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3RD ORDER DIFFERENTIAL INVARIANTS
OF COFRAMES

Dao Qui CHAO* — DEMETER KRUPKA **

(Communicated by Jilius Korbas)

ABSTRACT. The aim of this paper is to characterize all 3th order differential
invariants of linear coframes on smooth manifold. These differential invariants are
described in terins of bases of invariants.

1. Introduction

In this paper, we mean by a left G-manifold a smooth manifold endowed
with a left action of a Lie group G. A mapping between two left G -manifolds
transforming G-orbits into G-orbits is said to be G -equivariant. As usual, we
denote by R the field of real numbers. The rth differential group L] of R™ is
the Lic group of invertible r-jets with source and target at the origin 0 € R”;
the group multiplication in L! is defined by the composition of jets. Note that
L! = GL, (R). For generalities on spaces of jets and their mappings, differen-
tial groups, their actions, etc., we refer to Nijenhuis [13], Krupka and
Janyska [9],and Koldf, Michor and Slovdk [5].

Let P and Q be two left L! -manifolds. Recall that a smooth L7 -equivariant
mapping F: U — Q, where U is an open, L’ -invariant set in P, is called a
differential invariant.

Let X be an n-dimensional manifold. By an r-frame at a point z € X
we mean an invertible r-jet with source 0 € R® and target at z. The set of
r-frames together with its natural structure of a principal L7 -bundle with base
X is denoted by F"X | and is called the bundle of r-frames over X . If r =1,
we speak of the bundle of linear frames, and write F'X = FX.If Q is a
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DAO QUI CHAO — DEMETER KRUPKA

left LT -manifold, then the fiber bundle with fiber @, associated with F"X is
denoted by FéX .

It is well known that differential invariants can equivalently be described
as natural transformations of the lifting functors F and F ([7]). A princi-
pal meaning of differential invariants for differential geometry consists in their
independence of local coordinates on a manifold over which they are considered.

Most of differential invariants appearing in differential geometry correspond
with the case when Q is an L! -manifold. These differential invariants can be
described as follows. Let K>* be the kernel of the canonical group morphism
n™*: LT — L}, where r > s. If L7 acts on @Q via its subgroup L:l, each
continuous, L] -equivariant mapping F': U — @ has the form F' = fow, where
P/K7! is the space of K7'!-orbits, 7: P — P/K"! is the quotient projection
and f: P/K"' — Q is a continuous, L. -equivariant mapping. Indeed, in this
scheme P/K ,’;1 is considered with the quotient topology, but is not necessarily
a smooth manifold. The quotient projection 7 is continuous but not necessarily
smooth. If P/K7! has a smooth structure such that 7 is a submersion, we call

7 the basis of differential invariants on P (for more general concepts of a basis,
see [11]).

In [8], a method based on this observation, was applied to the problem of
finding invariants of a linear connection. The initial problem was reduced to
a more simple problem of the classical invariant theory (see e.g. [14], [15]) to
describe all L} -equivariant mappings from P/K7! to L. -manifolds. Our aim
in this paper is to study invariants of linear coframes by the same method.

In this paper, we consider by the same method the problem of characterizing
all 3rd order differential invariants of coframes with values in L3-, L2?- and
L} -manifolds. According to the prolongation theory of manifolds endowed with
a Lie group action [4], [6] (see also [5], [9]), we first introduce the domain of
these differential invariants, i.e., the L}-manifold of P = T3L! of 3-jets with
source 0 € R™ and target in L., and describe the frame and coframe actions of
L? on T3L!. Then we construct the corresponding orbit spaces of the normal
subgroups K**, K32 K*! c L. We show that these orbit spaces can be
identified with Cartesian products of T2L}, T!L!, and L}, respectively, with
some tensor spaces over R” ; in this way the corresponding differential invariants
are described in terms of their bases. These results extend the results recently
obtained by the first author, who described all 2nd order invariants of coframes
(see [1]).

It should be pointed out, however, that the factorization method which is used
to compute all 3rd order invariants of coframes, leads to difficult calculations
which cannot be effectively extended to higher-order cases. Thus, the problem
of characterizing all 4th- and higher order differential invariants remains open.
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3RD ORDER DIFFERENTIAL INVARIANTS OF COFRAMES

The geometric interpretation of the new invariants is also an open question (see,
however, the remark Added in proofs in this paper).

Note that there is a correspondence between the frame and coframe actions
of L} on itself, which is also discussed below. This correspondence allows us to
compute differential invariants of frames as functions of differential invariants
of coframes, and vice versa. M. Krupka [12] considered 1st order invariants
of velocities, the objects which are more general than frames. Garcia and
Munoz [3] described higher order R-valued differential invariants of frames in
terms of integrals of a canonical differential system.

2. Equivariant mappings
with respect to the quotient group

In this section, we recall some general concepts on equivariant mappings,
related with a normal subgroup. These remarks will be applied later to the
differential groups. We follow, with only minor modifications, the paper [8].

Let G be a Lie group, K a normal subgroup 7: G — G/IK, the quotient
projection, aud let @ be a G-manifold. Denote by [¢], the K-orbitin @Q passing
through a point ¢ € Q. Let Q/K be the set of I(-orbits, and p: Q — Q/K the
quotient projection. We define for each h € G/K

h'[Q]I{:[g'Q]Ka (1)
where g € G is any element such that 7(g) = h. (1) defines a left action of G/K
on Q/K, which is said to be induced by the action of G on Q.

The action (1) is defined correctly. Indeed, if 7(¢') = h = 7(g), then there
exists an element k € K such that ¢ = k-g. If [¢'] x = [¢], then there exists an
k' € K such that ¢’ = k"-q. Thus, [¢'-¢]|x = [k-9-k'-qli = [k-g-k 97" 90k =
l9-q)g,since k-g-k"-g~! € K because K is a normal subgroup.

LEMMA 1. Assume that the group G/K acts on a set M on the left. Let
F:Q — M be a mapping such that for each g € G and q € Q,

F(g-q)=7(9) F(q)- (2)
Then F is of the form

~

F = f op, (3

where f: Q/K — M is a uniquely determined G|K -equivariant mapping-
Proof. Let p € Q/K. Choose ¢ € Q such that [¢] = p. Setting f(p) =
F(g) we obtain, by (2), a mapping f: Q/K — M.1f h € G/K, then f(h-p) =
F(h-[ali) = f(l9-dlx) wheve 7(g) = h. Thus, f(h-p) = F(g-q) = 7(9) F(@) =
h-F(q). O
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LEMMA 2. Let G be a Lie group, K a normal Lie subgroup, and let QQ be a
G -manifold. Assume that the equivalence “there exists k € I such that q =
k-q,” is a closed submanifold of Q x Q. Then the quotient Q/IC has an orbit
manifold structure, the induced left action of the quotient group G /K on Q/K
18 smooth, and

plg-q) =7(9) p(q)- (4)
If in addition K acts freely on Q, then Q is a left principal K-bundle.

Proof. Since our assumption guarantees existence of the orbit manifold
structure on the set Q/I, and of the left principal K-bundle structure on Q
([2]), and (4) holds by (1), it remains to show that the group action G/K x Q/K
) (h, [dlx) = h-ldlx € Q/K is smooth. This is, however, immediately seen by
using local sections of the submersions p and . O

COROLLARY. Let M be a G/K-manifold. Under the hypothesis of Lemma 2,
each smooth mapping F: Q — M satisfying (2) is of the form (3), where
f: Q/K — M is a uniquely determined smooth, G /K -equivariant mapping.

3. Jet prolongations of L!-manifolds

In this section, the general prolongation theory of left G-manifolds is applied
to the case of the Lie group G = L}, = GL,_(R). We use the prolongation formula
derived in [6], and the terminology and notation of the book [9].

Recall that the rth differential group L] of R™ is the group of invertible
r-jets with source and target at the origin 0 € R*. The group multiplication
in L7 is defined by the composition of jets. K>* denotes the kernel of the
canonical group morphism 77: L7 — L}, where r > s > 1. The ﬁrst canonical
coordinates a% ,al . .. ..,aj.ljz_”j “where 1 <i<n,1<j, <j, <+ <4, <n,
on L7 are deﬁned as follows. Let Jja € L7, where « is a dlﬂeomorphism
of a nelghbmhood U of the origin 0 € R" into R® such that «(0) = 0; in

components, « = (a!,a?,...,a"). We define
@iy ]k(JT ) = D, D, ---Djka’(O), 1<k<r. (5)
y ;. 3 ‘3 3 T y
The second canonical coordinates b]l,bju2 .. ’me j, on L7 ,where 1 <i < n,

1<y, <j, £---<j,. <n, are then defined by
vi o (Jra) =dl

d1d2edk (J(’)‘a“l), 1<k<r. (6)

J1Jg2Jk

Indeed, aj.bj = 4} (the Kronecker symbol).

Let us consider a left L! -manifold P, and denote by TP the manifold of
r-jets with source 0 € R™ and target in P. According to the general theory
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3RD ORDER DIFFERENTIAL INVARIANTS OF COFRAMES

of prolongations of left G'-manifolds, T"P has a (canonical) structure of a left
L7*!-manifold. To define this structure, denote by t, the translation of R"
defined by t (y) = y — z. Consider an element JH'la € LT*!, and denote

a, =t,0ao0t_ g, a(@) = Ja,, A= Jja, and S = Jia. The action of
LT+ on TP is then defined by
Jitla-q=8-(go A7) =Jj(a- (yoa™)), (7)

where q = Jjvy € T, P, and the dot in the parentheses on the right denotes the
group multiplication in L.

The left L7*!-manifold T/ P is called the r-jet prolongation of the left
L} -manifold P.

4. Frames and coframes

Let X be an n-dimensional manifold. Recall that an r-frame at a point
z € X is an invertible r-jet with source 0 € R™ and target at . The set of
r-frames, denoted by F"X, will be considered with its natural structure of a
principal L] -bundle over X. We write FF.X = F'X; FX is the bundle of linear
frames.

Thus, the structure group of FX is the group L} = GL,(R). FX can also
be regarded as a fiber bundle with fiber L:l, associated with FX , if we let act
the group L. on itself by left translations. Namely this structure of FX appears
in the theory of differential invariants. The left translation defined by the group
multiplication L} 3 (Jja, J&u) — Jo(aop) = Jjao Jiu € L} is given in
the canonical coordinates by p} (Jl(a op) = ak(Jla)p] (Jep). We write these
equations simply by } ‘

Py = ap}, (8)
where p; (resp. a;) stand for the first canonical coordinates on the fiber L! of
FX, (resp. on the structure group L of FX). (8) is called the frame action of
L! on itself.

J'FX denotes the r-jet prolongation of FX. It follows from the general
theory of jet prolongations of fiber bundles that J"FX can be considered as a
fiber bundle over X with fiber T7 L}, associated with F™*!'X . Equations of the
group action of L™*! on TTL! can be obtained from (7) and (8).

An r-coframe at ¢ € X is an invertible r-jet with source z € X and target
0 € R*.If r = 1, we speak of linear coframes. The set of linear coframes, denoted
by F*X, has a na’cul al structure of a fiber bundle with structure group L”,
sociated Wlth the bundle of frames FX . This structure of F*X is defined by
the left action of L}, on itself given by p}(Jg(noa™")) = pj(Jypu)ak(Jja™t) =
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P (J3 u)b;%'(Jéa). As before, it is convenient to express this action by the equa-
tions ‘ _

7 = pibl - (9)
Here p§ are the first canonical coordinates on the fiber L} of F*X and b% are
the second canonical coordinates on the structure group L. (9) is called the
coframe action of L}l on itself.

One can easily compare the actions (8) and (9) of L} on L.. Let (5)
(resp. (6)) be expressed by ®(g,h) = g-h (resp. ¥(g,h) = h-g~!). Then
®(g,h™") = U(g,h)~'. If 9: L}, — L, is the mapping g — g~ and L, (resp.
R,) is the left (vesp. right) translation on L! by g, then Loy =170 Ry,
ie., Rﬁ(g) =1 oLg od.

The r-jet prolongation J"F*X of F*X can be considered as a fiber bundle
over X with fiber T7L! | associated with F™*! X . Equations of the group action

n-n’

of L™*! on TrL! can be obtained from (7) and (9).

5. The 3rd jet prolongation of the coframe action

Now we investigate the action (7) of the group L? on T2L!, associated

n-n?’

with (9). We prove three lemmas which are fundamental for the discussion of
the corresponding orbit spaces.

Let U be a neighborhood of the origin 0 € R™. Let a be a diffeomorphism of
U onto a(U) C R™ such that a(0) = 0. Then a(z) = Jla,, where a, =t oao
t g1y Let y: U = L! be a mapping. We denote ¥(z) = a(z) - v(a™*(z)),
where = € a(U), and the dot on the right hand side means the multiplication
in the group L} . In coordinates,

P (¥(x)) = pi(a(z) - v(a ' (2))) = pp(v(a ' (2)))0 (a(z)) . (10)
Note that in this formula,
v (a(z)) = ¥ (Jya,) = a5(Jgo;")
= D;(a;")¥(0) = D (tyzrmy o0t 0t_,)"(0)
=D, th_, (@ (@710t )(0) D, (™) (t_,(0)) D;t? . (0)
=08,D,(a" ") ()0] = D;(a™")*(2).

(11)

Now the chart expression of the coframe action is obtained by expressing the
r-jet Ji = Jit - J3y (7) in coordinates.

Consider the case 7 = 3. Our aim is to compute the 3-jet Jov = Jja - J3y
in the associated coordinates on T3L! and L%.
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LEMMA 1. The group action of L% on T3L) induced by the coframe action of
L} on L} is defined by the equations

5 = pib3,
By = Pa,Uib5 + pibiy
p;,kl = pi,tu”?”fa”j + pi,t(b bs + bib;, + bt k) + ps Jkl )
P ki = B B0
+ o (B BRDS + BB b + BrDEDS, ) + b (bl b3 + bLb, + Bb3,))
+Ps ¢ Oktm5 + bl b3y + by b, + bt WV5tm + Ol Uk + (b5 + 01 b54)

s
Sb]klm

1Yjkm

(12)

Proof. Since the proof is routine and long, we shall only verify the first
two equations. The first equation (12) is immediately obtained by taking = = 0
in (10). To get the second equation, we use the definition of the canonical coor-
dinates on T3L! and on L%, and apply (11). We obtain

P;,t(Jf§¢) = Dz(P} o 9)(0)
= D (p}, oy 0 @~ )(0)b5(Jga) + p (Y(0)) D, (85 © @)(0)
= D,(p; o M(0)Dy(a")* (00 (Jy @) + p;, (¥(0)) D, D; ()" (0).
Substituting = = 0 yields the second equation (12).

To get the remaining equations, we differentiate (10) two resp. three times,
and then substitute x = 0. 0

Now we restrict the action (12) to the subgroups K', K2 and K} of
L? . The following result is fundamental for the discussion of the corresponding
orbit spaces.

LEMMA 2.

(a) The group action of Kj' on TS L), induced by the coframe action of LY,
on L:l is defined by the equations

P, =1},
D= P;')k +Pibjk )
Pyt = P+ Py bk + P b0+ 2L 0k + Pib3
p;',klm = p;,klm (13)
+ p;',ksblsm + PE,SJme + i, Rl PJ om0t + Ps km U1
+p} ambik T p;,tbilm +p} tb;cmbjl +Ps Dktblm + Ps 1b3
+ 7} tbfmbgk + pi,lb;km + ps,mbjkl + psbjklm .

7lm
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(b) The group action of K42 on T3L) induced by the coframe action of L*
on L% is defined by the equations
ﬁ; = p; ’
ﬁi',k = pi‘,k )
—iJ _ z ibs (14)
Pjkt = Pj it t PsYks

=1 — mt 1opt i 18 i 1S % s i1
pj,klm - pj,lclm + pj,tbklm +ps,kbjlm + ps,lbjkm +ps,mbjkl + psbjklm .

(c) The group action of K% on T3L} induced by the coframe action of L3
on L is defined by the equations

P =15,
Pl = Pik
Pkt = Pkt
D} ktm = Pj.ktm sV kim -
Proof.
(a) We take b} = 4} in (12).
(b) We take b, =0 in (13).
(c) We take b, =0 in (14). O
COROLLARY. FEach of the actions (13), (14), and (15) is free.
Proof. Taking p} = p}, Pk = Pl xs Dy ki = Pl gt Dy kim = Pl i 10 €ither
of these actions yields the identity of the corresponding group. O
Now we describe orbits of the group actions (13), (14), and (15). Let us
introduce some notation. Using the second canonical coordinates on T;;fL}l, we

denote by ¢} the inverse matrix of the matrix pt; thus, ¢i: T3L! — R are
functions such that ¢;p; = d;.

5% denotes the vector subspace of the tensor product R’R™ = R™ @ R,
defined in the canonical coordinates on R™ by the equations

S! denotes the vector subspace of the tensor product ®3R’”"‘, defined by the
equations
Tyt Ty =0, T+ Tpij + 25, =0. (17)

Similarly, 52 is the vector subspace of the tensor product Q'R | defined by
the equations

'rjklm—f_'T = 0’ Ijklm+xljkrrz+$kljm = 0’ a:jklm+xjmkl+:rjlm/~' =0.

18)

Jjlkm
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Special notation for symmetrization and antisymmetrization of indexed fam-
ilies of functions through selected indices is needed. Symmetrization (resp. an-
tisymmetrization) in some indices 4,4, k, ... is denoted by writing a bar (resp.
a tilde) over these indices, i.e., by writing 7,7, %,... (vesp. i,7,k,...).

Finally, we introduce the following functions on T3L.:

L Py Py os Ph.cas Phcde) = P5
; it it
L0y Py o2 Py car Phycge) = l”; kl qts(p},zgp",s - p;-,jpic,i) )
1'1'

a ,a a a _ _aS(pt T bt T no.t
jkim (pb7pb,c’pb,cd7pb,cde) = pj,klm qn(pj,gpk,zm Py sP5im T PLmP; ks

+DEmP ; a T p;'cl,z‘p;;,m + p?,ﬁlpi*,ict + 7’?,1‘172-,;;,,,)
+ 30508 () ;0 bt s, + PR DY 5+ DY PRI
+Ps k(7 ;. Prmt p?ip;"l, n p?mp?,i))

+ @S gL pl ((PF kg + P PR

+ 070y (P55 (PERPEm + PEPE i + PEmPRD)

+ Ps-,;(Ps,api,m + PPy + PEaPY D) -

It is easily seen by verifying equations (16) (resp. (17), resp. (18)) that in canon-
ical coordinates, the functions I;.k (resp. I} Skl > TESP. I kim ) define a mapping of
T3L) into R™ ® S% (resp. R" ® S}, resp. R ® 52).
LEMMA 3.
(a) K*1-orbits in TSL! induced by the coframe action of LL on L} are
defined by the equations

Pl =ck,
L5 (P5, 18 02 Db e Phcae) = i 1)
I; kl(pb’pbc’pb cd> Pb, bode) = c;'kl’

_ i
Ijklm(pb’pb c’pb cd Po, bcde) = Ciklm »

where c ch, sz’ ]klm € R are arbitrary constants such that detc #0.

(b) K22-orbits in T3L! induced by the coframe action of L. on Ll are
defined by the equations

% %
pj ._..cj,
% 7

pjk _Cjk’

T a ,.a a a 1
Ijkl(pb’pb,c’pb,cd’pb,cde) = Cikl»
1 a ,a a a .t
Ijklm(pb’pb,c’pb,cd’pb,cde) = Cikim -
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(c) K23-orbits in T3LY induced by the coframe action of L} on L. are
defined by the equations
pb; = C].- )
pék = C;'k )
P;kz = C;'kl ]

7 a ,a a a I )
Ijklm(pb’pb,c’pb,cd7pb,cde) = Ciklm

Proof.
(a) Consider the action (13). Writing this action in the form
P, =pl,
ik = Pout PV (20)
Pkt = Pykt + XG0 + Piblns s
p;’,klm = pj’,klm + X;',klm + pib;klm ,
where
X;‘,kl = p;- ikt +pi kY31 + 1} NI
X;’,klm P] sl T pg st0km "‘ps L. P] smOkt Ps km U1 (21)
+p} im0kt P; Dhim + P tbzmbjt + 7} tb}clbjm +p} 2 im
+ 0§ DUk + P81V + D4 ikt
we get from the first equation '
G =4, (22)
and from the remaining ones
bl = Qf(ﬁ;';; — D55
Vi = 4 (B 50 = P50 = XGi0) (23)
iktm = G (B3 5 — D5 kim — XG ki) -
Substituting for b3, , b3y, bjy, (23) in (20) and using (22) we obtain after a

long and tedious calculation
ng(Pban ¢ Py cds Db cde) = (vaPb ¢ Pbcds P cde)
Ijkl(pb’pb,c7pb,cd’pb,cde) = Ijkl(pb’pb,c’pb,cd’pb,cdr) )
I}kzm(ﬁg’ﬁg,c»ﬁg,cd’ﬁg,cde) = I;klm(pg’pg,c’pg,cd’pg,cdw) :
With an obvious convention, these equations are written in the form

P; =P Iy =TI, Ly =T, Lim = ki - (24)
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Indeed, these equations mean that the functions p I 1k I;,kl’ I;klm (19) have
the same values at the transformed points (pb,pb’c,pbicd,ﬁg’cde) € T3L) as at
the initial points (p%,p% 1, P% 11» D% pim) € TS L}, or, which is the same, that they
are constant along each K2'-orbit in T3L. .
Since the system (23), (24) is equivalent with (13), assertion (a) is proved.
(b), (c) We proceed in the same way. a

6. 3rd order invariants of coframes

Consider a point in T3 L), whose initial coordinates satisfy P% :=0, P% q=0
and P' Fm = 0. T b2, b3y, b3y, are coordinates of an element of the group
KAt then by (23), the transformed point whose coordinates are denoted by P,
p;,h p;'-’k,, P},klm satisfies

Vr=apir,  Bu=C O =) Um = G0 kim — X ) » (25)
where by (21),
X500 = P, SO + P} g3 + 1 z'b?fc )

1 _ s s T .g_ s
X; klm p] ksblm + p_’/ slb s klb]m +pj‘sﬁ‘tbkl a k'mb]l

Dy lmb]k +p], bklm +ps kbjlm +p.zs,l-b‘5'l_w‘n + ps,m }I_cl_
Using the first two equations (25), we get after some calculation,
X 5 = §9 00k P+ PR S)

_ ; . . . . .

X iim = 29 (P 5Xhtm + PG im T PEXG km T P X5 k) — 20521 i T -

Now consider the product L! x (R* ® S2) x (R* @ S1) x (R ® §2) x K*!
as a trivial principal K*!-bundle with base L} x (R® ® S%) x (R* ® S}) x
(R ® S%). We can now summarize the discussion of Section 5 in the following

three theorems, describing differential invariants on T2L! with values in L!-,
L2-, and L3-manifolds.

THEOREM 1.

(a) The coframe action defines on TSL) the structure of a left principal
K5 -bundle.

(b) The mapping : T2LL — L) x (R*"@S2) x (R*"®S}) x (R @ S%) x KM,
defined in components by
Y= (p]’qs‘[jsk’qa‘[]kl’ q& jklm’ (6]’b;k’ ;kl’ b]klm)) ) (26)

is an isomorphism of left principal K*!-bundles.
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Proof.

(a) Since we have already proved that the action (13) of K*' on T3 L! is free,
in order to show that T°L! is a principal K*!-bundle it remains to show that
the equivalence “there exists an element Jja € L7 such that J3y = Jia - J3v”
is a closed submanifold in T3L! x T3L! . However, using (13) in the form of
(23), (24), we see at once that this submanifold is defined by the equations

pi(J57) = p;(J37) =0, L (J57) = Iy (Jgv) = 0,
I;kl(‘]g’_)l) Jkl(JE)i’Y) - 0 Jklm(‘]g’Y) Jklm(Jg7) - 0
and is therefore closed.
(b) This assertion can be proved by a direct computation. O
Consider the product T!L! x (R* @ 51) x (R ® $2) x K*? as a trivial left

principal K*2-bundle with base T L} x (R ® S1) x (R* ® 52).
THEOREM 2.

(a) The coframe action defines on TSL! the structure of a left principal
K*2-bundle.

(b) The mapping ¢: TL! - T'L! x (R"®S1) x (R* ® 52) x K}2, defined
in components by
1/9 = (p;ap;,kaqu;k[Jqs jkl*m’(s L] ]k[ab]klm) bl (27)
is an isonorphism of left principal K22 -bundles.
Proof. We proceed as in the proof of Theorem 1. O
Finally, consider the product T2L} x (R*®52) x I{** as a trivial left principal
K*2-bundle with base T?L! x (R" ® S?).
THEOREM 3.

(a) The coframe action defines on T;:L}1 the structure of a left principal
K*3-bundle.

(b) The mapping ¢: T3L: — T2L! x (R* ® S?) x K**, defined in compo-
nents by

1/) (pjapj kap] Maqs Jklmaa 0 0 b]klm)) (28)

is an isomorphism of left principal K23 -bundles.
Proof. We proceed as in the proof of Theorem 1. o

Theorems 1, 2, and 3 say that every 3rd order differential invariant of
coframes factors through the corresponding bundle projection (see (26), (27),
(28)). Consider the components of the bundle projections defined by p;.:
T3L) — LY, Iy T3L) —» R* ® S°, I T}L) — R" ® S! and L
T3LL - R* ® 52. We havc the following results.
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3RD ORDER DIFFERENTIAL INVARIANTS OF COFRAMES

COROLLARY 1. The mappings p;., Iy, Ly s L5y represent a basis of 3rd

order invariants of coframes with values in left L} -manifolds.

COROLLARY 2. The mappings p;, p§ ., P51, Lm Tepresent a basis of 3rd

order invariants of coframes with values in left L2 -manifolds.

COROLLARY 3. The mappings pj., pj.’k, Lys Ly represent a basis of 3rd

order invariants of coframes with values in left L3 -manifolds.
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DAO QUI CHAO — DEMETER KRUPKA

Added in proofs:

In the paper:
[Krupka M.: Natural operators of semi-holonomic frames. In: Proc. of 19th Win-
ter School of Geometry and Physics, Srni (Czechia), 9-16 January, 1999. Rend.
Circ. Mat. Palermo (2) Suppl. (To appear)]
the reader can find a discussion on the geometric meaning of invariants of frames
and coframes.
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