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FINITE COTANGENT SUMS AND 
THE RIEMANN ZETA FUNCTION 

D J U R D J E CVIJOVIC — JACEK KLINOWSKI 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. We give a closed-form evaluation of the finite cotangent sums given 

by 

£«• [ffi±tfc]. £«- ( 
p=0 L q J p=l ч 'D 

where n and q are positive integers {q > 2) and £ is a non-integer real number. 
The lat ter sum enables us to simplify the Apostol formula concerning the Riemann 
zeta function at integer values of the argument. We demonstrate tha t , for even 
integers, this formula involves polynomials with rational arguments. 

1. Introduction 

Consider the Riemann zeta function ((z) defined by [1; p. 19] 

oo .. 1 oo 1 

CW = £ F
 = T^S(^TF Rez>1 

k=l k=l v ' 
oo 1 

= r_i--/E(-1)'k"V R e z > 0 ' z*1-
k=i z 

For Re z < 1, z ^ 1, ((z) is defined as the analytic continuation of the foregoing 
series. The Riemann zeta function is analytic over the whole complex plane, 
except at z — 1, where it has a simple pole. 

A p o s t o l [2] gave the following formula 

£ cot" (-^r) 
C(n) - ( J ) lim P— (1) 

v } V 2 j ?->oo qn v y 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11L03, 11M99; Secondary 40D99. 
K e y w o r d s : Riemann zeta function, finite sum. 
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valid for any integer n > 2. For the case when n is even, he found the asymptotic 
expansion of the finite sum involved, which readily leads to the Euler relation 

,n-ЛM.n 

2(2n)! ' 
C(2n) = (-l)"- 1^eVB 2„ ( n > l ) (2) 

between the even-indexed Bernoulli numbers B2n and ((2n) 

Here, we deduce summation formulae for 

Sn(q;0 = Y,ҷЬn 

P = i 

~X
 Ҷ£ + P K 

(0 < £ < 1) (Зa) 

and 
ł - i 

ад = Ecot"(т) (зb) 

p = l v ч J 

and examine the Apostol formula (1) for even integers. 

2. First results 

Throughout the text [x] denotes the largest integer not exceeding x, while, 
as usual, (^) is the binomial coefficient given by 

n\ f n\ n\ 
,—l and j - = — - — ' - — ( n . m G N , l < m < n ) . 

0/ \mj m\(n — m)\ 

Further, the principal values of arccot# are defined for any real 6 by 0 < 
arccot x < 7T. 

In this section we establish the existence of the polynomials for which all 
zeros, regardless of the degree, can be given by a simple formula involving the 
cotangent function. It appears that these polynomials are unknown, and their 
detailed study is given elsewhere [3]. 

THEOREM. Let n be a positive integer, and Cn(x;£) a polynomial of degree 
precisely n. in a variable x with real parameter £, which we define as 

Cn(x;0=J2(-iyncn,m(0xn-m (4a) 

m=0 

Where Cn,m(0 is 

c„iTO(f) = Q [cos(m7r/2) + sin(m7r/2) c o t « ) ] (0 < f < 1) • (4b) 
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Then for any fixed n, the zeros of Cn(x\ £) are all real, simple and given by 

r „ , m ( 0 = cot ( - i - t p - - - ) m = 0 . 1 . . . . , n - l . (5) 

Before proving the Theorem we give as an example the first few polynomials 

Cx (x\ £) = x — cot(7r£), 

C2 (~; f) = x2 - 2x c o t « ) - 1, 

C3(x] f) = x3 - 3x2 cot(7rf) - 3x -F COt(7Tf) , 

C4(x] f) = x4 - 4x3 cot(7r0 - 6x2 + 4~cot(7rO + 1, 

C5(x; f) = x5 - 5x4 cot(?rO - 10x3 + 10x2 cot(Trf) + 5x - cot(Trf), 

C6(x] £) = x6 - 6x5 cot(7r0 - 15x4 + 20x3 c o t ^ ) + I5x2 - 6x cot(?rO - 1. 

P r o o f . First of all, we shall prove that 

[n/2] , . 

V ^ ( - l ) m ( )xn~2m = cscn(arccotx)cos(narccotx) (6a) 

m=o ^ m / 

and 

[ (n - l ) / 2 ] , v 

Yl ( _ 1 ) m ( U ) ^ n - 2 m _ 1 =csc n (arccotx)s in(narccotx) (6b) 
m=0 V m + / 

where arccot x takes its principal value, x is real and n is a positive integer. 
Starting from the well-known Euler-Bernoulli formulae [4; 4.4.4.15, 4.4.4.16] 

n/2] 

COS. 

m=0 

[ ( n - l ) / 2 ] 

sin? 
m=0 

we obtain 

[n/2] 

["/-] / ч 
iтг6>= ] Г ( - l ) m ( П )cos n - 2 mØsin 2 mé> 

m=0 ^ ' 

[ ( » - l ) / 2 ] , s 

m = Y ( - l ) m ( ) c o s n _ 2 m - 1 Ø s i n 2 m + 1 0 
- Ч v y V 2 m + l j 

ш—-L í n \ 

Y2 ( - l ) m ( ) t an 2 m = secn cosn 
m=0 ^ ' 

У " ( - l ) m ( П ] t a n 2 m + 1 0 = secnØsinnØ 
---1 ; V2m+11 
m—II N ' 

m=0 

[ ( n - l ) / 2 ] 

where 0 7̂  (2fc+l)7r/2 (k £ Z ) . In view of these identities, upon setting x — cot 0 
(0 < 9 7̂  7r/2 < 7r) in (6a), (6b), it follows at once that the proposed formulae 
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hold when x / 0. Moreover, it can be shown by direct verification that they 
remain valid for x = 0. 

Next, since the polynomials Cn(x;£) may be expressed in the form 

[n/2] / . [(n-l)/2] / „ \ 

cn(^o=E^r(2my-2m-cot(,o £ (-ir(2m+iy 
ra=0 x ' ra=0 v 7 

2 m - l 

(7) 
as an immediate consequence of (6) we have 

Cn(x;£) = cscn(arccotx)[cos(narccotx) - cot(7r£)sin(narccotx)] . (8) 

To complete the proof we only need to verify that Cn(Tn m(£);£) = 0 for 
any n and ra = 0 , 1 , . . . , n — 1, regardless of £. 

Observe that, in general, if k is an integer and 9 is real, then 

arccot(cot 9) = 9 - kir kir < 9 < (k + 1)TT . 

Thus 
(£-r-rn)7r -*ccot[rn>m(0] = 

П 

since 
0 < ( ! + m K < Î Г ł m = 0 , 1 , . . . ,n — 1, 

provided that 0 < £ < 1. 
Finally, it follows readily from (8), that 

c B ( r B i m (0 ;0 = (-i) m c8c^« + m ) ' ' [C0S(7Г£) - COt(7г£) SІn(7Г<î;)] = 0 . 

Since Cn(x\^) is of degree n , it vanishes at the n points r n m ( £ ) for ra = 
0 , 1 , . . . , n — 1. In view of the properties of the cotangent functions, these zeros 
are all real and simple. This completes our proof. • 

A similar result is obtained as follows. Let Cn(x) denote the polynomial given 
by the expressions in (6b). Several examples are 

C{(x 
c;(x 
c;(x 
C*A(x 

c;(x 
c;(x 
c;(x 
c;(x 

= 1, 

= 2x, 

= Зx 2 - 1, 

= 4x 3 - 4x, 

= 5x 4 - 10x2 + 1, 

= 6x 5 - 20x3 + 6x , 

= 7x6 - 35x4 + 21x2 - 1, 

= Sx7 - 56x5 + 56x3 - 8x . 
The determination of the zeros of Cn(x) is clearly equivalent to solving 
sin(n arccot x) = 0, which gives rise to the following Proposition. 
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PROPOSITION 1. Assume that n is a positive integer. Let Cn(x) be the poly­
nomial in a real variable x of degree n — 1. defined by (6b). Then for any fixed 
n>2, the zeros of Cn(x) are all real, simple and given by 

r;,™ = c o t ( ^ ) , m = l , 2 , . . . , n - l . 

3. Finite cotangent sums 

As a straightforward consequence of the Theorem, we derive a closed-form 
determinant formula for finite cotangent sum Sn(q;£). We note that the sums 
Sx, S2 and S4 are well known in a slightly different form [4; Section 4.4.7] and 
[5; Sections 29.1 and 30.1]. 

We begin by stating some elementary results from the theory of polynomials 
needed [6; p. 179]. Let xk (1 < k < n) be the roots of an algebraic equation of 
the form 

xn + axx
n~x H h an_xx + \-an 

= xn- axx
n-x + • • • + ( - l r - X - i * + ( - ! ) X = ° (10) 

with coefficients a1,a2,... , a n (n > 1). The elementary symmetric functions 
a1,a2,...ian of xk are then given by the Viete formulae 

xi + x2 + * *' + xn = "i > 

X^X2 + X1X^ + ' ' • + "n—\~n — <~2 5 

X^2X^ + XXX2X± + ' ' ' + x
n-2

Xn-lXn = a3 ' 

x1x2 + "- + xn = an 

while sk (k = 1,2, . . . ), the kth power sum of zeros, defined as 

sk = xl + x2 + - • - + xn 

is related to ak by the Newton identities as follows 

"i = si > 

sxax -2a2 = 5 2 , 

s2al — S-^a2 — oO"3 = 53 , 

sk°i - sk-i(T2 + ••• + (-l)k+1kak = sk . 
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The Newton identities can clearly be considered as a system of linear equations 
for s-_, s 2 , . . . , sn, which enables us to rewrite them into a more convenient form. 
Thus by making use of the Cramer rule [6; p. 198] it is easy to see from the first 
k of the equations, that power sum sk is given by the following determinant 

Si. = 

(k 

2a2 

3<7o 

kau 

1 
0"i 

c k-2 
Ţk-1 

0 0 .. . 0 
1 0 .. . 0 

a l 1 .. . 0 

1 
<т, 

of the order k. 

Now, in view of the Theorem, it is obvious that the finite sum in (3a) is in 
fact the power sum of the zeros of the polynomial in (4). Thus, we can state the 
following result. 

PROPOSITION 2. Assume that n is a positive integer, and let Sn(q;£,) be a 
finite sum in (3a). Then for any fixed n we have 

sn(q;0 

cяЛ 1 0 0 .. . 0 

2c„9 
q,2 

C<7,1 
1 0 .. 0 

З C < 7 , 3 C ? , 2 
c

? , l 1 .. . 0 

n- -K.n-1 C, q,n-
l 

nc„ ~q,n q,n — l <7,1 

where, for brevity, c t stands for c t(0 defined in (4b), and the determinant 
is of the order n. 

In particular 

Sx(q;0 = qcot(nO, 

S2(q;0 = q2(cot2(7r0 + l)-q, 

S3(q;0 = <73(cot3(>r£) + c o t ( O ) - gcotfrO , 

SA(q; 0 = q4(cotA(7rO + (4/3) cot2(7r£) + 1/3) - </2((4/3) c o t 2 « ) + 4/3) + q , 

S5(q; 0 = q5(cot5(irO + (5/3) cot3(7rO + (2/3) cotfrO) 

- q3 ((5/3) cot3(7r0 + (5/3) cot3(7re)) + gcot(vrO , 

S6(q;0 = 96(cot6(7r0 + 2cot4(7r£) + (17/15) cot2(7rO + 2/15) 

- q4 (2 cot4(7r0 + (8/3) cot2(7r£) + 2/3) 

+ q2 ((23/15) cot2(?r0 + 23/15) - q. 
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We note that the expressions for Sn(q\l/2), Sn(q]l/4), S2n(q;l/3) and 
S2n(q;l/6) are the polynomials in q with rational coefficients. Moreover, 
£___,(.; 1/2) = 0. 

However, it is easier to find the sums for higher n by using the differential 
recurrence relation 

~W?;0 = -s-fofl - j^ihjnTzs^{q>® {n -1} 

which is readily proved by differentiating the definition (3a) with respect to £. 

4. The Apostol formula 

In this section we shall derive the closed-form formula for 5* (q) which allows 
us to investigate the Apostol formula. 

The properties of the cotangent function readily lead to 

o - l 

X> tW^W í + l ( í ? ) = o 
P=I \ * / 

and 

o - l 

X > Ҷ | И ^ 
p=\ x ' 

The first indication about S2n can be obtained from the expressions found in 
Section 3 and the relation 

o - l 
52n(?) = Jҷ E C O t " ( ^ 7 ^ ) = lҷ[Sn(*0 ~ «*»«/_)] 

resulting in 

1 , 2 
' - ^ = 3 ' " ; з 
e * ^ ! 4 4 2__ 26 
54(9) = 45? - 9 ? + 9 - 4 5 . 

o . , . 2

 6 2 4 23 2 502 
5 « ( * ) = 945^-45^ + 4 5 ^ - * + 9 4 5 ' 

where our S^ and 5 4 are the same as those listed in literature [4; Section 4.4.7]. 
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On the other hand, a straightforward consequence of Proposition 1 is that 
the sum in (3b) is the power sum of the zeros of Cn(x). In this way we shall 
evaluate Sn for any n. Note, however, that the polynomial Cn(x) is not monic, 
that it is of degree n — 1 and that some of its coefficients are zero (compare with 
Equation 10). 

PROPOSITION 3. Let n be a positive integer and let Sn(q) be a finite sum 
defined by (3b). Then for any fixed n we have 

S*n(q) 

0 
2c 9,2 

0 

1 
0 

C«,2 

0 0 
1 0 
0 1 

(n — l)c„ „ - c 
v / q,n — l < 

ПC 
q,n 

q,n — 2 

Cq,n-1 

where c { stands for c {(£), and the determinant is of the order n. 

It is not difficult to verify that S^n-t-i ls a i w a v s zero, and it follows directly 
that, in general, S%n is the polynomial of degree 2n in q with rational coeffi­
cients. Two more special cases are 

S*s(q) = 
1 16 44 

4725 
s"<") = d b ' " -

4 28354 675
ч 

176 7102 

315
? + Q

 14175' 

2835 
q° + 

86 

8505 

718 563 
~ 

44834 

8505
q +

 945
q q

 93555 

5. Concluding remarks 

The Apostol formula implies the existence of a certain function A(q; n), such 
that 

A(q;n) 
q-+oo qn 

We have demonstrated that, for even integers, we have 

C(„) = ( Л П liш -tøi-!l (n>2) 
v ' 4 2 / ?^oo qn v - ' 

A(«2;2n) = - 5 * n ( 2 g + l ) ( n > l ) , 

where S^n is fully determined: it is a polynomial in q with rational coefficients 
of degree 2n and its evaluation is straightforward. 
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