P r o o f . Let x £ G+ . Then from |x| = | / (x ) | we get x = -f(x) V f(x) . 
Thus x + f(x) > 0, -f(x) + x > 0. From |2x| = | / (2x) | we obtain 2x = 
- / ( 2 x ) V / ( 2 x ) . Since |x| = | 2 x - x | = | / ( 2 x ) - / ( x ) | , we have x > / ( 2 x ) - / ( x ) . 
x > f(x) - f(2x). This implies x + f(x) > f(2x), -f(x) + x > -f(2x). 
x + / (2x) > / ( x ) , -f(2x) + x > -f(x). Hence xx £ U(/(2x).0). x2 £ 
U(-/(2x),0), 2x + /(2x) > x + / ( x ) , -f(2x) + 2x > - / ( x ) + x . Let t £ 
/ 7 ( - / ( 2x ) , 0 ) . Then x,+t £ U(f(2x),-f(2x)) . Thus xx+t > - / ( 2 x ) V / ( 2 x ) = 
2x = x1+x2. This implies t > x2 . Therefore x2 = -f(2x) V 0. Analo
gously, we can show that xx = / (2x) V 0. Clearly, xy + x2 £ U(x\.x-2) . Let 
z £ U(x!,x2). Then z £ U (-f (2x), f (2x)) . This yields z > 2x = x{ + x2 . 
Hence x\ V x2 = x\ + x2 . Then we can easily get ,rL A x2 = 0. xv + x2 = 
x2 + X! . Since - x 2 = f(2x) A 0 and f(2x) = f(2x) V 0 + f(2x) A 0 . we ha\e 
f(2x) = X! - x2 = x + f(x) - x + f(x) . 
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Tlie relation |xi | = \f(xx)\ yields x1 > f(x1), x1 > —f(x\)> Then 
f(x{) + x2 > — x1+x2 =x2—x\ = —f(2x). Further, from \x2\ = \x1+x2 — xi\ = 
| 2 . r - T i | = \f(2x) - f(xx)\ = |:vi ~x2- f(xx)\ we obtain x2 > xx -x2-f(x\). 
Then f(x\) + x2 > -x2 + xx = x1 - x2 = f(2x). Hence f(xx) + x2 > 
-f(2x) V f(2x) = xx + x2 . This implies f(xx) > xx. Therefore f(x\) = xY . 

From \x2\ = \f(x2)\ we get x2 > f(x2), x2 > -f(x2). Hence -f(x2) + x\ > 
-x2 + x1 = x1 — x2 = f(2x). From |xi | = \2x - x2\ = \f(2x) - f(x2)\ we 
get Xl > f(x2) - f(2x). Then -f(x2) + xx > -f(2x). Thus -f(x2) + x, > 
-f(2x) V f(2x) = x2 + Xl . This yields -f(x2) > x2 . Thus -f(x2) = x2 , and 
hence f(x2) = -x2. 

From \x\ = \x+f(x)-f(x)\ = \f (x+f(x))-f2(x)\ = \x+f(x)-f2(x)\ we get 
x > x + f(x)-f2(x).Thus f2(x) > / ( x ) . Then from \f(x)-x\ = | / 2 ( x ) - / ( x ) | 
we get x - f(x) = f2(x) — f(x). Therefore f2(x) = x. 

From \x\ = | - x\ = | / 2 ( - x ) | we obtain x > f2(-x). Since \2x\ = \x — (—x)\ 
- \f2(x) - P(-x)\ = \x - f2(~x)\, we have 2x = x - P(~x). Therefore 
P(~x) = -x. 

Since \2x - f(x)\ = \f(2x) - f2(x)\ , we have 2x - f(x) >x- f(2x). Then 
x-f(x) > -f(2x). Because of x-f(x) > 0, we obtain x-f(x) > - / ( 2 x ) V 0 > 
-f(x)+x. This implies f(x)+x > x+f(x), x-f(x)+x1 > -f(2x)Wf(2x) = 2x . 
From the last relation we have x + f(x) > f(x) + x . Hence x + f(x) = f(x) + x . 
Then f(2x) = 2f(x). 

From \x\ = \ - x\ = \f(-x)\ we get x > f(-x). Since | / (x) - (-x)\ = 

\f2(x) - f(-x)\ = \x - / ( - x ) | , we have x + f(x) - x - f(-x). Thus 
/ ( - * ) = - / ( * ) . 

2. THEOREM. Let G be a po-growp, and let f be a stable weak isometry in 
G . Let xi , x2 e G + . Then 

f(x1 + x2) = f(Xl) + f(x2), f(Xl - x2) = / ( x i ) - f(x2), 

f(-x1+x2) = -f(x1) + f(x2). 

P r o o f . Let xx , x2 G G + • In view of 1, we have Xi + x2 - f(x2) > 0, 
\x\ +x2- f(x2)\ = | / ( x ! + x2) - f2(x2)\ = | / (x i + x2) - x 2 | . Hence Xl + 
x2 - f(x2) > x2 - / ( x i + x 2 ) . This implies f(xx + x2) + xx + x2 - f(x2) > 
f(xi+x2)+x2-f(x1 + x2) > 0.. According to 1, x1+x2 + f(xx) > x1 + f(xx) > 0, 
\xi+x2+f(Xl)\ = \x1+x2-f(-xx)\ = \f(x1+x2)-f

2(-Xl)\ = | / ( x i + x 2 ) + x i | = 
| / ( x i + x 2 ) + x i + x 2 - x 2 | = \f(f(x1 + x2) + x1+x2)-f(x2)\ = | / ( x i + X 2 ) + 
J'l + x2 - f(x2)\ . This yields x1 + x2 + f(xx) = f(xx + x2) + x1+x2- f(x2). 
Then from 1 it follows that f(xx) + f(x2) = f(x1 + x2). 
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From \xi + x2 - x) = |Ti - (xY - x2)\ = \f(xY) - f(x{ - x2)\ we obtain 

xi +x2-xL > f(x\-x2)-f(x\). According to 1, -f(x\) + .l'i > 0 . Then x{ -r-
x2 > f(x]_—x2) — f(xi)-\-Xi > f(x]_—x2) , and hence x\ + . r 2 — /(.l ' i —x2) > 0 . In 

view of 1 , we also have \x\ + . r 2 + / ( . r 2 ) — / ( . r i ) | = | / ( - r i +- r2 + / ( - r 2) ) - / " ( • ' " l )| -" 

| / ( . r i ) + / ( : r 2 + / ( . r 2 ) ) - . r i | = | / ( ^ i ) + ^ ' 2 + / ( . r 2 ) - . n | - | / ( . r i ) + / ( . r 2 ) - f ./••_>--./• , -•• 

| / ( . r i + J;2) - (.n - : r2) | = | / 2 ( . n + T2) - f(Xl - x2)\ = |.ri + x2 - f(x{ - ./••,) . 

Since 1 yields x\ + T2 + / ( , r 2 ) — f(x\) > 0 , we have .Ti + x2 + f(x2) - /(./-j ) --

:ri + ,r2 - f(xv - x2) . Therefore f(xv - x2) = f(x\) - f(x2) . 

By 1, :ri + :r2 - f(x2) + f(x{) > 0 . From |.n | - | r 2 - ( - . rL + x,)\ = 

| / ( - r 2 ) — f( — x-\ + .T2)| we get xi > /(—.L'i + T2) — /(: l '2) • In view of 1. we have 

. r i+ : r 2 > /(—x\_-\-x2) — f(x2)-\-x2 > / ( — J'i+T2) . Then, according to 1. we obtain 

|x'i + x2 - f(x2) + f(xf)\ = \x.! + x2 - / ( . r , ) - f(-x,)\ = | / ( . n + .,-, - fi.r,)) 

/ 2 ( - - - ' i ) | = | / ( * i ) + / ( * 2 - / ( * 2 ) ) + Z i | = |/(>'1) + /( . (:2)- . / '2 + . n | = | / ( .M+.ro)--

(-xi+x2)\ = | / 2 ( i C ] + x 2 ) - / ( - x 1 + x 2 ) | = | ^ i + ^ 2 - / ( - - ' ' i + - ' ' - j ) | - This implies 

•''1 + x2 - f(x2) + f(xi) = xv + x2 - / ( - . l ' i + x2). Therefore / ( - . r , + x2) = 

-f(xi) + f(x2). 

3 . THEOREM. Each stable weak isometry in a directed, group is an inrolutorij 
group automorphism. 

P r o o f . Let H be a directed group, and let / be a s table weak isometry 

in H. It is easy to see t h a t / is an injection. Let x. y E H. Then x = .l'i — r 2 . 

y = Hi — H2 , where X\ , x2 , r/i , y2 E H+ . In view of 1 and 2, we have f(x-\-y) = 

f(xi + 2/i - (2/2 - 2/1 + -C2 +2 / i ) ) = / ( ^ l + 2/i) - /(2/2 - 211 + x2 + 2/1) = . / V i ) -+-

./(:^/i) - . / ( - y i + ^2 + yi ) - f(?J2) - f(^i) + f(?/i) - / ( ^ 2 + yi) + f(yi) - /(/j.O -
f(xi) - f(x2) + f(jji) - f(y2) = f(x) + f(y). From this and l it follows that 
f2(x) = f2(xi - x2) = f2(xi) - f2(x2) = xL - x2 = x . Therefore / is an 
involutory group au tomorphism. 

If / is a weak isometry in a po-group (7, then the mapp ing g defined by 
g(x) = f(x) — / ( 0 ) for each x E G is a stable weak isometry in G. Hence we 
have the following two corollaries. 

4. COROLLARY. For each weak isometry f in a directed group H there exists 
just one involutory isometric group automorphism g such that 

f(x) = g(x) + /(()) for each x £ / / . 

5. COROLLARY. Each weak isometry in a directed group is a bijccf/on. 
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6. T H E O R E M . Let G be a directed group and let f be a stable weak isornefry 

in G . Then 
x + f(x) — fix) + x for each x £ G . 

P r o o f. Let x G G. T h e n x = x'i — x 2 , where .Li, x 2 G C7+ . In view of I 

and 2. we have x + f(x) = Xi — x 2 + / ( — x 2 + x 2 + Xj — x 2 ) = xi — x 2 — / ( x 2 ) + 

/(X2 + X ! - X2) = Xi - /(X2) - X2 + f(x2 + X'i - X2) = Xi - /(.X2) - Xi ~ X2 + X2 + 
./•, X2 + f(x2 + x 1 - x2 ) = x I - f(x2) ~ Xi - X2 + /(X2 + Xi - X2) + X-2 + X] - X2 = 
X , /(X2 ) - (X2 + Xi) + /(X2 + Xi ) - /(X2) + X2 + Xi - X2 = Xi - /(X2) + /(X2 ) + 
/(./-,) -(x2+Xi)+x2-/(x2) + x L-x 2 = x1+/(x1)-xi-x2+x2-/(x2)+x1 -x 2 = 

/(x^ + xj -Xi-f(x2) + Xi-x2 = f(xi)-f(x2) + Xi-x2 = f(xi-x2) + xx -x2 =•--
/(x) + x. 
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