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MEASURES OF NONCOMPACTNESS 
IN BANACH SEQUENCE SPACES 

JOZEF BANAS*) 1 ) — ANTONIO MARTINON **) 2) 

ABSTRACT. We construc t a measure of noncompactness in the sequence space 
lp(Ei) which turns out to be regular but not equivalent to the HausdorfFmeasure 
of noncompac tness. Apar t from that a formula for the Hausdorff measure in the 
sequence space co(E») is derived. 

1. Introduction 

The notion of a measure of noncompactness turns out to be a very important 
and useful tool in many branches of mathematical analysis. The theory con­
nected with this notion was initiated b y K u r a t o w s k i [12] and D a r b o [7], 
but the main applications of measures of noncompactness were pointed out by 
S a d o v s k i i [15], A m b r o s e t t i [2], N u s s b a u m [14] and D a n e s [6], 
among others. The current state of this theory and its applications are presented 
in the books [1, 3], for example. 

In this paper we shall study measures of noncompactness in some Banach 
sequence spaces. 

At the beginning we establish some notation. 

Assume that E is a Banach space with the norm || • || and the zero element 
6. By A'(a;, r) we denote the closed ball centered at x and radius r. The unit 
ball K(8, 1) will be denoted by BE or shortly by B. Moreover, X , ConvX 
denote the closure and the convex closure of a set X, respectively. 

Finally, denote by VJIE the family of all nonempty and bounded subsets of 
E and by *J\E its subfamily consisting of all relatively compact sets. 
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DEFINITION 1. A function fi: 9JlE —> R+ = [0,oo) will be called a measure 
of noncompactness in E if it satisfies the following conditions: 

i° li(X) = o <=> x emE, 
2° X CY = • fi(X)<fi(Y), 
3° //(Conv X) = fi(X), 
4° fi(x UY) = m*x{n(X), fi(Y)} , 
5° fi(X + Y)<^(X) + ^(Y), 
6° n(cX) = \c\fx{X), ceR. 

Notice that in book [3] measures of noncompactness defined above are called 
regular. 

R e m a r k 1. Let us mention that Definition 1 implies that the measure /J, 
has also the following property: 

7° If Xn D Kn+i a nd Xn = Xn for n = 1,2,. . . and if lim /i(Xn) = 0, 
n—•oo 

oo 

then the set f] Xn is nonempty. 
n = l 

This fact may be proved in the same fashion as Theorem 5 in [4]. 

Recall that the functions x-> I- ^E —> -R+ defined by 

X(X) = inf{r > 0: there exists a finite set Y C E such that X CY + rB}, 

I(X)= sup {inf{||x i — a:i||,-: i ^ j , ij = 1,2,. . . }} 
( -n)CX 

are measures of noncompactness in the sense of Definition 1 possessing also some 
additional properties [1]. For example, x(B) — 1 • 

The function x 1S s a id to be the Hausdorff measure and it seems to be the 
most convenient in applications (cf. [1, 3]). The function / is referred to as the 
Istratescu measure of noncompactness. Recall that this function was introduced 
b y l s t r a t e s c u in [9]. In paper [5] D a n e s raised the question whether I 
is a measure of noncompactness in the above defined sense. 

This question was answered in the affirmative by E r z a k o v a [8] (cf. also 

[i])-
Let us observe that the measure \ ar-d I are equivalent, i.e. the following 

inequality holds 

X(X) < I(X) < 2X(X) (1) 

for any X G WlE (cf. [1]). 
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2. Auxiliary facts concerning Banach sequence spaces 

Assume that (.E;, || • ||,) is a sequence of Banach spaces. Denote by lp(Ei), 
or briefly by lp, 1 < p < oo, the space of all sequences x = (#i) , X{ G Ei 

oo 

for i = 1,2,. . . such that ^2 \\xi\\P < °°- Similarly, let c0 = co(Ei) denote 
t = l 

the space of all sequences x = (z i ) , Xi G Ei with the property ||#t||t —> 0 as 
i —• oo. It is well known [11, 13] that both lp(Ei) and c0(-Ej) form Banach 
spaces under the norms 

/ °° \ 1/P 

^ i = i ' 

\\x\\0 =max{||x t-|| t-: i = 1,2,. . . } , 

respectively. Similarly we can define the space l°°(Ei). 
In the case when Ei = E for all i = 1,2,. . . we shall write lp(E) and co(F^). 

Such a case was discussed in [13], for example. 
For further purposes denote by pn the projection operator pn: lp(Ei) —> En 

(or pn: c0(Ei) -> En), pn(x) = pn(xu x 2 , . . . ) = xn (n = 1,2,. . . ). 
Moreover, let us recall the following theorem [13]. 

THEOREM 1. A set X C lp(Ei) is relatively compact if and only if 

a) X is bounded, 
b) the set pn(X) is relatively compact in En for any n = 1,2,. . . , and 
c) for every e > 0 there exists a positive integer n0 such that 

oo 

S ll̂ -ll? < £ / o r a " x — (xi) £ -^ whenever n > no . 
t-=n 

3. Measures of noncompactness in lp(Ei) and co(-Ei) 

In this section we introduce rather convenient formulas for some measures of 
noncompactness in the Banach sequence spaces lp(Ei) emd co(F'i). To do this 
assume that x* 1S ^ n e HausdorfF measure of noncompactness in the space Ei, 
i = 1,2,. . . and let \p denote HausdorfF measure in the space lp(Ei). Further, 
for a set X G 9Jt/p let us denote 

a(X) = sxip{Xi(pi(X)): i = l , 2 . . . . } , 

HP(X) = max{a(X), b(X)} . 

Then we have 

499 



JOZEF BANAS — ANTONIO MARTINON 

THEOREM 2. The function jip is a measure of a noncompactness in the space 
lp(E{) such that 

HP(X).<xP(X) 

for any X G 9Jt/p . 

P r o o f . The proof of the first part is very simple and is therefore omitted. 

To prove the second part denote Xp(X) = r. Then for an arbitrary e > 0 
we can find a finite set Y C lp such that X C Y + (r + e)B\P . Hence, using 
the equality fxp(BiP) = 1 we infer that fJ>P(X) < r + e. The arbitrariness of e 
completes the proof. 

In what follows we show that there does not exist a constant c > 0 such that 

CXP(X) < fiP(X) (2) 

for any X G Utt/p , provided the spaces .E,- (i = 1,2,. . . ) are assumed to be 
infinite dimensional. 

Consider namely the sequence of subsets of lp(E{) defined in the following 
way 

Xn = {x = (xu : r 2 , . . . , s n , 0, 0 , . . . ) : Xk G BE* for k = 1,2,. . . , n } . 

Obviously, we have 

Hp(Xn) = 1 (3) 

for any n = 1,2,. . . . 

On the other hand, by the Riesz lemma (see the improved version in [10]) 
for any i , 1 < i < n, we can select a sequence (xk)k=i,2,... of points from BE{ 

such that ||x^ — xJjJI > 1 for k ^ m, fc,m = 1,2,.. . . 

Now, let us fix a natural number n and consider the sequence (xk) of points 
from Xn of the form 

x = (xk, x f c , . . . ,#£, 0, 0 , . . . ) , 

where k = 1,2,. . . . For k ^ m we have 

^ i = i ^ 

what implies that I(xn) >nl'p. Consequently, in virtue of (1) we get 

XP(Xn) > \ n ^ . 
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Combining this inequality and (3) we see that the inequality (2) does not hold 
for any c > 0. 

R e m a r k 2. In 1978 K . G o e b e 1 raised the question if each regular 
measure of noncompactness (i.e. a measure of noncompactness in the sense of 
Definition 1) has to be equivalent to the Hausdorff measure x (c^- a - s o [3])-
The example of the measure \iv described above answers this question in the 
negative. 

In what follows we shall deal with a measure of noncompactness in the space 
co(Ei). Let us denote by %o the Hausdorff measure of noncompactness in Co . 
Next, let fio: 9JtCo —> R+ be the function defined by the formula 

fio(X) = max{a(.K), c(X)} , 

where a(X) was defined previously and c(X) is given by 

c(X) = lim ( sup (max{||xjt||fc: k>n})). 
n -"°° V x=(x,)6XV n 

Then we have the following theorem. 

T H E O R E M 3 . xo(-Y) = \io(X) for any X e 9JlCo. 

P r o o f . First, let us observe that fio(BCo) = 1. It is also easily seen that 
the function /io satisfies the conditions 2 ° - 6° of the Definition 1. Moreover, 
from the definition of fio it follows that //o(-0 = 0 for any finite subset Y of 
co(Ei). Thus, similarly as in the proof of Theorem 2 we infer that 

fi0(X)<Xo(X). (4) 

In order to prove the converse inequality let us denote fio(X) = r. Then, for 
an arbitrary e > 0 we can find a positive integer n such that 

\\xk\\k<r + e * (5) 

for any k > n and for each x = (%i) E X. 

On the other hand Xi (Pi(X)) < r for i -= 1,2,. . . . So, fixing k, 1 < k < n, 

we can find a finite (r + e)-net {j/i > 2/2>-• • >3/Jfc } of the set Pk(X) in the space 

Ek. 

Further, consider the set 

Y={y = (y1
il,yl,...,yZA<>,---): l < * i < 9 i , 1 < **< «* , . . . , 1 < i „ < ? „ } . 
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Obviously, Y is a finite set consisting of q\q2 .... qn elements. Observe, that for 
an arbitrary x = (xi) E X we can find y = (yjx, y? 2 , . . . , y t", 0, 0 , . . . ) E Y 
with the property 

max{||xjb - y f j | : l<k<n}<r + e. 

Hence, keeping in mind (5) we deduce that for any x E X there exists y € Y 
such that 

\\* ~y\\o <r + e, 

which means that Y is a finite (r + e)-net of the set X in the space co(Ei). 
Thus 

Xo(X)<tio(X). 

This inequality in conjunction with (4) completes the proof. 

R e m a r k 3. Let us notice that in the classical cases of lp(R) and co(K) 
both fip and jio are equal to the HausdorfT measure of noncompacteness (cf. 
[3]). 
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