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THE DECAY NUMBER AND 
THE MAXIMUM GENUS OF A GRAPH 

MARTIN SKOVIERA 

ABSTRACT. Let C(^) D e the minimum number of components in a cotree of a 
connected graph G . In the paper this number is computed for cubic graphs, and 
for 2-connected graphs of diameter 2 a sharp upper bound is obtained. Using 
these results, a formula of Bouchet determining the maximum genus of t runcated 
cubic graphs is reproved and the bounds [/3(G)/2"| - 2 < 7 M ( G ) < L#(G)/2J for 

the maximum genus of 2 -connected graphs of diameter 2 with possibly loops 
and multiple edges are established. This completes the results of [8], where the 
maximum genus of graphs of diameter 2 with connectivity 1 and the maximum 
genus of loopless graphs of diameter 2 is computed. 

1. Introduction 

The well-known theorem of X u o n g [9] states that to compute the max
imum genus of a graph G it suffices to determine the minimum number £(G) 
of components of a cotree of G that have odd size ( = number of edges). This 
is easy if G is known to have a connected cotree but otherwise the computa
tion may be more problematic. Sometimes it is still possible to find an optimal 
cotree (one with £(G) odd-size components) by applying successively appropri
ate transformations to some initial cotree of G (see, e.g., [7, 8]). In the opposite 
case, one can perhaps bound the minimum simply by the minimum number 
((G) of components in a cotree of G. Although this number, called decay num
ber here, may be of independent interest, in this paper we pursue mainly its 
relationship with the maximum genus. 

We give two applications of this concept to obtain results on the maximum 
genus of a graph. We first reprove a theorem due to B o u c h e t [2] which 
determines the maximum genus of truncated cubic graphs, using a formula for 
the decay number of cubic graphs established in Section 3 . In the next section 
we show that the decay number of a 2-connected graph of diameter 2 does 
not exceed 4 . As a consequence we obtain that for a 2-connected graph G 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C10. 
K e y w o r d s : Maximum genus, Spanning tree, Cotree, m-fragment. 
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(homeomorphic to a graph) of diameter 2 with possibly multiple edges and 
loops added to some vertices one has 

r/?(G)/2l - 2 < 1M(G) < \fi(G)/2\ . 

This result does not extend to graphs with connectivity 1; however, in this 
case an exact formula for the maximum genus is available [8]. On the other 
hand, a graph of diameter 2 without loops is always upper embeddable, i.e., 

7M(G)=L/?/2j,[8]. 
The terminology adopted will be essentially that of [1]. In particular, we 

use size for the number of edges. If not explicitly stated otherwise, a graph 
G = (V(G), E(G)) will be non-empty, finite and undirected, with possibly mul
tiple edges and loops. Without loss of clarity, all paths considered here will be 
encoded by the corresponding vertex-sequence only. 

The maximum genus JM(G) of a connected graph G is the largest genus of 
an orientable surface on which G has a 2-cell embedding. 

If (3(G) = \E(G)\ - \V(G)\ + 1 is the Betti number (= cycle rank) of G, 
then the invariant ((G) = (3(G) — 2^M(G) is referred to as the Betti deficiency 
of G . 

There are two results due to X u o n g and N e b e s k y , respectively, giving 
together a complete combinatorial characterization of ((G). For a spanning tree 
T of G, let ((G,T) denote the number of odd-size components in the cotree 
G - E(T) of T. Then ((G) = min{<.;(G,T); T a spanning tree of G} , [9], 
To state the other result, for A C E(G) denote by p(G - A) (i(G - A), 
respectively) the number of components of G — A with even (odd) Betti number. 
Then ((G) = max{p(G - A) + 2i(G) - \A\ - 1; AC E(G)} , [6]. 

2. The decay number of a graph 

Let G be a connected graph and T one of its spanning trees. Denote by 
C(G, T) the number of components of the corresponding cotree G — E(T), and 
define 

((G) = min{C(G, T); T a spanning tree of G} . 

We shall call this number the decay number of G. Note that by a result of 
K u n d u [5], ((G) = 1 whenever G is 4-edge-connected. Therefore the decay 
number is interesting only for graphs with small connectivity. 

The value of ((G, T ) , and in particular C(^) itself, is closely related to the 
Betti number of G - E(T). Since (3(H) = \E(H)\ - \V(H)\ + k if H is a graph 
with k components, for C = G - E(T) we have: 

P(C) = \E(C)\ - \V(C)\ + ((G, T) = \E(G)\ - 2|V(G)| + ((G, T) + 1. 
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Hence, 

C(G,T) = p(G - E(T)) + 2\V(G)\ - \E(G)\ - 1. 

It follows that to minimize £(G,T) one has to minimize /?(G — E(T)) . Thus 
we have the following: 

PROPOSITION 2 . 1 . Let G be a connected graph. Then 

C(G) = min(/3(G - E(T)) + 2\V(G)\ - \E(G)\ - 1) , 

where the minimum is taken over all spanning trees T of G. • 

This equality can be especially useful when the graph in question is known 
to have an acyclic cotree. 

COROLLARY 2.2. If G is a graph with p vertices and q edges that has an 

acyclic cotree, then 

C(G) = 2 p - « r - l . 

• 

From X u o n g 's characterization theorem [9] mentioned above it follows 
that £(G) < ((G) for every connected graph G. Thus the decay number can 
serve to obtain lower bounds for the maximum genus as, for instance, in Sec
tion 4. Another, a less direct, connection between these two concepts will be 
described in the next section. 

3 . Cubic g r a p h s 

In this section we establish an exact formula for the decay number of a cubic 
graph and subsequently apply it to obtain a result concerning the maximum 
genus. It turns out, however, that the straightforward application of the result 
to bound the Betti deficiency is not very useful since better bounds are known 
([3]). Instead, we show that it can be used to give a simple proof of a theorem 
of B o u c h e t [2] determining the maximum genus of truncated cubic graphs. 

First of all observe that every cotree of a cubic graph is necessarily the union 
of paths and cycles. Moreover, if the graph in question has no loops and more 
than two vertices, then we can successively get rid of cycles, eventually obtaining 
an acyclic cotree. This interesting fact was first noted by K h o m e n k o and 
G 1 u k h o v [4] for simple graphs. We present a different proof which allows us 
to include multiple edges. 
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THEOREM 3 .1 . Every connected loopless cubic graph G with n > 4 vertices 
admits a spanning tree with acyclic cotree. Consequently, its decay number is 

C(o) = n / 2 - l . 

P r o o f . Let T be a spanning tree of G. If G — E(T) is acyclic, there is 
nothing to prove. If not, let U\U2 .. .Uk = q (fc > 2) be a cycle in G — E(T). 
Since G is cubic, each vertex u, is adjacent to some vertex Vi such that the 
edge UiVi is in T . (Note that Vi and Vj need not be distinct for i ^ j .) Clearly, 
no Vi lies on q for otherwise T = u^i and G would have only two vertices, 
contrary to assumption. Thus UJV,- , 1 < i < k, are mutually distinct edges. 
Now replace the edges u^i of T , 2 < i < k, by UiUi+i , 1 < i < k — 1, to 
obtain a new spanning tree S of G. By checking all the involved edges it is 
easily seen that the cycle q has been destroyed but no new cycle in the cotree 
has been formed. Thus the number of cycles of G — E(S) is smaller than that of 
G — E(T). The required spanning tree is now obtained by repeating this process 
as many times as necessary. The formula for ((G) follows immediately, using 
Corollary 2.2. • 

The following more general result can easily be obtained from Theorem 3.1 
by induction on the number of loops. Details are left to the reader. 

COROLLARY 3.2. Let G be a connected cubic graph of order n containing s 
loops. Then 

( 1, if n = 2 and s = 0, 

[ n /2 + s — 1, otherwise. 

• 

We now show how the above theorem can be used to determine the maximum 
genus of truncated cubic graphs. The result was previously proved by Bouchet 
employing rotation systems. Below we give a simple combinatorial proof re
vealing a relationship of this result with the decay number. Before stating the 
theorem, recall that the truncation of a cubic graph G is the cubic graph T(G) 
obtained from G by replacing every vertex v of G with a triangle and joining 
the edges originally incident with v to distinct vertices of the triangle. 

THEOREM 3.3 . Let G be a connected loopless cubic graph with n > 4 vertices. 
Then the Betti deficiency of T(G) is 

£ ( T ( G ) ) = n / 2 - l = C(o), 
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and consequently 

lм{T(G))=n/2 + l. 

P r o o f . Denote T(G) by G'. For each vertex v of G let tv be the trian
gle of G' obtained from v. The edges of G' not lying in these triangles corre
spond bijectively to the edges of G. Let e' be the edge of G' corresponding to 
eeE(G). 

First we construct a spanning tree S' of G' with £(<?', S') < n/2 — 1. Clearly, 
for each spanning tree U of G one can extend the set U' = {e'; e G E(U)} 
to a spanning tree of G' by adding to U' any two edges of each triangle tv , 
v G V(G). By Theorem 3.1 we can choose in G a spanning tree W the cotree of 
which is a forest with n /2 — 1 components. Thus each non-trivial component P 
of G — E(W) is a path. For e in E(P) choose an orientation such that P will be 
oriented from one end-vertex into the other. Assign e' the orientation agreeing 
with that of e. In addition to W' = {e'; e G E(W)} , for each edge e = uv of P 
include to S' the edge of tu not incident with the initial vertex of e' and one of 
the two remaining edges of tu (see Fig. 1). Thus e' is paired in G' — E(S') with 
the third edge of tu . For each component of G — E(W) there is one triangle 
tx not used so far, namely the one corresponding to its last (possibly isolated) 
vertex. For each of these triangles include to S' two edges arbitrarily. It is easily 
seen from our construction that odd-size components in G' — E(S') can only 
arise in this way. Hence £(G') < £(£?', S') < n/2 — 1. On the other hand, taking 
E' = {e'; e G E(G)} we have £(G') > p(G' - E') + 2i(G' - E') - \E'\ - 1 = 
0 + 2n - 3n/2 - 1 = n/2 - 1. Thus £(£ ' ) = n /2 - 1, completing the proof. • 

Figure 1. Dashed lines = G' - E(S') . 

The above construction of S' can easily be modified to show (using elemen
tary counting arguments) that G' admits a spanning tree whose cotree is the 
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disjoint union of n/2 — 1 independent edges, n/2 + 1 paths of length 2 and 
n/2 — 1 isolated vertices. 

Finally, the reader may observe that the proof of Theorem 3.3 uses only the 
easy part of the Nebesky theorem [6], namely the inequality £(G) > p(G — A) + 
2i(G — A) — A — 1. This supports our claim that the proof is indeed simple. 

4. Graphs of d iameter two 

The aim of this section is to establish 

THEOREM 4 . 1 . Let G be a 2 -connected graph of diameter 2 with possibly 
multiple edges and some loops added, or a graph homeomorphic to it. Then 
£(G) < 4 and consequently 

\/3(G)/2] - 2 < 7M(G) < [0(G)/2\. 

In view of the inequality £(G) < ((G) it suffices to show the following to be 
true: 

THEOREM 4.2. Every 2-connected graph G of diameter 2 has 

«G)<4. 

The rest of this section is devoted to proving this theorem. In order to do so, 
we first develop the necessary technique. 

Let P be a path in G with initial vertex u and terminal vertex v. To 
emphasize its end-vertices we shall often write P -= P(u,v). More generally, if 
x and y are two vertices on P , then P(x,y) will denote the x — y segment 
of P , and P(y,x) the path obtained from P(x,y) by reversing the order. The 
length of P will be denoted by l(P) and the usual distance between vertices u 
and v in a subgraph H C G by dn(u,v). We reserve the symbol D(u,v) to 
denote a shortest path from u to v in a graph of diameter 2 . Finally, if T is 
a tree, then T(u,v) will denote the unique u — v path in T . 

Let T be a spanning tree of a connected graph K and let Ci, C2,... be 
the components of the corresponding cotree K — E(T). Define a vertex labelling 
on K by putting *PT(V) = i if and only if v is contained in d (the subscript 
T will be suppressed whenever T is known from context). If L is a subgraph 
of I\ , let |^(-^)l be the number of different labels used in L. Further, define 
an m-fragment of T to be a subtree F C T of minimum order such that 
I^K-^)! > m - For instance, a 2-fragment is an edge of T whose end-vertices 
belong to different components of K — E(T). If F is an m-fragment for some 
m but m is irrelevant, then we simply refer to F as & fragment of T . 

We summarize the basic properties of fragments in 
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LEMMA 4 .3 . Let F be an m -fragment of a spanning tree T in a graph K. 
Then: 

(i) mF)\=m. 
(ii) Distinct end-vertices of F have different labels under ip . 

(hi) If u is an end-vertex and v an internal vertex of F, then 
ip(u) ^ip(v). 

(iv) If m > 3, then F has at most m — 1 end-vertices. 

P r o o f . 

( i)-( i i i ) : Assume the contrary. Then for some end-vertex w of F, F — w 
too has \ij)(F — iv)| > m , contradicting the minimality of F. 

(iv): If m > 3 , then some vertex of F is internal. Since at least one of m 
values of ip(F) is occupied by an internal vertex, from (iii) we deduce that at 
most m — 1 values are assigned to end-vertices of F. Combining this with part 
(ii) we obtain the desired result. D 

We shall say that a path of length 2 is alternating (with respect to a given 
spanning tree T of K) if one of its edges belongs to T but the other does not. 
As mentioned earlier, a shortest u — v path in a graph of diameter 2 will always 
be denoted by D(u, v). 

LEMMA 4.4. Let T be a spanning tree of a graph K, and let u and v be 
end-vertices of a subtree S C T with ds(u,v) > 3 and IPT(U) -̂= ^T(V). Then 
each u — v path D of length < 2 is alternating. Moreover, if S is a fragment 
of T, then the internal vertex of D does not belong to S. 

P r o o f . As dT(u, v) > 3, D is not contained in T . On the other hand, D 
is not contained in G — E(T) for ip(u) ^ t^(v). Thus D is alternating. Finally, 
if 5 is a fragment, then the rest follows from Lemma 4.3 (iii). D 

Part (iv) of Lemma 4.3 implies that, in particular, any 3-fragment is home-
omorphic to Ki, any 4-fragment is homeomorphic to K<i or K\^ . For conve
nience we shall say that an m -fragment F C. T is of type M if F is homeo
morphic to M. Further, for any vertex x of K let Fox denote the subtree of 
T of minimum order containing both F and x. 

Our last lemma, showing that certain positions of type K\^ fragments in 
graphs of diameter 2 are not possible, will prove important for establishing 
Theorem 4.2. 

LEMMA 4.5 . Let G be a simple graph of diameter 2 , let T C G be a spanning 
tree with ((G,T) = ((G) and let F C T be a 4 -fragment of type K\^ with 
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end-vertices yo, y\ and y2 . Then at most one of the following two conditions 
can be satisfied (cfi Figs. 2 and 3): 

(i) G contains alternating paths xoX\yo and X\x2y\ , where XQ is not in 
F and both x\ and x2 are not in F o x 0 . 

(ii) For every vertex f of F with tp(f) = ip(xo) we have that 

dG-E(T)(f,xo) -- 2 -
X\ 

2/2 

Figure 2. Figure 3. 

P r o o f . Assume that F is a 4-fragment of type A'1.3 satisfying both (i) 
and (ii). In order to prove this lemma we shall inductively construct an infinite 
strictly increasing chain G° C Gl C . . . of subgraphs of G, contradicting the 
fact that G is a finite graph. Put G° = F o xo . Further, for every iI > 0, put 
y l + 3 = yi ? where yo, V\ and y2 are the end-vertices of F (see Fig. 2). We wish 
to define <3n + 1 by setting Gn+l = Gn + xnxn_|_iyn, where the paths XoX\yo 
and x\X2y\ are given (see Fig. 3) and for all n > 2 

(a) dGn(xn,yn) > 3 , 
(b) the path xnxn+\yn is alternating, and 
(c) the vertex xn+\ does not belong to Gn . 

Assume inductively that the graphs G°, G1, . . . , Gn , n > 2 , have already 
been constructed. We shall show that it is possible to construct G n + 1 (cf. 
Fig. 4). Clearly, V(Gn) - V(G°) = {x\, x2,... xn} . Property (c) implies that 
degGn(xn) = 2 and that Xi, 1 < i < n — 1, is adjacent in Gn just to x t _ i , X{+\ 
and yi-\ . Thus it is clear that dG"(xn,yn) > 3 , confirming (a). It follows that 
no path of length < 2 joining xn to yn is contained in Gn . We shall show 
that £n : rn+iyn = D(xn,yn) is alternating and its internal vertex .rn-fi does 
not belong to Gn , thereby verifying (b) and (c). 
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Figure 4. The construction of G-i+1 • 

Proof of (b): Considering the alternating path Xi-iXiyi-i , we see that x,- is 
joined in Gn to {xx;_i, y,_i} by an edge of T and by an edge of C = G- E(T). 
Thus there exist paths T(xi) in T and C(x,) in C joining Xi to Go , both 
being of the form XjXj_i . . . XJ+\XJZ , where z = yj-i or z = xo . Consider the 
paths T(x„) and G(xn) and suppose that their terminal vertices are p and g, 
respectively. If D(xn,yn) is contained in T , then -D(2/n*xn)T(xn)G°(p, yn) is a 
cycle in T , a contradiction. On the other hand, if D(xn,yn) is contained in C , 
then we show that there is a cycle L in C containing x n x n - i . Consider the walk 
D(yn,xn)C(xn) in C . First assume that C(x n) = xnxn-i ...Xjyj-\. In this 
case ip(yn)

 = ^(yj-i), but this is only possible when yn = yj-i since they are 
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both end-vertices of F. Thus we may choose L to be the cycle D(yn,xn)C(xn). 
If q = Xo, then C(xn) = xnxn-\ ... xxx0 , whence fp(yn) = ip(x0). By our 
assumption, dc(yn,x0) < 2, so there is a path D(x0,yn) in C. On the other 
hand, our construction implies that the path D(yn,xn)C(xn) has the length at 
least 3 . There are three cases to consider according to the length of D(x0,yn), 
which is 1 or 2 , and to the position of the internal vertex h of D(x0,yn) if the 
length is 2 . 

Case 1. Either the length of D(x0,yn) is equal to 1 or it is equal to 2 and 
h does not lie in C(xn). Then put L = D(yn,xn)C(xn)D(x0,yn). 

Case 2. h = x, for some i: 1 < i < n — 1. Then choose the segment 
xnxn-\ ... Xi+\Xi of the path C(xn) and put 

L = D(yn,xn)xnxn-\ ...Xi+\Xiyn. 

Case 3. h = xn . Then take L = C(xn)x0xn . 

Clearly h cannot belong to F, so the above cases cover all the possibilities. 
We have thus constructed a cycle L in C containing the edge xnxn-\ . Since 
ip(yn-\) ^ ij)(yn-2), the path F(un_i,yn_2) contains a 2-fragment of T , which 
is an edge that we denote by e. Setting S\ = T + xnxn-\ — e we obtain that 
C(G, S\) < C(G, T), a contradiction. As a result, the path D(xn, yn) is contained 
neither in T nor in C, and so it is alternating. 

Proof of (c): Suppose that the internal vertex of D(xn,yn) (denoted by 
xn+\) does belong to Gn. Since the path xnxn+\yn is alternating, one of its 
edges belongs to T H Gn . Several cases occur, depending on which of the two 
edges belongs to T , and on the position of xn+\ in Gn . It is not difficult to see 
that it is enough to consider the following situations: 

1- xn+\ is identical with some Xj adjacent to yn 

(thus j = n + 1 (mod 3) ); 
2. xn+\ is a vertex of F adjacent to yn ; 
3. xn+1 = yn-\ ; 
^' Xn+\ — Xn — i . 

We shall consider only the first (and at the same time most difficult) case. 

Assume that xn+\ = Xj , where j = n + 1 (mod 3). It follows that the edge 
Xjyj-\ = xn+\yn belongs to T and, consequently, xnXj and XjXj-\ belong to 
C. 

First suppose that each edge Xiyi-\ with 1 < i < j — 1 is in T . Then the path 
xnXjXj-\ ... x\x0 is in C. Now consider the edges Xiyi-\ with j + 1 < i < n . If 
all of them belong to T , then xnxn-\ ... Xj+\XjXn is a cycle in C containing 
the edge xnxn-\ . As in the proof of (b), we can show that there exists a spanning 
tree 5*2 of G with ((G,S2) < ((G,T) = ((G), a contradiction. Thus at least 
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one of the edges Xiyi-\ with j + 1 < i < n belongs to C. Let x\xi-\ be the 
edge with the largest index. Then the path yi-\X\xi-\ . . .X\XQ is in C. Hence 
ip(yi-\) = ift(xo), and so dc(yi-\,xo) < 2. A similar method as in the proof 
of (b) can now be used to construct a spanning tree 53 with ((G, S3) < ((G), 
again a contradiction. 

Therefore suppose that some edge Xiyi-\ , 1 < i < j — 1, belongs to C. 
As above, take the one with the greatest index, say x/x/_i . Then the path 
yi-\X\x\+\ .. .Xj-\XjXn is contained in C . Consider the edge xnyn-\ • If it 
belongs to C, then T/)(y/_i) = ip(yn-\), whence yi~\ = yi-\ . Thus we obtain a 
cycle in C that can be used to construct a spanning tree £4 with ((G,S±) < 
((G). Therefore xnyn-\ belongs to T . By analogous considerations, each edge 
Xiyi-i with j + 1 < i < n belongs to T . But then xnxn-\ ... XjXn is a cycle 
in C containing the edge xnxn-\ . Again, there is a spanning tree S5 with 
((G, S5) < ((G), a contradiction. 

Thus we see that the subgraph G n + 1 = Gn + D(xn,yn) of G satisfies (a), 
(b), and (c). This concludes the induction step as well as the proof of the lemma. 

• 

P r o o f of T h e o r e m 4.2. It is obviously sufficient to prove the theorem 
for simple graphs. By way of contradiction, let G be a 2-connected simple 
graph of diameter 2 with ((G) > 5, and let T be a spanning tree of G with 
((G,T) = ((G). Clearly, T contains a 5-fragment, say F. From Lemma 4.3 
it follows that F has at most four end-vert ices. Thus F is homeomorphic to 
one of the trees depicted in Fig. 5. We shall show that none of these possibilities 
occurs, deriving the required contradiction. 

Type H Type K м Type Klt3 

Type K2 

Figure 5. 

CLAIM 1. T contains no 5 -fragment of type H. 

401 



MARTIN SKOVIERA 

P r o o f . Assume that T does contain a 5 -fragment F of type H. Further 
assume F to be labelled consistently with Fig. 6. By Lemma 4.3, the labelling 
is correct and unique up to permutation. As dF(a>,d) > 3 and dp(b,c) > 3 , 
there exist paths D(a,d) = axd and D(b,c) = bye in G. Lemma 4.4 implies 
that both of them are alternating, x ^ y and, since F is a fragment, neither x 
nor y belongs to F. In view of symmetry, two cases occur. 

Case 1. ax and by belong to T . It follows that ip(x) = 4 = ift(d) and 
ip(y) = 3 = ip(c). Then T(a,b) + ax + by is a 5-fragment with fewer vertices 
than F. 

Case 2. ax and yc belong to T . Thus ip(x) = 4 = ift(d) and ip(y) = 2 = 
tp(a) . Since di?(a, c) > 3 , Lemma 4.4 yields that there exists an alternating path 
D(a, c) = azc with z £ F'; obviously, z is distinct from both x and y. We 
may clearly suppose that az is in T . Then ^(z) = 4 and T(a, b) + ax + az is 
a 5 -fragment with fewer vertices than F. 

In both cases we have a contradiction, proving the claim. 

Figure 6. Figure 7. 

CLAIM 2. T contains no 5 -fragment of type K\^ . 

P r o o f . Suppose this is false and let F be a 5-fragment of type K\^ in 
T . Let a, b and d be the end-vertices of F, and let c be the internal vertex of 
degree 3 in F. Since F has at least five vertices, there exists an end-vertex of F, 
say d, such that the path T(c, d) contains a vertex e whose label is different 
from ip(a), ifi(b), i^(c) and ifi(d). Thus we may assume that the labelling of 
F agrees with Fig. 7. Since c?^(a, d) > 3 and ib(a) ^ ip(d), there exists an 
alternating path D(a,d) = ax\d with x\ not in F. Clearly, dT(x\,b) > 3 
and ifi(x\) =̂  0(b) , so the first part of Lemma 4.4 shows that there exists an 
alternating path D(x\, b) = x\X^b. In addition, it is easy to see that x<i does not 
belong to FV}x\ . But now the 4-fragment F(a, b) o e satisfies both (i) and (ii) 
of Lemma 4.5 with XQ = d. By Lemma 4.5 this is impossible, a contradiction. 

Using the previous claim and similar considerations as above one can easily 
prove: 
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CLAIM 3 . T has no 5 -fragment of type A'2 . 

Thus it remains to prove 

CLAIM 4. T has no 5-fragment of type K\^ . 

P r o o f . Let F be a 5-fragment of type K\^ in T , labelled as in Fig. 8 
(obviously, the labelling is correct). Since G is 2-connected, for any two distinct 
end-vertices x and y of F there exists an x — y path avoiding c, the unique 
vertex of degree 4 in F. We shall call such a path eccentric. Without loss of 
generality suppose that among all 5-fragments of type K\^ in G, F is one 
admitting a shortest eccentric path, denoted by Q = aq\q2 . . . qn-\b. 

Clearly none of the vertices qi (I < i < n — 1) can be an end-vertex of F, 
for otherwise Q could be shortened. On the other hand, it is a straightforward 
matter to show (using Lemma 4.4) that if qi is an internal vertex of F, then 
there exists a 5 -fragment with fewer vertices. This implies that no internal vertex 
of Q belongs to F (and, at the same time, that IV^F)! = 5) . 

Figure 8. 

Now we establish several intermediate results which, combined together, yield 
the required final contradiction. 

( I ) . If l(Q) > 4 , then ^(q{) = 1 (1 < i < n - 1), aq\ , qn-\b G E(T) and 
q\c, qn-\c G E(C). Moreover, if l(Q) > 5 , then each qi is adjacent to c. 

P r o o f of (I ). By Claim 2, ip(q\) = 1 or 2 . However, *l>(q\) = 2 implies 
that aq\D(q\,b) is a shorter eccentric path. Thus ip(q\) = 1> D(ai,b) = Qicb, 
aq\ G E(T) and q\c G E(C). Similar facts for qn-\ can be shown analogously. 
If l(Q) = 4 , then obviously every qi is labelled 1. If l(Q) > 5 , then for 
every qi there exists u G {a, b} with d,Q(qi,u) > 3 . By the minimality of Q, 
D(qi,u) = qicu so that qi is adjacent to c. If, however, V>(<ji) 7-= 1, then F + qiC 
contains a 5-fragment of type K\1± with a shorter eccentric path. Therefore 
tp(qi) = 1, completing the proof of (I). 
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( I I ) . 3 < / ( Q ) < 4 . 

P r o o f of ( I I ) . Since V>(a) f x/>(b), we have l(Q) > 2 . If l(Q) = 2 , 
then Q is an alternating path and F + Q contains a 5-fragment of type A'1,3 , 
contrary to Claim 2. Therefore l(Q) > 3 . 

To prove the second inequality, assume that l(Q) > 5. We show that Q 
contains a subpath Q(x,y) such that cxQ(x,y)yc is a cycle in C. Let S\ 
(resp., t\ ) be the first internal vertex on Q(a,b) (Q(b,a)) incident with an 
edge of C C\Q. If Q(s\,t\) is contained in C, then it is itself the desired path. 
Otherwise let a\ (resp., 61 ) be the first internal vertex on Q(s\,t\) (Q(t\,s\)) 
incident with an edge of TDQ. If Oic or b\c is in C , then Q(s\,a\) or Q(t\, b\) 
is the desired path. Therefore assume that both aic and bic are in T . Then we 
can repeat the above consideration about Q(a, b) and Q(a\ ,b\). In this way we 
obtain a sequence (s\,t\), (a\,b\), (s2,t2),... with dq(si, ti) > d g ^ . + i , £-+1). 
This process must terminate with some (sk,tk) at dq(sk,tk) > 0. But then 
Q(sk,tk) is contained in C and the desired path is Q(sk,tk). Now form the 
spanning trees Tk = T and T* -1 = Tl + sic - ai-\c, where 1 < i < k and 
a0 = a. Then V>T°(a) = i>T°{c), whence ((G,T°) < ((G). Similar contradic
tions can be obtained using any other path Q(x,y) constructed above. This 
proves (II). 

( I I I ) . Z ( Q ) / 4 . 

P r o o f of ( I I I ) . Let l(Q) = 4 . Then, using (I) and the minimality of T , 
it is easy to see that one of the edges q\q2 and q2qs belongs to C but not both. 
We may assume that q\q2 is in T . Then ip(q2) = 1 = VK^) and, again by the 
minimality of T , q2 is not adjacent to c. Putting Xo = q2 , y0 = d, y\ = e and 
y2 = a it can be verified that F — b is a 4-fragment satisfying both (i) and (ii) 
of Lemma 4.5. But according to Lemma 4.5 this is impossible, a contradiction. 
Consequently, / ( Q ) ^ 4 . 

( I V ) . * ( Q ) - - 3 . 

P r o o f of ( I V ) . Let l(Q) = 3 . We consider two cases according to 
whether q\q2 belongs to C or not. 

Case 1. q\q2 G E(C). Claim 2 then implies that both aq\ and q2b belong 
to T and ip(q\) = 1 = ip(q2). By the minimality of T , either q\ or q2 is not 
adjacent to c. But now we can derive a contradiction using Lemma 4.5 as in the 
proof of (III). 

Case 2. qxq2 e E(T). By Claim 2, ^(qx) = 1 or 2 and ^(o2) = 1 or 3 . 
If ^(^l ) — 1> then aq\ belongs to T and ^(^2) = 3 . Now, considering the 
paths D(q2,d) and D(q2,e) it is easy to find a 5-fragment of type A"i,3 in G , 
a contradiction. Thus VK<li) = 2 and, analogously, ^(^2) = 3 . Let us consider 
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the paths D(q\,d), D(q\,e), D(q2,d) and D(q2,e). It is easily seen that they 
are all alternating, with the possible exception of, say, D(q\, d), which may be 
contained in T . Let q$,... ,#6 be their internal vertices, respectively (where #3 
possibly does not exist). Clearly, these vertices are mutually distinct. Moreover, 
Claim 2 yields that </)(g3) = 4 = ip(q5) and ^(^4) = 5 = ^(qe). Setting x0 = q4 , 
2/o = £5 > 2/i = 96 a n d 2/2 = tfi > we now obtain the 4-fragment qiq2q5 + g2?6 
satisfying both (i) and (ii) of Lemma 4.5. Since, according to Lemma 4.5, this 
is impossible, we arrive at a contradiction proving (IV), Claim 4 and thereby 
Theorem 4.2. • 

R e m a r k s . The bounds given in Theorem 4.1 are best possible in the 
sense that they are attained by infinitely many graphs. It suffices to exhibit 
2-connected graphs of diameter 2 with ( = 4 , each admitting an acyclic cotree, 
and to attach a loop to every vertex. It is easily seen that the resulting graphs 
have £ = 4 . Such examples are shown in Fig. 9, all having connectivity 2 . The 
Petersen graph is a 3-connected graph of diameter 2 with ( = 4 . Strangely 
enough, it is the only such example known to the author. 

Figure 9. 

Theorem 4.2 has no obvious analogue for graphs of diameter greater than 2 . 
Indeed, consider the graph Rn,d of diameter d consisting of n internally disjoint 
paths of length d joining two vertices of degree n . Since i?n,d admits an acyclic 
cotree, Corollary 2.2 implies that ((Rn^) = n(d — 2) + 3 . Thus 2-connected 
graphs of diameter d > 2 may have an arbitrarily large decay number. 
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