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3RD ORDER DIFFERENTIAL INVARIANTS 
OF COFRAMES 

DAO Q U I C H A O * — D E M E T E R K R U P K A * * 

(Communicated by Julius Korbas) 

ABSTRACT. The aim of this paper is to characterize all 3th order differential 
invariants of linear coframes on smooth manifold. These differential invariants are 
described in terms of bases of invariants . 

1. Introduction 

In this paper, we mean by a left G-manifold a smooth manifold endowed 
with a left action of a Lie group G. A mapping between two left G-manifolds 
transforming G-orbits into G-orbits is said to be G -equivariant. As usual, we 
denote by R the field of real numbers. The rth differential group Ln of W1 is 
the Lie group of invertible r-jets with source and target at the origin 0 E Rn ; 
the group multiplication in Ln is defined by the composition of jets. Note that 
Ll

n = GLn(R). For generalities on spaces of jets and their mappings, differen­
tial groups, their actions, etc., we refer to N i j e n h u i s [13], K r u p k a and 
J a n y s k a [9], and K o l a f , M i c h o r and S l o v a k [5]. 

Let P and Q be two left Lr
n-manifolds. Recall that a smooth Lr

n-equivariant 
mapping F': U —•> Q, where U is an open, Lr

n-invariant set in P , is called a 
differential invariant. 

Let X be an n-dimensional manifold. By an r-frame at a point x E X 
we mean an invertible r-jet with source 0 E W1 and target at x. The set of 
r-frames together with its natural structure of a principal Lr

n -bundle with base 
Ar is denoted by FrX, and is called the bundle of r-frames over X. If r = 1, 
we speak of the bundle of linear frames, and write FlX = FX. If Q is a 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 53A55, 58A20. 
K e y w o r d s : differential invariant, differential group, frame, coframe. 

Research supported by the Grant No 201/98/0853 of the Czech Grant Agency, and the Project 
VS 96003 Global Analysis of the Ministry of Education, Youth, and Sports of the Czech 
Republic. 

563 



DAO QUI CHAO — DEMETER KRUPKA 

left Ln -manifold, then the fiber bundle with fiber Q, associated with FrX is 
denoted by Fr

QX. 

It is well known that differential invariants can equivalently be described 
as natural transformations of the lifting functors Fr

p and FQ ([7]). A princi­
pal meaning of differential invariants for differential geometry consists in their 
independence of local coordinates on a manifold over which they are considered. 

Most of differential invariants appearing in differential geometry correspond 
with the case when Q is an Ln -manifold. These differential invariants can be 
described as follows. Let Kn^ be the kernel of the canonical group morphism 
7rr'5: Ln —r Ln, where r > s. If Ln acts on Q via its subgroup Ln, each 
continuous, Ln-equivariant mapping F: U -> Q has the form F = f o7r, where 
P/K^1 is the space of K%1 -orbits, 7r: P -» P/K^1 is the quotient projection 
and / : P/K^1 -» Q is a continuous, Ln-equivariant mapping. Indeed, in this 
scheme P/K^1 is considered with the quotient topology, but is not necessarily 
a smooth manifold. The quotient projection TT is continuous but not necessarily 
smooth. If P/K^1 has a smooth structure such that IT is a submersion, we call 
7r the basis of differential invariants on P (for more general concepts of a basis, 
see [11]). 

In [8], a method based on this observation, was applied to the problem of 
finding invariants of a linear connection. The initial problem was reduced to 
a more simple problem of the classical invariant theory (see e.g. [14], [15]) to 
describe all Ln-equivariant mappings from P/K7^1 to Ln -manifolds. Our aim 
in this paper is to study invariants of linear coframes by the same method. 

In this paper, we consider by the same method the problem of characterizing 
all 3rd order differential invariants of coframes with values in Ln-, Ln- and 
Ln -manifolds. According to the prolongation theory of manifolds endowed with 
a Lie group action [4], [6] (see also [5], [9]), we first introduce the domain of 
these differential invariants, i.e., the L^-manifold of P = TnLn of 3-jets with 
source 0 G W1 and target in Ln, and describe the frame and coframe actions of 
Ln on TnLn. Then we construct the corresponding orbit spaces of the normal 
subgroups K*>*, Kn>

2, K^1 C Ln. We show that these orbit spaces can be 
identified with Cartesian products of TnLn, TnLn, and L^, respectively, with 
some tensor spaces over W1; in this way the corresponding differential invariants 
are described in terms of their bases. These results extend the results recently 
obtained by the first author, who described all 2nd order invariants of coframes 
(see [1]). 

It should be pointed out, however, that the factorization method which is used 
to compute all 3rd order invariants of coframes, leads to difficult calculations 
which cannot be effectively extended to higher-order cases. Thus, the problem 
of characterizing all 4th- and higher order differential invariants remains open. 
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The geometric interpretation of the new invariants is also an open question (see, 
however, the remark Added in proofs in this paper). 

Note that there is a correspondence between the frame and coframe actions 
of L\ on itself, which is also discussed below. This correspondence allows us to 
compute differential invariants of frames as functions of differential invariants 
of coframes, and vice versa. M. K r u p k a [12] considered 1st order invariants 
of velocities, the objects which are more general than frames. G a r c i a and 
M u n o z [3] described higher order R-valued differential invariants of frames in 
terms of integrals of a canonical differential system. 

2. Equivariant mappings 
with respect to the quotient group 

In this section, we recall some general concepts on equivariant mappings, 
related with a normal subgroup. These remarks will be applied later to the 
differential groups. We follow, with only minor modifications, the paper [8]. 

Let G be a Lie group, K a normal subgroup r : G -> G/K, the quotient 
projection, and let Q be a G-manifold. Denote by [q]K the if-orbit in Q passing 
through a point q G Q. Let Q/K be the set of /('-orbits, and p: Q -> Q/K the 
quotient projection. We define for each h G G/K 

M d * = l> • d * > (*) 
where g G G is any element such that r(g) = h. (1) defines a left action of G/K 
on Q/K, which is said to be induced by the action of G on Q. 

The action (1) is defined correctly. Indeed, if T(g') = h = r (g ) , then there 
exists an element k G K such that g' = k-g.lf [q']K = [q]K, then there exists an 
k' G K such that q' = k'-q. Thus, [g'-q']K = [k-g-k1-q]K = [k-g-k1-g~x -g-q]K = 
[g -q]K, since k-g-k' • g~l G K because K is a normal subgroup. 

LEMMA 1. Assume that the group G/K acts on a set M on the left. Let 
F: Q -> M be a mapping such that for each g G G and q G Q, 

F(g • q) = T(g) • F(q). (2) 

Then F is of the form 
F = fop, (3) 

where f: Q/K -> M is a uniquely determined G/K-equivariant mapping-

P r o o f . Let p 6 Q/K. Choose q G Q such that [q] = p. Setting f(p) = 
F(q) we obtain, by (2), a mapping / : Q/K -» M. If h G G/K, then f(h-p) = 
f(h-[q)K)=f([g-q]K) where r(g) = h. Thus, f(h-p) = F(g-q) = r(g) -F(q) = 
h • F(q). • 
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LEMMA 2. Let G be a Lie group, K a normal Lie subgroup, and let Q be a 
G -manifold. Assume that the equivalence "there exists k G K such that Q\ — 
k • q2" is a closed subrnanifold of Q x Q. Then the quotient Q/K has an orbit 
manifold structure, the induced left action of the quotient group G/K on Q/K 
is smooth, and 

P(g ' q) = r(g) • p(q). (4) 

If in addition K acts freely on Q, then Q is a left principal K-bundle. 

P r o o f . Since our assumption guarantees existence of the orbit manifold 
structure on the set Q/J-', and of the left principal /^-bundle structure on Q 
([2]), and (4) holds by (1), it remains to show that the group action G/K x Q/K 
3 (^J [O\K) ~~̂  ^ ' [O\K ^ Q/K IS smooth. This is, however, immediately seen by 
using local sections of the submersions p and r . • 

COROLLARY. Let M be a G/K-manifold. Under the hypothesis of Lemma 2, 
each smooth mapping F: Q —I M satisfying (2) is of the form (3), where 
f: Q/K —> M is a uniquely determined smooth, G/K-equivariant mapping. 

3. J e t prolongat ions of Lx
n-manifolds 

In this section, the general prolongation theory of left G-manifolds is applied 
to the case of the Lie group G — Ln = GLn(R). We use the prolongation formula 
derived in [6], and the terminology and notation of the book [9]. 

Recall that the rth differential group Ln of Wl is the group of invertible 
r-jets with source and target at the origin O E M " . The group multiplication 
in Ln is defined by the composition of jets. K1^3 denotes the kernel of the 
canonical group morphism 7Tr,s: Ln —> Ls

n, where r > s > 1. The first canonical 
coordinates a\ ,a\ • , . . . , a\ • • where 1 < i < n, 1 < j , < j 0 < • • • < \ < n, 

J i ' J 1 J 2 ' ' 3i3f-'3-r — — ' — J\ — J 2 — — Jr — ' 

on Lr
n are defined as follows. Let Jra G Lr

n) where a is a diffeomorphism 
of a neighborhood U of the origin 0 G W1 into Rn such that a(0) = 0; in 
components, a = (a1 , a2,..., an). We define 

^n-jSJo*) = DnDH • • • - V ( ° ) • - < k < r • (5) 
The second canonical coordinates b\ ,b\ • , . . ., b\ • • on Lr , where 1 < i < n, 

3i' J 1 J 2 ' ' 3i3i'"3r n^ — — ' 

1 < j x < j 2 < • • • < j r < n, are then defined by 

V^-3S
Jo«) - ^ . . . i ^ - 1 ) , - < * < » • . (6) 

Indeed, al-b3
k = Sz

k (the Kronecker symbol). 

Let us consider a left Ln -manifold P , and denote by TrP the manifold of 
r-jets with source 0 G W1 and target in P . According to the general theory 
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of prolongations of left G-manifolds, TrP has a (canonical) structure of a left 
Lr+1-manifold. To define this structure, denote by tx the translation of Rn 

defined by tx(y) = y — x. Consider an element J Q + 1 Q : G Lr+1, and denote 
ax = tx o a o t_a-i,xx, a(x) = J$ax, A = J r a , and S = J^a. The action of 
L^1 on TrP is then defined by 

J 0
r + 1 a . q = 5 . ( a o ^ - 1 ) = J r ( a . ( 7 o a - 1 ) ) 5 (7) 

where q = J r 7 G T r P , and the dot in the parentheses on the right denotes the 
group multiplication in Ln. 

The left Lr+1-manifold TrP is called the r-jet prolongation of the left 
L!-manifold P. 

4. Frames and coframes 

Let X be an n-dimensional manifold. Recall that an r-frame at a point 
x G X is an invertible T-jet with source 0 G K n and target at x. The set of 
r-frames, denoted by FrX, will be considered with its natural structure of a 
principal Lr-bundle over X. We write FX = F1X] FX is the bundle of linear 
frames. 

Thus, the structure group of FX is the group L^ = GLn(R). FX can also 
be regarded as a fiber bundle with fiber Ln, associated with FX, if we let act 
the group Ln on itself by left translations. Namely this structure of FX appears 
in the theory of differential invariants. The left translation defined by the group 
multiplication Ln 3 ( JQQ, J0 / i) -> J$(a o /L) = J^a o J1 / / G Ln is given in 
the canonical coordinates by pl-(Jl(a o /i)) = ai

k(Jla)pk-(Jlii). We write these 
equations simply by 

V) = a\P
k
3, (8) 

where pl- (resp. a1-) stand for the first canonical coordinates on the fiber Ln of 
FX, (resp. on the structure group Ln of FX). (8) is called the frame action of 
L\ on itself. 

JrFX denotes the T-jet prolongation of FX. It follows from the general 
theory of jet prolongations of fiber bundles that JrFX can be considered as a 
fiber bundle over X with fiber TrLn, associated with i ? r + 1 X . Equations of the 
group action of Lr+1 on T r L ^ can be obtained from (7) and (8). 

An r-coframe at x G X is an invertible T-jet with source x G X and target 
0 G Rn . If T = 1, we speak of linear coframes. The set of linear coframes, denoted 
by F*X, lias a natural structure of a fiber bundle with structure group Ln, as­
sociated with the bundle of frames FX. This structure of F*X is defined by 
the left action of Ln on itself given by pl- (J0( / i o a - 1 ) ) = p^.(jQ^)a^(J0

1cY_1) = 
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_9^(JQ/i)b^(JQCY). As before, it is convenient to express this action by the equa­
tions 

- _ = ? # • (9) 

Here v\ are the first canonical coordinates on the fiber L1 of F*X, and bl are 
fj n ' _ 

the second canonical coordinates on the structure group Ln. (9) is called the 
coframe action of L1 on itself. 

J n 

One can easily compare the actions (8) and (9) of Ln on L1 . Let (5) 
(resp. (6)) be expressed by <_>(</, h) = g • h (resp. ^(gji) = h • g~l). Then 
<5>(_/,/i-1) = <_>(#,/i)-1. If i?: L^ —> L^ is the mapping g -> # - 1 and Lg (resp. 
I? ) is the left (resp. right) translation on Ln by g, then L o i? = i? o i?^, , , 
i-e., RHg)=<doLgo$. 

The r-jet prolongation JrF*X of F"*_Y can be considered as a fiber bundle 
over X with fiber TrLn, associated with Fr+1_Y. Equations of the group action 
of L r + 1 on TrL\ can be obtained from (7) and (9). 

n n n \ / \ / 

5. The 3rd jet prolongation of the coframe action 

Now we investigate the action (7) of the group Ln on TnLn, associated 
with (9). We prove three lemmas which are fundamental for the discussion of 
the corresponding orbit spaces. 

Let U be a neighborhood of the origin 0 E l n . Let a be a diffeomorphism of 
U onto a(U) C W1 such that a(0) = 0. Then a(x) = Jlax, where ax = tx o a o 
t_a-i(xy Let 7 : U -» L^ be a mapping. We denote VK-c) = a(x) • 7 ( a - 1 (2:)), 
where x £ a(£/) , and the dot on the right hand side means the multiplication 
in the group L1 . In coordinates, 

P^(x)) =p){a{x)->y{a-l(x))) = plMa~x (x)))^{a(x)) . (10) 

Note that in this formula, 

bk
j{a(x))=^(J1

0ax)=ak
j(J

1
0a-1) 

= Dj(a^)k(0)=Dj(ta-l{x)°a-'ot_x)
k(0) 

= ^-*_-(«)((a_1 °*-*)(0))I^(a-7Ht-*(0))IV-x-(0) 
= ^Dq(a-1r(a;)«5] = Dj(a-1)fc(2;). 

( П ) 

Now the chart expression of the coframe action is obtained by expressing the 
r-jet JQIJ; = Jr+1a • Jr7 (7) in coordinates. 

Consider the case r = 3 . Our aim is to compute the 3-jet Jfy = J^a • J^7 
in the associated coordinates on TnLn and Ln. 
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LEMMA 1. The group action of Ln on TnLn induced by the coframe action of 
Ln on Ln is defined by the equations 

p)=pib)> 
p),k=piAbSj+pibu, 
p),u=pi^tw+pi,Mib)+bibh+Wk)+pibh, 

P),klm = PUwWWj 

+pi,tu((bLblbS
J+6?Oi+brbtkbU)+WW+blb)i+Wk)) 

+ P\AbklJ>i + Km^l + btklb)m + b%m + b\mb)k + b\b)km + ^kl) 

+ Pib)klm-
(12) 

P r o o f . Since the proof is routine and long, we shall only verify the first 
twTo equations. The first equation (12) is immediately obtained by taking x = 0 
in (10). To get the second equation, we use the definition of the canonical coor­
dinates on TnLn and on L* , and apply (11). We obtain 

P } ; / ( J 0 » = o^oVXO) 

= D.(pfc o 7 o a-1)(0)bk
j(J

l
0a)+pi^(0))Dl(b

k
j o a)(0) 

= Ds(p\ o ^ f O ^ f a - Y ^ ^ a ) + P f c ( 7 ( 0 ) ) r V ^ . ( a - 1 ) * ( 0 ) . 

Substituting x = 0 yields the second equation (12). 
To get the remaining equations, we differentiate (10) two resp. three times, 

and then substitute x = 0. • 

Now we restrict the action (12) to the subgroups K^1, K^2, and Kn^ of 
Ln. The following result is fundamental for the discussion of the corresponding 
orbit spaces. 

L E M M A 2. 

(a) The group action of K^1 on TnLn induced by the coframe action of L1 

on Ln is defined by the equations 

p)=p)> 

p),k=p),k+pib)k, 

p),ki=p),ki+PMI + pi,kb)i+pi,fisjk+pib)ki> 

Pj,klm =Pj,klm (13) 

+ P),ksbSlm + P),slblm + Pi,klh)m + PismKl + Pi,kmb)l 

+ Pi,lm
b)k+P),Alm+Pi,tb\m

b)i+Pi,tb\lb)m +Pi,kb)lm 

+ P'sAA + P\,lb)km + Pi,mb)kl + Pib)klm • 
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(b) The group action of Kn>
2 on T*L\ induced by the coframe action of Ln 

on Ln is defined by the equations 

v)=v): 

Pj,k = Vj:k > 
(14) 

v),ki=Vl

jM+Vl

sb
s

jkn 

Viklm = v)Mm + tfj/kim + Vl,kb
s

jlm + Vlibs

jkm + Vimbs

jkl + V\bs

3klm • 

(c) The group action of IT*'3 on T 3 L I induced by the co frame action of Li 
T\ Tv Tt * •* T\ 

on Ln is defined by the equations 

Pj =PІ 

Pï,k =PІ 

ћм =p) 

k > 
(15) 

PjMm — Vj,klm +Vsbjklm • 

P r o o f . 

(a) We take b) = Sj in (12). 

(b) We take b)k = 0 in (13). 

(c) We take b)kl = 0 in (14). • 

COROLLARY. Each of the actions (13). (14), and (15) is free. 

P r o o f . Taking p) = p) , p)k = p)k, p) kl = p)kl, p)klm = p)klm in either 
of these actions yields the identity of the corresponding group. • 

Now we describe orbits of the group actions (13), (14), and (15). Let us 
introduce some notation. Using the second canonical coordinates on TnLn, we 
denote by qk the inverse matrix of the matrix p\\ thus, qk: TnL\ —> R are 
functions such that q]p) — 5). 

Sn denotes the vector subspace of the tensor product (g)2Mn* = Mn* <g> Mn* , 
defined in the canonical coordinates on W1 by the equations 

xjk+xkj=0. (16) 

Sn denotes the vector subspace of the tensor product (g)3En* , defined by the 

equations 
xijk + xikj = ° > xijk + xkij + xjki = ° • ^ 1 7 ) 

Similarly, Sn is the vector subspace of the tensor product ® 4 R n * , defined by 

the equations 

Xjklm+Xjlkm — ° ' Xjklm~^Xljkm + Xkljm = ^ ' Xjklm+Xjmkl+XjlmU ^ "' 
(18) 
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Special notation for symmetrization and antisymmetrization of indexed fam­
ilies of functions through selected indices is needed. Symmetrization (resp. an­
tisymmetrization) in some indices i, j , k,... is denoted by writing a bar (resp. 
a tilde) over these indices, i.e., by writing i, j , k,... (resp. i,j, k,... ). 

Finally, we introduce the following functions on TnLn: 

Ijk\Pb'Pb,c>Pb,cdiPb}cde) = Pj,k ' 

Ijklm\PbiPb,ciPb,cdiPb,cde) =P),klm ~ Qn\Pj,sPk,lm ~P~k,sP~jJm +P~l,mPj,ks 

+ PlinP),sl +PljP)rsTn
+PlrnPi-sJkl +P-jjVlkJ 

+ WMM&U +PllPim+PtmPil) 
+ pU(Phpl-n+PllPlm +Pi,mPll)) 

+ qnVuPij(P],lPim +PlmPij) 

+ QnQu^MMm +PllPim +PlmPt,i) 

+ Pb^hPlm+P?jPU+P?^Ph))' 
It is easily seen by verifying equations (16) (resp. (17), resp. (18)) that in canon­
ical coordinates, the functions P-h (resp. P-kl, resp. Ijklm) define a mapping of 
T*Ll

n into W1 ® Sn (resp. W1 <g> S^, resp. E n <g> S£). 

L E M M A 3 . 

(a) Tv^'1 -orbits in TnLn induced by the coframe action of Ln on Ln are 
defined by the equations 

O CJ ' 

Ijk\Pb>Pb,ciPb,cdiPb,cde) ~~ Cjfc ' / - I Q X 

Ijkl\PbiPb,c'Pb,cdiPb,cde) = Cjkl ' 

Ijklm\Pb)Pb,ciPb,cdiPb,cde) = Cjklm ' 

where cj, cr^, c!^, c ^ / m G R are arbitrary constants such that det c!-^ 0. 

(b) Kn>
2-orbits in TnLn induced by the coframe action of Ln on Ln are 

defined by the equations 

vl- = cl-Pj CJ ' 

Pjk = cjk ' 

Ijkl(PbiPb,c'Pb,cdiPb,cde) = C)kl ' 

Ijklm\PbiPb,ciPb,cdiPb,cde) = Cjklm. " 
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(c) Kn>
z-orbits in TnLn induced by the coframe action of Ln on L\ are 

defined by the equations 

p) 

p)k 

P)ы 

Cjк ' 

= C Jкl > 

^jklm\Pb->Pb,c^Pb,cd^Pb,cde) ~ Cjklm' 

P r o o f . 

(a) Consider the action (13). Writing this action in the form 

+ PW 

pj=p. 

Pj,k = Pj,k ^ ťsujk 

P),kl = Pj,kl + Xj,kl + Psbjkl > 

Pj,klm = Pj,klm + Xj,klm +Psbjklr< 

where 

xUi=p)Ai+pjs,kbS
Ji+pi,ibjk' 

Xj,klm = P),ks lm +Pj,slKm + Ps,kl Jm + Pj,smKl + Pl,kmbjl 

+ PÍs,lJ>$jk+P)Alm +PÍ,tbímbh+PÍ,tbtklbJm+PÍ,kbS
j 

+ PlAm^jk + Pi.tfkm + PÍ,mbjkl ' 
we get from the first equation 

lm 

(20) 

(21) 

(22) % = -i -
and from the remaining ones 

bjk = <isi(pik-pi-k)> 
bhi = ti(P3,kI-Pj,kI-4,kl)> (23) 

bs =ns(f)^--- — 7 ) - - - _ — v - - - ) jklm Vi\rj,klm ^j,klm ^j^klm' ' 

Substituting for bs-h, bs-kl, bs-klm (23) in (20) and using (22) we obtain after a 
long and tedious calculation 

Ijk\PbiPb,ciPb,cdiPb,cde) = Ijk\PbiPb,ciPb,cd'Pb,cde) > 

^jkl\Pb->Pb,c^Pb,cd^Pb,cde) = *jkl\Pb> Pb,c>Pb,cd'Pb,cdr) > 

Ijklm\Pb->Pb,c->Pb,cd->Pb,cde) = Ljklm\PbiPb,ciPb,cd'Pb,cdc) • 

With an obvious convention, these equations are written in the form 

PJ=PІ> 
P 
Âjк 

P 
Âjk> 

P — P 
jki — Ljki > 

jklm P 
jklm 

(24) 
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Indeed, these equations mean that the functions p) , Jj k, I%. kl, Jj klm (19) have 

the same values at the transformed points (P£,p£ C,P£ cd->Pb cde) ^ ^n^li a s a t 

the initial points {p),P)^P),kiiP),kim) e TnL
n or, which is the same, that they 

are constant along each K*'1 -orbit in T^Ln. 

Since the system (23), (24) is equivalent with (13), assertion (a) is proved. 

(b), (c) We proceed in the same way. • 

6. 3rd order invariants of coframes 

Consider a point in TnLn whose initial coordinates satisfy p\ k = 0, p-. kj = 0 

and p\ kj7n = 0. If bs-k, Mkn bs-klrn are coordinates of an element of the group 

Kn>
1, then by (23), the transformed point whose coordinates are denoted by p) , 

Pi,*' Piki> Pikim satisfies 

b]k = tiPik > bUi = «i (P j , t r - XJ ,H) i u)kim = «i (Pikim - xikiJ, (25) 

where by (21), 

v?---=: vl- b-- + vl -b---\-vl -b--Xj,kl Pj,sukl ^ Ps,kujl ^ Ps,lujk ' 

v- -- = »- - b- + L>- -b- + vl —b- -4- vl- b-- 4- vl - b--Xj,khn Pj,kslm ^ Pj,slUkm ^ PS,klUjm ^ Pj,smUkl ^ PS,kmUjl 

+ Psjmb]k + PjAlm + Ps,kb3lm + < [ 6 ] k + Ps,mb]M ' 

Using the first two equations (25), we get after some calculation, 

AM = HiPijPtj+p\pii+P;>IJ) > 

{•j ,klm = WÁPijXІjrn+PІiXІ^+PІiXUrn+PІŕhXjм) - ЧPІfňЦtk • 

Now consider the product Ln x ( E n eg) S°) x (W1 eg) S*) x (E n <g> 5£) x Jf^1 

as a trivial principal JT*'1-bundle with base Ln x (En eg Sn) x (En ® Sn) x 
(En (g S^). We can now summarize the discussion of Section 5 in the following 
three theorems, describing differential invariants on TnLn with values in Ln-, 
Ln-, and L^-manifolds. 

T H E O R E M 1. 

(a) The coframe action defines on TnLn the structure of a left principal 
K**1-bundle. 

(b) The mapping -0: Tz
nL\ -> L\ x (Mn <g>S£) x (Rn ®Sn) x (En (gS^) x K**1. 

defined in components by 

is an isomorphism of left principal K^1 -bundles. 
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P r o o f . 
(a) Since we have already proved that the action (13) of Kn>

1 on TnL
l
n is free, 

in order to show that TnLn is a principal Kn>
1 -bundle it remains to show that 

the equivalence "there exists an element J^a G Ln such that J^ = Jfa- J^v 

is a closed submanifold in T^Ln x T^Ln. However, using (13) in the form of 
(23), (24), we see at once that this submanifold is defined by the equations 

v)(Jh) -vph) = o, pjk{fh) - pjk(Jh) = o, 

rjkl'Jfr) - i}kt{Jh) = o, i}kiMh) - J)kim(J'h) = o, 
and is therefore closed. 

(b) This assertion can be proved by a direct computation. • 

Consider the product TnLn x (Rn <g> Sn) x (Rn ® Sn) x K^2 as a trivial left 
principal / ( ^ - b u n d l e with base T\L\ x (En ® Sn) x (Rn <g> S2

n). 

THEOREM 2. 

(a) The coframe action defines on TnLn the structure of a left principal 
K%2-bundle. 

(b) The mapping ^ : T*Ln -> TnL
l
nx (Rn ® Sn) x (Rn ® S2

n) x ICn>
2. defined 

in components by 

^ = (P>i,fe, <lUjkl> «»7/wm> 5j> °> h)kV b)klJ > (27) 
is an isomorphism of left principal K^2-bundles. 

P r o o f . We proceed as in the proof of Theorem 1. • 

Finally, consider the product T2Ln x (Rn ®S2)xKn>
3 as a trivial left principal 

7^>2-bundle with base T2Ll
n x (Rn ® S2

n). 

THEOREM 3 . 

(a) The coframe action defines on TnLn the structure of a left principal 
K^3-bundle. 

(b) The mapping ip: T*Ln -> T2Ln x (Rn ® S2
n) x JC^'3; defined in compo­

nents by 

i> = (pj,p}, f e ,p},H,9;I;Wm ,^,o,o,6} f c ;Tn), (28) 

is an isomorphism of left principal K^-bundles. 

P r o o f . We proceed as in the proof of Theorem 1. • 

Theorems 1, 2, and 3 say that every 3rd order differential invariant of 
coframes factors through the corresponding bundle projection (see (26), (27), 
(28)). Consider the components of the bundle projections defined by p1-: 
T'^n -+ L\, / ; , : T\L\ - , K» ® S°n, Fjkl: TnL\ --> W ® S\ and Fjklm: 
Tn\L\ -> W1 ® Si. We have the following results. 
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3RD ORDER DIFFERENTIAL INVARIANTS OF COFRAMES 

COROLLARY 1. The mappings p1-, Is-k, Is-kl, Ijkim represent a basis of 3rd 

order invariants of coframes with values in left Ln-manifolds. 

COROLLARY 2. The mappings pl-, pljk, P)ki, Ijkim represent a basis of 3rd 

order invariants of coframes with values in left Ln-manifolds. 

COROLLARY 3. The mappings pl-7 P)k, ISjki, Ijktm represent a basis of 3rd 

order invariants of coframes with values in left Ln-manifolds. 
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A d d e d in proofs: 

In the paper: 
[Krupka M.: Natural operators of semi-holonomic frames. In: Proc . of 19th Win­
ter School of Geometry and Physics, Srni (Czechia), 9-16 January, 1999. Rend. 
Circ. Mat. Palermo (2) Suppl. (To appear)] 
the reader can find a discussion on the geometric meaning of invariants of frames 
and coframes. 
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