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ADJOINT OPERATORS 
AND BOUNDARY VALUE PROBLEMS 

FOR LINEAR DIFFERENTIAL EQUATIONS 

MICHAL PITUK 

ABSTRACT. The relation between the adjoint operator of degree k , k = 0 ,1 , 
. . . , n of the differential operator 

Lu = r „ ( r n - i . . . ( n (rotx)')' • • • )' + *«, 8 6 R \ {0} 

and the two-point boundary value problem is given. 

Let (a, /?) C R be a compact interval, where R is the set of all real numbers. 
In [3] O h r i s k a introduced the adjoint operator of degree fc(fc = 0 , l , . . . , n ) 
for the linear differential operator of the form 

Lu = rn(rn-i . . . ( n ( r 0 u) ' ) ' • • . ) ' + Su, 

where n : (a,/?) —» R \ {0}, i = 0 , 1 , . . . ,n are continuous functions and 6 is 
a nonzero constant. The purpose of the present paper is to give the relation 
between this new notion and the boundary value problems. 

We introduce the notation: 

LQU = r0u, 

Liu = n (L , _ iu ) ' , i = 1,2, . . . , n , 

Lu = col(L0iz, Liu,..., Ln-\u) (Lu is a column-vector). 

For fc G { 0 , 1 , . . . , n} denote 

LQV = v, 

L\v = rk-^L^v)', i = 1,2, . . . , fc, (if fc > 0) 

££+ iv = r n _i( r n L{>) ' , (if fc < n) 

L\v =rn + f c_i(Lf_1 t ; ) ' , i = fc + 2, fc + 3 , . . . ,n , (if fc < n - 1), 

Lkv =co l (L J t ; ,L 1 i ; , . . . ,L n _ 1 u) . 

A M S S u b j e c t C l a s s i f i c a t i o n (1985): Primary 34B05 
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The differential operator L can be rewritten as 

Lu = Lnu + Su. 

The corresponding adjoint operator of degree k has the form 

Lkv = ( - l ) n L*t ; + Sv for k = 0 , 1 , . . . , n - 1, 

Lnv = (-l)nrn'L
n
nv + Sv. 

We mention that L° is the usual adjoint operator of L. The domain T>(L) 
(T>(Lk)) of L (Lk ) is defined to be the set of all functions u such that L{U 
(Lku), i = 0 , 1 , . . . , n exist and are continuous. 

Let us now define the two-point boundary value problem. Let / : (a,/3) —> R 
be a continuous function, A,j, i?^, c; E R, i = 1 ,2, . . . , / , j = 1 ,2, . . . , n . The 
problem is to find the solution u of 

Lu = f (1) 

on the interval (a,/3), which satisfies 

ALu(a) + BLu(/?) = c. (2) 

(A = (A.,j), B = (Bij) are lxn matrices, c = col(Oi, C2,... , c\) ) . 
By a solution of the equation (1) we mean a function u E T>(L) which satisfies 
(!)• 

For k E {0 ,1 , . . . , n} let <&k(t), t E (»,/?) be the following matrix-function 
of type n x n: 

$f f i(t) = ( - l ) * - f " for z + i = k + l, ( i f k > 0 ) 

**+i,n(*) = r n ( 0 , ( i f k < n ) 

$f f i(t) = ( - l ) 1 ' - * - 1 for i + j = n + k + 1, i^k + l, (if k < n) 

*£,-(*) = 0 for 2 + j ^ {k + l ,n + k + l} . 

For a given matrix D let D T denote the transpose of the matrix D . 

Let k E {0 ,1 , . . . , n} and consider the following problem. Find v E T>(Lk) 
and w E R ' such that 

Lkv = 0, (3) 

ATiv - [*fc]T(a)Lfcu(a) = O, BTw + [^fc]T(l5)Lfcv(^) = O . (4) 

The problem (3), (4) is called the adjoint parametrical boundary value problem 
of degree k ; w is the parameter. The aim of this paper is to prove the following 
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Theorem 1. Let k G { 0 , 1 , . . . , n } . The problem (1), (2) has a solution if 
and only if 

f(t)Lk
kv(t)dt + cTw = 0 

/ 
(5) 

for every solution (v, w) of the problem (3), (4). 

For k = 0 Theorem 1 gives the well-known relation between the boundary 
value problem (1), (2) and its adjoint parametrical boundary value problem ([2], 
p. 172). 

P r o o f of T h e o r e m 1. Let ACn[a,f3] and Ln[a,(3] denote the space 
of functions y : (a, ft) —• R n having absolutely continuous, resp. L1-integrable 
components, where R n is the real n -dimensional space (elements in R n are 
regarded as column vectors). L£°[a,/3] is the space of functions y: (a,/?) —> R n 

essentially bounded and Wn'°°[a,(3] = {y e ACn[a,(3] : y' E L~[a,/3]} . 

The problem (1), (2) can be written in the following vector form: 

where 

Po = 

/ r i , 0, 0, 
0, r2 , 0, 

\ 0, 0, 0, 

= g, (6) 
ß)=c, (7) 

l °' - 1 , o, 0, . . . , 0 ч 
0, o, - 1 , 0, .. ., o 

"oï" 
\6/r0, 

o, 
o, 

o, 
o, 

0, . . 
0, .. 

-, - 1 

-, o) 

î 

£ = Lu and g 

o 
\°j 

V - [ « D . (8) 

We shall consider the problem (6), (7) as an operator equation 

£(« - "v, 

wh re C: ACn[a,/3] —*• Ln[a, 1] x R ' is i linear bounded operator d fin *d by 

m _ ( Po^' + P^ \ 
l ( t ) \AZ(a) + BZ(0))' 
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We obtain the analytic form of the adjoint operator £* : L£°[a,/3] x R' 
Wn

,oc[a,/3] of the operator C from the equation 

/ 

ß 

тiT(Poť + Pî)dt + wт(Aţ(a) + B£(/?)) 

0 . /» 0 

= [ \nT(t)P0(t)+jriT(s)P(s) ds+wTB]t'(t) dt+ [wT(A+B)+frjTP dt] $(a), 

a t a 

which holds for every 77 G L£°[a,/3], w e Rl and £ G ACn[a,{3] (see [1], p. 
14-16 for details). The adjoint equation 

C'(r,,w) = 0 (9) 

of equation (8) is equivalent to the following system of equations for 77 £ 

L™[a,/3] and w e Rl such that 77TP0 G ACn[a,/3]: 

(r)TP0)'(t) - (77TP)(0 = 0 for almost every t G (a,/3), (10) 

(r7TP0)(a) = ivTA, -(T7TPo)(/?) = ^ T B . (11) 

(In virtue of the continuity of P0 and P (10) holds for every t G (a,/3).) 

Because det(P0(r)) ^ 0 on (a,/3), by Theorem 3.12 from [1] £ has a closed 

range in Ln[a,/3] x R ' . So the solvability of (8) can be stated in the form of 

Fredholm Alternatives (see [1], Theorem 3.14), i.e. the problem (6), (7) has a 

solution if and only if the right-hand side (g, c) is orthogonal to each solution 

(77, iv) of the system (10), (11). The equation (10) can be rewritten as follows 

r o ( r i 7 7 i y - ^ = 0 on (a,/3), (12) 

(Wi)'+ rii-i =0 on(a,/3), i = 2,3, . . . , n. (13) 

Let k e {0 ,1 , . . . , n) be fixed. Denote 7̂ 77* = ( — 1)*-1<TU and rjn = v for 
k e {1, 2 , . . . , n} and k = 0, respectively, and express the remaining components 
of 77 from (12), (13) by v . A simple calculation shows that: 

(i) v is a solution of (3), 

( i i ) rjn = Lk
kv, 

(iii) 77TP0 = ([**]TL*v)T. 

The assertion of Theorem 1 is just a modified formulation of the above men
tioned Fredholm Alternative. The proof of Theorem 1 is complete. 
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R e m a r k 1. It follows from the preceding proof that all adjoint problems 
of degree k {k = 0 , 1 , . . . , n) are equivalent to the "functional-analytic" adjoint 
problem (9). 

R e m a r k 2. To determine whether the problem (1), (2) has a solution 
we have to find all solutions (v, w) of the problem (3), (4) for some k G 
{ 0 , 1 , . . . , n). Let 5jb((3),(4)) denote the vector space of all solutions of (3), 
(4). 

Let » ' 1) , t ; l 2 l , . . . , t ;w be a fundamental system of (3), V*(t) = (LkvW(t), 
LkvW(t),...,LkvW(t)). Put v(t) = Vk(t) • b, b € R n . Then (vltw) £ 
Sk ((3), (4)) if and only if 

V [**]T(/?)V*(/?), B T y V j ( } 

If ( rt-i j , i = 1,2, . . . , m is a basis of the solution space of the equation (14), 

then ( f t ; W ^ , i v [ i | ) , t = l , 2 , . . . , m is a basis of 5* ((3), (4)) . By Theorem 1 

the problem (1), (2) has a solution if and only if 

p 

I f(t)J2LkkVU](t)bfdt + cTw[i]=0 for i = l , 2 , . . . , m . 

E x a m p l e (i). Consider the problem 

t2u" - 3tu' + 3u = /(*), (15) 

-4 t i ( l ) + 3ti#(l) + u{2) = c, (16) 

where / : (1,2) —> R is a continuous function and c G R . 
Put Lu = t2u" — %tu' + 3u . The operator L can be written as 

Lu = t3(t(±u)')' - u - r0(t) = ±, n(t) = t, r2(t)=t3 

and the problem (l5)5 (16) can be reformulated as 

Lu = f (17) 

J\Lu(l) + BLu(2) = c (18) 

^hert A = (2,3), ß = (4,2). 
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We shall investigate the solvability of the problem (17), (18) using the oper
ator L2 . We calculate L2v = t(tv')' — v , 

M T « ) V ( « ) = ( - ; - $ ) , 

-Ф 2 ] T (1)V 2 (1), A T N _ 
[Ф2]T(2)V2(2), B т 

/ 1, - 1 , 2\ 
1, 

2, 

V 2, 

1, 3 

2 ' 

h 2/ 

(19) 

Since the rank of the matrix (19) is 3, the equation (14) has only a trivial solution 
and the problem (17), (18) has a solution for all continuous functions / and all 
cE R . 

E x a m p l e (i i). Consider the problem (15), 

-7t i( l) + 5u'(l) + 2u(2) - 2u'(2) = c. (20) 

A simple calculation shows that this problem is equivalent to the problem (17), 
(18) with A = (3,5), B = (0, - 4 ) . 
In this case 

[-Ф 2]T(1)V 2(1), A т 

[Ф2]T(2)V2(2), B т - 2 , 

V 2! 

-1, 
-1, 

1 
2 ' 
l 
2 ' 

\ 
з 
5 
0 

-4/ 

(21) 

The rank of the matrix (21) is 2, the vector col(l,4,1) is a solution of (14), 
4 

v(t) = t H—, iv = l is a solution of the problem (3), (4) (k — 2). Hence the 

problem (15), (20) has a solution if and only if 

L 

//<0(£ + £)d-+c--0. 
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