Mathematica Slovaca

Štefan Černák

On the completion of cyclically ordered groups

Mathematica Slovaca, Vol. 41 (1991), No. 1, 41--49
Persistent URL: http://dml.cz/dmlcz/131783

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE COMPLETION OF CYCLICALLY ORDERED GROUPS

ŠTEFAN ČERNÁK

Abstract

In this paper there is presented a new construction of the completion $M(G)$ of the cyclically oredered group G. The results concerning the completion of a lenearly ordered group by the Dedekind cuts are applied.

The notion of a cyclically ordered set was introduced by E. Čech [1]. V. Novák [5] defined and studied the completion $C(G)$ of a cyclically ordered set G. Another approach to this notion was established by V. Novák and M. Noovotný in [6].
L. Rieger [7] (cf. also L. Fuchs [3], Chap. IV, §6) defined the notion of a cyclically orddered group. Swierzckowski [8] derived a representation theorem for cyclically ordered groups. Each linearly ordered group can be considered a cyclically ordered group.

In [4] there is investigated the completion G^{*} of a cyclically ordered group G. It is defined to be a certain subset of $C(G)$ which satisfies a maximality condition (cf. Section 2 below).

In this paper there is presented a new construction of the completion of the cyclically ordered group G. It seems to be simpler than that given in [4]. The results concerning the completion of a linearly ordered group by Dedekind cuts are applied. The completion $M(G)$ obtained in this way concides with G^{*}.

1. Preliminaries

Let G be a linearly ordered set. Let us denote by $X^{u}\left(X^{\prime}\right)$ the set of all upper (lower) bounds of a subset $X \subseteq G$. The system of all subsets of G of the form $\left(X^{u}\right)^{\prime}$, where X is a nonempty and upper bounded subset of G will be denoted by $D(G)$. Each element of $D(G)$ is called the Dedekind cut on G. If the system $D(G)$ is partially ordered by inclusion, then $D(G)$ is a conditionally complete chain. The mapping $\varphi(g)=\left(\{g\}^{u}\right)^{l}$ is an isomorphism of G into $D(G)$ and φ preserves all intersections and joins existing in G. The elements g and $\varphi(g)$ will be identified. Then G is a sublattice of $D(G)$ and the following conditions are satisfied:

[^0]$\left(\mathrm{c}_{1}\right)$ For each element $h \in D(G)$ there exists a nonempty upper bounded subset X of G such that $h=\sup X$ in $D(G)$.
$\left(\mathrm{c}_{2}\right)$ For each nonempty upper bounded subset X of G there exists an element $h \in D(G)$ such that $h=\sup X$ in $D(G)$.

If $G_{1} \subseteq G$, then $D\left(G_{1}\right)$ can be embedded into $D(G)$ in the natural way.
Let G be a nonempty set and $[x, y, z]$ a ternary relation defined on G with the following properties:
I. If $[x, y, z]$, then x, y, z are distinct; if x, y, z are distinct, then either $[x, y, z]$ or $[z, y, x]$.
II. If $[x, y, z]$, then $[y, z, x]$.
III. If $[x, y, z]$ and $[y, u, z]$, then $[x, u, z]$.

Then the ternary relation $[x, y, z]$ is called a cyclic order on G (cf. E. Čech [1]). The set G is said to be a cyclically ordered set.

Let G be a linearly ordered set. Define a cyclic order on G by

$$
[x, y, z] \equiv x<y<z \text { or } y<z<x \text { or } z<x<y
$$

We shall say that this cyclic order is generated by the linear order on G.
Remark. In the whole paper the cyclic order on the given linearly ordered set S will be assumed to be generated by the linear order on S.

Let G be a cyclically ordered set and let $(G,+)$ be a group. Assume that the following condition is fulfilled for all $x, y, z, a, b \in G$:
(iv) If $[x, y, z]$, then $[a+x+b, a+y+b, a+z+b]$.

Then $(G,+)$ is said to be a cyclically ordered group. We shall write G instead of $(G,+)$.

Let K be the set of all reals a with $0 \leqq a<1$; the set K is linearly ordered in the natural way. If the operation + is defined as addition mod 1 and if the cyclic order is generated by the linear order of K, then K is a cyclically ordered group.

Let L be a linearly ordered group. We denote by $L \otimes K$ the direct product of the groups L and K with the ternary relation defined in the following way. For each three elements $u=(x, a), v=(y, b), w=(z, c)$ of $L \times K$ we put $[u, v$, $w]$ if some of the following conditions is satisfied:
(i) $[a, b, c]$;
(ii) $a=b \neq c$ and $x<y$;
(iii) $b=c \neq a$ and $y<z$;
(iv) $c=a \neq b$ and $z<x$;
(v) $a=b=c$ and $[x, y, z)$.

Then $L \otimes K$ is a cyclically ordered group.
1.1 Theorem. (Swierczkowski [8]) Let G be a cyclically ordered group. Then there exists a linearly ordered group L such that G is isomorphic to a subgroup of $L \otimes K$.

Let f be an isomorphism of G into $L \otimes K$. The elements g and $f(g)$ will be identified. Hence G is a subgroup of $L \otimes K$. Let us form the sets

$$
\begin{aligned}
& L_{1}=\{x \in L: \text { there exist } a \in K \text { and } g \in G \text { with } g=(x, a)\}, \\
& K_{1}=\{a \in K: \text { there exist } x \in L \text { and } g \in G \text { with } g=(x, a)\}, \\
& G_{0}=\{g \in G: \text { there exists } x \in L \text { with } g=(x, 0)\} .
\end{aligned}
$$

Then L_{1} and K_{1} are subgroups of L and K, respectively. G_{0} is an invariant subgroup of G. Let $g \in G$; if we put $g>0$ whenever $x>0$, then G_{0} is a linearly ordered group (cf. [4]).

Let A and B be linearly ordered sets. Define the relation \leqq on the set $C=\{(a, b): a \in A, b \in B\}$ by $\left(a_{1}, b_{1}\right) \leqq\left(a_{2}, b_{2}\right)$ if $b_{1}<b_{2}$ or $b_{1}=b_{2}$ and $a_{1} \leqq a_{2}$ for each $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in C$. Then C is a linearly ordered set which is called the lexicographic product of A and B. We shall write $C=A \circ B$.

2. Completion of a cyclically ordered set and of a cyclically ordered group

Let G be a cyclically ordered set. V. Novák [5] constructed a completion of G in the following way. Assume that g is a fixed element of G. For each x, $y \in G$ put $x<_{g} y$ if either $[g, x, y]$ or $g=x \neq y$. Then $<_{g}$ is a linear order on G with the least element g. A linear order $<$ on G is called a cut on G if the cyclic order on G generated by $<$ concides with the original cyclic order on G. A cut $<$ is said to be regular if some of the following conditions is valid:
(i) $(G,<)$ has neither the least nor the greatest element.
(ii) $(G,<)$ has the least element.

Let $C(G)$ be the set of all regular cuts on G and let $h_{i}<_{i}(i=1,2,3)$ be elements of $C(G)$. Define a cyclic order on $C(G)$ by putting $\left[h_{1}, h_{2}, h_{3}\right]$ if there exist elements $x, y, z \in G$ such that

$$
x<1 y \ll_{1} z, y<_{2} z<{ }_{2} x, z<{ }_{3} x<_{3} y .
$$

Let $\varphi(g)=<_{g}$ for each $g \in G$. Then φ is an isomrphism of the cyclically ordered set G into $C(G)$. The elements g and $\varphi(g)$ will be identified. In this sense G is a subset of $C(G)$. The cyclically ordered set $C(G)$ is called the completion of G.

Let G be a cyclically ordered group. In [4] there is defined a completion of G. By the completion of G is meant a group $\left(G^{*},+^{*}\right)$ fulfilling the following conditions:
(a) $G \subseteq G^{*} \subseteq C(G)$
(b) $\left(G^{*},+^{*}\right)$ is a cyclically ordered group under the cyclic order induced by $C(G)$.
(c) $(G,+)$ is a subgroup of $\left(G^{*},+^{*}\right)$
(d) If $\left(G_{1},+_{1}\right)$ is a group satisfying (a)-(c) (with $\left(G_{1},+_{1}\right)$ instead of $\left(G^{*},+^{*}\right)$), then $\left(G_{1},+_{1}\right)$ is a subgroup of $\left(G^{*},+^{*}\right)$.

We shall write G^{*} instead of $\left(G^{*},+^{*}\right)$. In [4] it is proved the completion G^{*} does exist; the definition of G^{*} implies that it is uniquely determined.

Let $G_{0} \neq\{0\}$. We say that a cut $h \in C(G)$ is of the type of G_{0} if the following conditions are fulfilled:
(i) There exist $g_{1}, g_{2} \in G$ such that $g_{2}-g_{1} \in G_{0}, g_{2}-g_{1}>0$,
(ii) $\left[g_{1}, h, g_{2}\right]$ in $C(G)$.

The set of all cuts from $C(G)$ of the type of G_{0} will be denoted by $D_{1}(G)$.
Let $g \in G ; t \in G_{0}$. The mapping $\psi(t)=g+t$ is a one-to-one mapping from the set G_{0} onto $g+G_{0}$. Assume that $g_{1}, g_{2} \in g+G_{0}$. Then $\psi\left(t_{1}\right)=g_{1}, \psi\left(t_{2}\right)=g_{2}$ for some $t_{1}, t_{2} \in G_{0}$. If we put $g_{1} \leq g_{2}$ in $g+G_{0}$ whenever $t_{1} \leq t_{2}$ in G_{0}, then $g+G_{0}$ is a linearly ordered set.

Since $D_{1}(G)$ and $\bigcup_{g \in G} D\left(g+G_{0}\right)$ are isomorphic, in the following $D_{1}(G)$ and $\bigcup_{\epsilon} D\left(\underset{g}{g}+g_{0}\right)$ will be identified. Let $h \in D_{1}(G)$. Then there exists $g \in G$ such that $\stackrel{\epsilon}{h \in D\left(g+G_{0}^{g}\right)}$. Put

$$
l(h)=\left\{x \in g+G_{0}: x \leqq h\right\} .
$$

Then $h=\sup l(h)$ in $D\left(g+G_{0}\right)$.
Let $h_{1}, h_{2} \in D_{1}(G)$. There exist $g_{1}, g_{2} \in G$ such that $h_{1} \in D\left(g_{1}+G_{0}\right), h_{2} \in$ $\in D\left(g_{2}+G_{0}\right)$. Define the operation $+^{\wedge}$ on $D_{1}(G)$ as follows

$$
\left.h_{1}+^{\wedge} h_{2}=\sup \left\{l\left(h_{1}\right)+l\left(h_{2}\right)\right\} \text { in } D\left(\left(g_{1}\right)+g_{2}\right)+G_{0}\right) .
$$

It is evident, that the operation $+^{\wedge}$ is independent of the choice of the elements g_{1}, g_{2}. The set G^{\wedge} of all elements of $D_{1}(G)$ having inverses is a cyclically ordered group.

The following results were established in [4]:
2.2. Theorem. Let G be a cyclically ordered group. Then
(i) $G^{*}=G$ if $G_{0} \neq\{0\}$.
(ii) $G^{*}=G$ if G is finite.
(iii) G^{*} is isomorphic to K if G is infinite and if $G_{0}=\{0\}$.

3. The cyclically orderedd group $M(G)$

In this section we shall construct an extension $M(G)$ of a cyclically ordered group G. Then it will be shown that G^{*} and $M(G)$ coincide.

Let G be a cyclically ordered group and let $L, K, L_{1}, K_{1}, L_{1} \otimes K_{1}$ be as above. Let us form the lexicographic product $L_{1} \circ K_{1}$ of the linearly ordered sets L_{1} and
K_{1}. The linear order on $L_{1} \circ K_{1}$ will be denoted by $<_{1}$. Then G is a subset of $L_{1} \circ K_{1}$ and $G \subseteq D(G) \subseteq D\left(L_{1} \circ K_{1}\right)$.

If the system $\bar{D}(G)=D(G) \cup\{G\}$ is partially ordered by inclusion, then $\bar{D}(G)$ is a conditionally complete lattice with the greatst element.

Suppose that $T \subseteq G, h \in \bar{D}(G)$. Dentote
$T\left(L_{1}\right)=\left\{x \in L_{1}:\right.$ there exist $g \in G$ and $a \in K_{1}$ with $\left.g=(x, a)\right\}$, $T\left(K_{1}\right)=\left\{a \in K_{1}:\right.$ there exist $g \in G$ and $x \in L_{1}$ with $\left.g=(x, a)\right\}$,
$U(h)=\{g \in G: g \geqq h\}, V(h)=\{g \in G: g \leqq h\}$.
Then (c_{1}) implies

$$
\begin{equation*}
h=\sup V(h) \text { in } \bar{D}(G) \tag{1}
\end{equation*}
$$

Let $h_{1}, h_{2} \in \bar{D}(G)$. Then according to (1) we have

$$
h_{i}=\sup V\left(h_{i}\right)(i=1,2)
$$

The usual operation on the group of reals will be denoted by $+_{r}$.
Suppose that for all elements $v_{1} \in V\left(h_{1}\right), v_{2} \in V\left(h_{2}\right), v_{1}=\left(x_{1}, a_{1}\right), v_{2}=\left(x_{2}, a_{2}\right)$ the relation $a_{1}+{ }_{r} a_{2}<1$ is valid. In such a case denote

$$
V\left(h_{1}, h_{2}\right)=\left\{v_{1}+v_{2}: v_{1} \in V\left(h_{1}\right), v_{2} \in V\left(h_{2}\right)\right\}
$$

It is clear that $a_{1}+{ }_{r} a_{2}=a_{1}+a_{2}$. If no ambiguity is likely to arise we shal often write V instead of $V\left(h_{1}, h_{2}\right)$. The set V is nonempty because the sets $V\left(h_{1}\right)$ and $V\left(h_{2}\right)$ are nonempty subsets of G.

Observe that it can happen that $V=G$ for some $h_{1}, h_{2} \in \bar{D}(G), h_{1}, h_{2} \neq\{G\}$.
3.1. Lemma. Let $g \in G, v \in V, g<v$. Then $g \in V$.

Proof. Let $g \in G, g=(x, a), v \in V$. There exist $v_{1} \in V\left(h_{1}\right), v_{2} \in V\left(h_{2}\right)$, $v_{1}=\left(x_{1}, a_{1}\right), v_{2}=\left(x_{2}, a_{2}\right)$ such that $v=v_{1}+v_{2}$. Then $v=\left(x_{1}+x_{2}, a_{1}+a_{2}\right)$. If we denote $g^{\prime}=v-g=v_{1}+v_{2}-g, g^{\prime}=\left(x^{\prime}, a^{\prime}\right)$, then $x^{\prime}=x_{1}+x_{2}-x$, $a^{\prime}=a_{1}+a_{2}-a$ and $g=\left(-g^{\prime}+v_{1}\right)+v_{2}$. From $g<v$ we infer that $g^{\prime}>0$. Hence $a^{\prime} \geqq 0$.

Suppose that $a^{\prime}=0$. Hence $x^{\prime}>0$ and $a=a_{1}+a_{2}$. Therefore $-x^{\prime}+$ $+x_{1}<x_{1}$ and so $-g^{\prime}+v_{1}<v_{1}$. We conclude that $-g^{\prime}+v_{1} \in V\left(h_{1}\right)$. Thus $g \in V$.

Now assume that $a^{\prime}>0$. Hence $a<a_{1}+a_{2}$. Let $a_{2}<a_{1}$ be valid. We distinguish two cases. First suppose that $a^{\prime}<a_{1}$. Then $-a^{\prime}+a_{1}<a_{1}$ and so $-g^{\prime}+v_{1}<v_{1}$. Thus $-g^{\prime}+v_{1} \in V\left(h_{1}\right)$. Therefore $g \in V$. Let $a^{\prime} \geqq a_{1}$. As for $a^{\prime} \leqq a_{1}+a_{2}$, we get $g=-a^{\prime}+a_{1}+a_{2} \leqq a_{2}<a_{1}$. Therefore $g<v_{1}$. From this it follows that $g \in V\left(h_{1}\right) \subseteq V$. The case $a_{1} \leqq a_{2}$ is analogous.

Let $V \neq G$. Then the set V is upper bounded. However, assume that V is not upper bounded and that $g \in G$. There exists $v \in V$ such that $g<v$. Then 3.1 implies that $g \in V$, From this it follows that $G=V$, a contradiction.

Therefore there exists sup V in $\bar{D}(G)$ whenever $V \neq G$. Evidently, if $V=G$, then $\sup V=\{G\}$ in $\bar{D}(G)$.

Now, assume that there are elements $v_{1} \in V\left(h_{1}\right), v_{2} \in V\left(h_{2}\right), v_{1}=\left(x_{1}, a_{1}\right)$, $v_{2}=\left(x_{2}, a_{2}\right)$ with $a_{1}+_{r} a_{2} \geqq 1$. Then

$$
\bar{V}\left(h_{1}, h_{2}\right)=\left\{v_{1}+v_{2}: v_{1} \in V\left(h_{1}\right), v_{2} \in V\left(h_{2}\right), a_{1}+_{r} a_{2} \geqq 1\right\}
$$

is a nonempty subset of G. Then symbol $\bar{V}\left(h_{1}, h_{2}\right)$ wil be often replaced by \bar{V}.
The following lemma can be proved in a similar way as 3.1.
3.2. Lemma. Let $g \in G, v \in \bar{V}, g<v$. Then $g \in \bar{V}$.

Analogously to the above we obtain tha \bar{V} is upper bounded whenever $\bar{V} \neq G$. Therefore there exist $\sup \bar{V}$ in $\bar{D}(G)$. If $\bar{V}=G$, then $\sup \bar{V}=\{G\}$.

Define the operation + on $\bar{D}(G)$ by putting

$$
h_{1}+h_{2}=\left\{\begin{array}{l}
\sup V\left(h_{1}, h_{2}\right), \text { if } \bar{V}\left(h_{1}, h_{2}\right)=\emptyset \\
\sup \bar{V}\left(h_{1}, h_{2}\right), \text { if } \bar{V}\left(h_{1}, h_{2}\right) \neq \emptyset
\end{array}\right.
$$

The following lemma is easy to verify.
3.3. Lemma. $(\bar{D}(G),+)$ is a semigroup and $0 \in G$ is a neutral element of $(\bar{D}(G)$, +).

Let $M(G)$ be the set of all elements of $\bar{D}(G)$ having an inverse in $\bar{D}(G)$. Then $(M(G)$ is a group.
3.4. Lemma. The cyclically ordered set $\bar{D}(G)$ is isomorphic to $C(G)$.

Proof. Let $h \in \bar{D}(G)$ and let $V^{\prime}(h)=G \backslash U(h)$. Assume that $h \neq\{G\}$. Let us form the ordinal sum $W=U(h) \oplus V^{\prime}(h)$ of the linearly ordered sets $U(h)$ and $V^{\prime}(h)$. The linear order w on W is a regular cut on G. If we put $\psi(h)=w$ for each $h \neq\{G\}$ and $\psi(h)=<_{1}$ whenever $h=\{G\}$, then ψ is an isomorphism of $\bar{D}(G)$ onto $C(G)$.

We may identify $\bar{D}(G)$ and $C(G)$.
A) The case $G_{0} \neq\{0\}$

Now assume that $\mathrm{G}_{0} \neq\{0\}$. Let $h \in \bar{D}(G), a \in K_{1}$. Denote
$U_{u}(h)=\left\{u \in U(h)\right.$: there exists $x \in L_{1}$ with $\left.u=(x, a)\right\}$,
$V_{a}(h)=\left\{v \in V(h)\right.$: there exists $x \in L_{1}$ with $\left.v=(x, a)\right\}$.
Then one of the following cases must occur:
$(\alpha) V(h)\left(K_{1}\right)$ has the greatest element $a \in K_{1}$ and $V_{a}(h) \subset v+G_{0}$ for each $v \in V_{a}(h)$.
(β) $V(h)\left(K_{1}\right)$ has the greatest element $a \in K_{1}$ and $V_{a}(h)=v+G_{0}$ for each $v \in V_{a}(h)$.
$(\gamma) V(h)\left(K_{1}\right)$ has no greatest element.
In the case of (α) we say that h is of type (α).
Remark 1 . If h is of type (α), then $U(h)\left(K_{1}\right) \neq \emptyset$ and $h \neq\{G\}$. The greatest element of $V(h)\left(K_{1}\right)$ is at the same time the least element of $U(h)\left(K_{1}\right)$.

The verification of the following lemma is a routine.
3.5. Lemma. Let h_{1}, h_{2}, h be elements of $\bar{D}(G)$ of type $(\alpha), V\left(h_{i}\right) \subseteq G_{0}$ $(i=1,2)$. If $h_{1} \leqq h_{2}$, then $h_{1}+h \leqq h_{2}+h$ and $h+h_{1} \leqq h+h_{2}$.

Remark 2. If the hypothesis $V\left(h_{i}\right) \subseteq G_{0}(i=1,2)$ is omitted, the assertion does not in general hold.

Let $h \in \bar{D}(G)$. In the next we want to establish a necessary and sufficient condition for $h \in M(G)$ to be valid.

Let $h_{1}, h_{2} \in \bar{D}(G)$ be of type (α) and let $a_{1}\left(a_{2}\right)$ be the greatest element of $V\left(h_{1}\right)\left(K_{1}\right)\left(V\left(h_{2}\right)\left(K_{1}\right)\right)$. The definition of the operation + on $\bar{D}(G)$ implies that

$$
\begin{equation*}
h_{1}+h_{2}=\sup \left\{v_{1}+v_{2}: v_{1} \in V_{a_{1}}\left(h_{1}\right), v_{2} \in V_{a_{2}}\left(h_{2}\right)\right\} \text { in } \bar{D}(G) . \tag{2}
\end{equation*}
$$

Let $h \in \bar{D}(G), h \neq\{G\}$. Denote
$W_{1}=\{u-v: u \in U(h), v \in V(h)\}, W_{2}=\{-v+u: u \in U(h), v \in V(h)\}$,
$W_{i 0}=\left\{w \in W_{i}\right.$: there exists $x \in L_{1}$ with $\left.w=(x, 0)\right\}(i=1,2)$.
3.6. Lemma. Let $h \in \bar{D}(G), h \neq\{G\}$ and let inf $W_{1}=0$ in G. Then
(i) h is of type (α).
(ii) h has a right inverse in $\bar{D}(G)$.

Proof (i) inf $W_{1}=0$ in G implies that $0 \in W_{1}\left(K_{1}\right)$. In fact, if $0 \notin W_{1}\left(K_{1}\right)$, then either the inf W_{1} does not exist or the inf $W_{1}>0$ in G. Therefore there exist $a \in K_{1}, x_{1}, x_{2} \in L_{1}, u \in U(h), v \in V(h)$ with $u=\left(x_{1}, a\right), v=\left(x_{2}, a\right), x_{2}<x_{1}$ and a is the greatest (least) element of $V(h)\left(K_{1}\right)\left(U(h)\left(K_{1}\right)\right)$. We obtain $V_{a}(h) \subset$ $\subset v+G_{0}$ for all $v \in V_{a}(h)$. We conclude that h is of type (α).
(ii) The proof is similar to that in [2] (Theorem 6). We have $0=\inf W_{1}=$ $=\inf W_{10}=\inf \left\{u-v: u \in U_{a}(h), v \in V_{a}(h)\right\}=-\sup \left\{v-u: u \in U_{a}(h), v \in\right.$ $\left.\in V_{a}(h)\right\}$ in G. Whence $\sup \left\{v-u: u \in U_{a}(h), v \in V_{a}(h)\right\}=0$ is valid in G. Then $\sup \left\{v-u: u \in U_{a}(h), v \in V_{a}(h)\right\}=0$ in $\bar{D}(G)$, too. it is clear that the set $-U(h)$ is nonempty and upper bounded in G and $-a$ is the greatest element in $-U(h)\left(K_{1}\right)$. There exist $h^{\prime} \in \bar{D}(G), h^{\prime} \neq\{G\}, h^{\prime}=\sup (-U(h))$. Obviously that $-U(h)=V\left(h^{\prime}\right),-U_{a}(h)=V_{-a}\left(h^{\prime}\right)$. In view of (2) we obtain $h+h^{\prime}=$ $=\sup \left\{v+u: v \in V_{a}(h), u \in V_{-a}\left(h^{\prime}\right)\right\}=\sup \left\{v+u: v \in V_{a}(h), u \in-U_{a}(h)\right\}=$ $=\sup \left\{v-u: v \in V_{a}(h), u \in U_{a}(h)\right\}=0$ in $\bar{D}(G)$. Thus h^{\prime} is a right inverse of h. In an analogical way we prove
3.7. Lemma. Let $h \in \bar{D}(G), h \neq\{G\}$ and let inf $W_{2}=0$ in G. Then
(i) h is of type (α).
(ii) h has a left inverse in $\bar{D}(G)$.

The element $h^{\prime}=\sup (-U(h))$ is a left inverse of h.
3.8. Lemma. Let $h \in M(G)$. Then
(i) $h \neq\{G\}$.
(ii) inf $W_{i}=0(i=1,2)$ in G.

Proof. Let h^{\prime} be an inverse of h in $\bar{D}(G)$.
Assume that $V(h)\left(K_{1}\right) \neq\{0\}$. Then there exists $a \in V(h)\left(K_{1}\right), a>0$. Therefore $\bar{V}\left(h, h^{\prime}\right) \neq \emptyset$. In fact, if $\bar{V}\left(h, h^{\prime}\right)=\emptyset$, then $0=h+h^{\prime}=\sup V\left(h, h^{\prime}\right)$ in $\bar{D}(G)$ and $0<a+a^{\prime}<1$ for each $a^{\prime} \in V\left(h^{\prime}\right)\left(K_{1}\right)$, a contradiction. Thus $0=h+h^{\prime}=\sup \bar{V}\left(h, h^{\prime}\right)=\sup \left\{v+v^{\prime}: v \in V(h), \quad v^{\prime} \in V\left(h^{\prime}\right), v=(x, a)\right.$, $\left.v^{\prime}=\left(x^{\prime}, a^{\prime}\right), a+a^{\prime}=0\right\}$. Hence a is the greatest element of $v(h)\left(K_{1}\right)$ and $a^{\prime}=-a$ is the greatest element of $V\left(h^{\prime}\right)\left(K_{1}\right)$. According to (2) we get $0=h+h^{\prime}=\sup \left\{v+v^{\prime}: v \in V_{a}(h), v^{\prime} \in V_{a}\left(h^{\prime}\right)\right\}$ in $\bar{D}(G)$. Hence $\left\{v+v^{\prime}\right.$: $\left.v \in V_{a}(h), v^{\prime} \in V_{-a}\left(h^{\prime}\right)\right\} \subset G_{0}$. Therefore $V_{a}(h) \subset v+G_{0}, V_{a}\left(h^{\prime}\right) \subset v^{\prime}+G_{0}$ for all $v \in V_{a}(h), v^{\prime} \in V_{a}\left(h^{\prime}\right)$.

Now assume that $v(h)\left(K_{1}\right)=\{0\}$. Then $\bar{V}\left(h, h^{\prime}\right)=0$ and thus $0=h+h^{\prime}=$ $=-\sup V\left(h, h^{\prime}\right)=\sup \left\{v+v^{\prime}: v \in V(h), v^{\prime} \in V\left(h^{\prime}\right)\right\}$ in $D[G)$. From this it follows that $V\left(h^{\prime}\right)\left(K_{1}\right)=\{0\}$ In a similar way as above we prove that $V_{0}(h) \subset$ $\subset v+G_{0}, V_{0}\left(h^{\prime}\right) \subset v^{\prime}+G_{0}$ for all $v \in V_{0}(h), v^{\prime} \in V_{0}\left(h^{\prime}\right)$.

In both cases we obtain that h and h^{\prime} are of type (α). Remark 1 implies that $h \neq\{G\}$.
(ii) we want to show that inf $W_{1}=0$ in G. It suffices to prove that $0=$ $=\inf W_{10}=\inf \left\{u-v: u \in U_{a}(h), v \in V_{u}(h)\right\}$ in G_{0}. We have $0 \leqq u-v$ for each $u \in U_{a}(h), v \in V_{a}(h)$. Assume that htere exists $g \in G_{0}$ such that $0<g \leqq u-v$ for every $u \in U_{a}(h), v \in V_{a}(h)$. Therefore $g+v \leqq u$. In view of (1) we obtain $g+v \leqq h$. The elements $g+v$ and h are of type (α). By using 3.5 and (1) we infer that the relations $v \leqq-g+h$ and $h \leqq-g+h$ are valid. Since $h \in M(G), h$ has an inverse. Thus $0 \leqq-g$ and $g \leqq 0$, a contradiction.

The proof of (ii) is analogous.
From 3.6, 3.7 and 3.8 there immediately follows
3.9. Lemma. Let $h \in \bar{D}(G)$. Then the following conditions are satisfied:
(i) If $h=\{G\}$, then $h \notin M(G)$.
(ii) If $h \neq\{G\}$, then $h \in M(G)$ if and only if inf $W_{i}=0(i=1,2)$ in G.
3.10. Theorem. Let G be a cyclically ordered group. Assume that $G_{0} \neq\{0\}$. Then $M(G)=G^{*}$.

Proof. The cyclically ordered group $M(G)$ fulfils the conditions (a)-(c). Hence $M(G) \subseteq G^{*}$. According to 2.2 we have $G^{*}=G^{\wedge}$. Further the relation $G^{\wedge} \subseteq C(G)=\bar{D}(G)$ is valid. Let $h_{1}, h_{2} \in G^{\wedge}$. Then there exist $g_{1}, g_{2} \in G$, $g_{1}=\left(x_{1}, a_{1}\right), g_{2}=\left(x_{2}, a_{2}\right)$ with $h_{1} \in D\left(g_{1}+G_{0}\right), h_{2} \in D\left(g_{2}+G_{0}\right)$ and $h_{1}+\wedge h_{2}=$ $=\sup \left\{l\left(h_{1}\right)+l\left(h_{2}\right)\right\}\left(\right.$ in $\left.D\left(\left(g_{1}+g_{2}\right)+G_{0}\right)\right)=\sup \left\{v_{1}+v_{2}: v \in V_{a_{1}}\left(h_{1}\right), v_{2} \in V_{a_{2}}\left(h_{2}\right)\right\}$ (in $\bar{D}(G))=h_{1}+h_{2}$. Therefore G^{\wedge} is a subghroup of $\bar{D}(G)$. Since $M(G)$ is the greatest element of the semigroup $\bar{D}(G)$, we obtain $G^{\wedge} \subseteq M(G)$. Hence $G^{*}=M(G)$ is valid.

B) The case $G_{0}=\{0\}$

Assume that $G_{0}=\{0\}$. Let $g \in G, g=(x, a)$. If $\psi(g)=a$, then ψ is an isomorphism of the cyclically ordered group G into K. In this sense G will be considered a subgroup of K.

If G is finite, then $M(G)=G$ and $G_{0}=\{0\}$. According to 2.2 we get
3.11. Theorem. Let G be a finite cyclically ordered group. Then $M(G)=G^{*}$.

Now let G be an infinite cyclically ordered group and let $G_{0}=\{0\}$. Assume that $h \in M(G)$. Then $h=\sup V(h)$ in $\bar{D}(G)$. There exists $h^{\prime} \in K, h^{\prime}=\sup V(h)$ in K. The mapping $\psi(h)=h^{\prime}$ is an isomorphism of the cyclically ordered group $M(G)$ onto K.

With respect to 2.2 we get
3.12. Theorem. Let G be an infinite cyclically ordered group. Assume that $G_{0}=\{0\}$. Then $M(G)$ is isomorphic to G^{*}.

From 3.10, 3.11 and 3.12 we infer that the following theorem is valid:
3.13. Theorem. Let G be a cyclically ordered group. Then $M(G)$ is the completion of G.

REFERENCES

[1] ČECH, E.: Bodové množiny. Praha 1936.
[2] EVERETT, C. J.: Sequence completion of lattice modules. Duke Math. J., 11, 1944, 109—119.
[3] ФУКС, Л.: Частично упорядоченные алгебраические системы. Москва 1965.
[4] JAKUBÍK, J.-C̆ERNÁK, S̆.: Completion of a cyclically ordered group. Czech. Math. J., 37, 1987, 157-174.
[5] NOVÁK, V.: Cuts in cyclically ordered sets. Czech. Math. J., 34, 1984, 322-333.
[6] NOVÁK, V.-NOVOTNÝ, M.: On completion of cyclically ordered sets. Czech. Math. J., 37, 1987, 407-414.
[7] RIEGER, L.: O uspořádaných a cyklicky uspořádaných grupách I-III. Věstník král. české spol. nauk, 1946, 1-31; 1947, 1-33; 1948, 1-26.
[8] SWIERCZKOVSKI, S.: On cyclically ordered groups. Fund. Math. 47, 1959, 161-166.

[^0]: AMS Subject Classification (1985): Primary 06F15. Secondary 20F60
 Key words: Cyclically ordered group, Linearly ordered group, Completion

