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HASHIMOTO TOPOLOGIES 
AND QUASI-CONTINUOUS MAPS 

JANINA EWERT 

ABSTRACT. In a topological space (X, T) any ideal V of subsets of X induces 
a new topology T(V) . If Y is a regular space, then under some assumptions 
on V , for any upper T(T>)-quasi-continuous multivalued map F: X —• Y the 
sets of all points at which F is lower quasi-continuous (lower semicontinuous) 
with respect to T(V) or T coincide. If F is compact-valued lower T(T>)-quasi-
continuous, then the symmetrical result holds. 

For a subset A of a topological space (X, T) the symbols c\(A) and int(A) 
denote the closure and the interior of A respectively. 
A set A is said to be: 

semi-open, if A C cl(int(.A)) , [9] 

semi-closed, if X \ A is semi-open, [2, 3], 

T h e union of all semi-open sets contained in A is called the semi-interior of A 

and it is denoted as s in t (A) . The intersection of all semiclosed sets containing 

A is called the semi-closure of A and we denote it by scl (A) , [2, 3]. 

Now, let V be an ideal of subsets of X and let 

B(V) = {U\H: U eT, H G V). 

Then B(V) is a base of some topology T(V) in X and T C T(V). For any set 
A C X by c\v(A), int-p(A), sc\v(A) and s\niv(A) are denoted the closure, 

interior, semi-closure and semi-interior of A in (K , T(V)) . Let us put 

DV(A) = {x G X: U H A £ V for each T-neighbourhood U of x}. 

Then we have A U DV(A) = clv(A) for each set Ac X, [6]. 

Let us consider the following two properties: 

( * ) AeV <=> DV(A) = Q <=> ADDv(A) = <b 

( ** ) If {.Aj;: j G J} is a family of sets belonging to V and each Aj is an 

open set in the subspace ( j{A7 : J € J) 1 then [J{Aj: j G J} G V. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 54C60. Secondary 54C08. 
K e y w o r d s : Multivalued map , Quasi-continuity. 
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1. PROPOSITION. The conditions (*) and (**) are equivalent. 

P r o o f . Let (*) be satisfied and let {Aj : j G J} be a family of ets be­
longing to V such that every Aj is open in | j { ^ j : J ^ J}- For every point 
x G | j{ A7 * J' ^ J} there exist j x G J and an open set U in (X, T ) such that 
:r G U n (j{ A ; : j G J} = Aia: G V. Thus 

(IM: i G j>) n ̂  (IM: i E j ) ) = 0> 
which implies 

LM,: i €.T}€ P. 

Conversely, let (**) hold. Since the implications A £ V = > DV(A) = 0 and 
DV(A) = 0 = > A n D-p(A) = 0 are true, it suffices to prove A n F>T>(A) = 
0 = > A G P . If A n DV(A) = 0 holds, then each point x e A has a 
T-neighbourhood Ux such that Ux n A G V. So {Ux H A: x G A} is a family of 
sets belonging to V and every UxnA is open in the subspace (J{UxnA: x G A } . 
From the assumption A = |J{UX H A: x G A} G V and the proof is completed. 

If an ideal V satisfies (*), then B(V) = T(V), [6]; in the other case this 
equality need not be satisfied. For instance, if (R, T) is the set of real numbers 
with the natural topology, Q is the set of all rational numbers and V is the 
ideal of all bounded subsets of Q, then 

0 0 
R \ Q = \J(-n,n)\[-n,n]nQeT(V) and R \ Q g B(V). 

n =l 

Let us denote 

DV(A) = {x G X: U n A ^ V for each T-semi-open set U containing x} . 

If an ideal V has the property (*), then A U DV(A) = scl-p(A) for each set 
ACX,[4}. 

2. LEMMA. If an ideal V in a space (K, T ) satisfies (*), then for each set 
A C X the sets clT»(A) \ sclp(A) and sint-p(A) \ in tp(A) are nowhere dense in 
(X,T). 

P r o o f . Let x G int (DV(A)) and let TV be a semi-open set containing x. 
Then the set U = int (.Dp (A)) n int(TV) is open non-empty, so U f) A <£ V, 
which implies x G DS

V(A). Thus we have int(Dv(A)) C DS
V(A). Since DV(A) 

is a closed set [6] and Dv(A) \ DS
V(A) C DV(A) \ int(Dv(A)) it follows that 

DV(A) \ DV(A) is nowhere dense. 
Now we have c\v(A)\sc\v(A) = (AUDV(A))\(AUDS

V(A)) C DV(A)\DS
V(A); 
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so c\j>(A) \ scl-p(.A) is nowhere dense. 
For each subset A of (X, T) the following formula is true: 
sint(A) = X \ scl(X \ A); [2]. 
Thus we obtain sintp(A) \ mtv(A) = (X \ s c l ^ X \ A)) \ (X \ clp(X \ A)) = 
cl-p(X\A)\scl'p(X\A), so sint'p(A)\int'p(A) is a nowhere dense set in (X,T). 

Let (X, T), (Y,T) be topological spaces and F: X —> Y a multivalued map 
which assigns non-empty subsets of Y. Following [1], for any set V CY we will 
denote F+(V) = {x G X: F(x) C V) and F~(V) = {x G X: F(x) n V ^ 0} . 
A map F: X —> y is said to be upper (lower) quasi-continuous at a point 
x0 e X if for each open set V CY with F(x0) C V (resp. F ( i 0 ) n V 7̂  0) and 
each neighbourhood U of xo there exists an open non-empty set U\ C U such 
that F(x) C V (resp. F(x) n V ^ 0) for x G Ui, [10]. 

A map F* is upper (lower) quasi-continuous at XQ if and only if for each open 
set V ~ Y with F(x0) C V (resp. F(x0)nV ^ 0) we have x0 G sint(F+(F)) , 
(resp. .ro G sint(F~(V)) ) . 

Any single-valued map f: X —y Y can be considered as the multivalued 
map with values {f(x)} for x G X. In this case both upper and lower quasi-
continuity mean quasi-continuity in the sense of K e m p i s t y [8]. 

For a multivalued map F: (X,T) —> (Y,r) we denote by E+(F,T,T) and 
E~(F,T,T) the .sets of all points at which F is upper or lower quasi-continuous. 
Similarly C~*~(F,T,T) and C~(F,T,T) denote the sets of points of upper or 
lower semi continuity, respectively. When there is no possibility of confusion, 
then the letter r above will be omitted. 
A multivalued map is called upper (lower) quasi-continuous if it is upper (lower) 
quasi-continuous at each point. 

3 . THEOREM. Let V be an ideal of subsets of a topological space (X,T) sat­
isfying (*) . Assume that (Y,r) is a second countable space and F: X -+Y a 
multivalued map. Then: 

(a) If F has compact values, then E+(F,T(V),T) \C+(F,T(V),T) is of 
the first category in (X, T) . 

(b) The set E~(F,T(V),T) \ C~(F,T(V),T) is of the first category in 

(X,T). 

P r o o f . Let {Vn: n > 1} be an open base of the topology r in Y and let 
A be the set of all finite one-to-one sequences of natural numbers. Then A = 
{ak: k > 1} , where ak = (njt,i,njt.2, • • • ,™]fc,j(*)) • Assume Wk = \J{Vnk,i' i = 
1,2,... ,j(k)} . Since F has compact values we have 

00 

E+(F,T(V),T) \C+(F,T(V),T) C IJ smiv(F
+(Wk))\mtv(F

+(Wk)). 
Jt=i 
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It follows from Lemma 2 that E+(F,T(V),T) \ C+(F,T(V),T) is of the first 
category in (X, T). 

Similarly the second part follows from Lemma 2 and the inclusion 

oo 

E-(F,T(V),T)\C-(F,T(V),T) C (J smtv(F-(Vn))\mtv((F-(Vn)). 
n=l 

A set Y with two topologies is called a bitopological space [7]. In a bitopo-
logical space (Y,T\,T2) the topology ri is said to be regular with respect to T2 

if for each ri-open set U and each point x G U there exists a set Ui G Ti such 
that x G Ui C cl(2)(Ui) C U, where cl^(A) denotes the T{-closure of A. 
(Y,T\,T2) is said to be pairwise regular if Ti is regular with respect to Tj for 
i,j e {1,2}, i ^ j . 

A bitopological space (Y, T\,T2) is called pairwise normal if for each Ti -closed 
set A and T2-closed set B with A fl B = 0 there exist disjoint sets U £ T2 , 
V en such that A C U and B C V, [7]. 

4. THEOREM. Let V be an ideal of subsets of a topological space (X,T) satis­
fying TC\V = {0} and let (Y,T\,T2) be a bitopological space in which T2 is reg­
ular with respect to T\ . If F: (X,T(V)) —> (Y,ri) is an upper quasi-continuous 
map, then 

E-(F,T,T2) = E~(F,T(V),T2), 

C-(F,T,T2) = C~(F,T(V),T2). 

P r o o f . The inclusion E~(F,T,T2) C E~ (F,T(V),T2), is evident. So let 
us assume that XQ G E~(F,T(V),T2) \ E~(F,T,T2) . Then there exists a T2-
open set Vo with F(xo) H Vo ^ 0 and a T-neighbourhood U of XQ such that 
every non-empty T-open set U' C U contains a point xf for which F(x') fl 
Vo = 0 holds. Let t/o £ F(xo) H Vo • By the regularity of T2 with respect to Ti 
we can choose a set V G r2 satisfying 

y 0 G V C c l ( i ) ( V ) c V 0 . 

Since x0 G E~(F,T(V),T2) , there exist Ui G T , Hi G V such that Ui\Hi C U 
and 

F(x)flV^0 for x G U i \ H i . (1) 
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On t h e other h a n d there exists a point x\ G U\ VI U such t h a t F(x\) C 

y \ c l ( i ) ( V ) . T h e m a p F: (X,T(V)) —* (y ,Ti) is u p p e r quasi-continuous at 

x\ , so for some U2 C T , H2 G V we have U2\H2 C.U\C\U a n d 

.F(z)cr\cl(1)(V) for xeU2\H2. (2) 

But (Ui \ .Hi) VI (U2 \ H2) ^ 0, hence it contradicts (1) a n d t h e proof of t h e first 

equality is completed. 

T h e second p a r t of t h e proof is analogous, so it is omit ted . 

Using similar arguments we can prove t h e following: 

5. THEOREM. Let V be an ideal of subsets of a topological space (X,T) which 

satisfies T fl V = {0} and let (Y,T\,T2) be a bitopological space. Assume that 

F: (X,T(V)) —> (y,Ti) is a lower quasi-continuous multivalued map. If one of 

the following conditions holds: 

(a) T2 is regular with respect to T\ and the map F has T2-compact values, 

(b) (y,Ti,T2) is pairwise normal and F has T\-closed values, 

then 

E+(F,T,т2) = E+(F,T(V),т2), 

C+(F,T,т2) = C+(F,T(V),т2). 

6. COROLLARY. Let V be an ideal of subsets of a topological space (X, T ) 

satisfying TC\V = {0} and let Y be a regular topological space. For a multivalued 

map F: X —• Y with compact values the following properties are equivalent: 

(a) F: (X, T ) —> Y is upper and lower quasi-continuous; 

(b) F: (K, T(V)) —» y is upper and lower quasi-continuous. 

7. COROLLARY, If V is an ideal of subsets of a topological space (X,T) such 

that TC\V = {0} and (y, Ti,T2) is pairwise regular, then for any map f: X —> Y 

the following are equivalent: 

(a) / : (X,T) —> (Y,Ti) is quasi-continuous for i G { 1 , 2 } ; 

(b) / : (X,T(V)) —> {Y,Ti) is quasi-continuous for i G { 1 , 2 } . 

Denoting by C ( / , T ) t h e set of all points at which / : (X,T) —> Y is con­

tinuous, from Theorem 4 we obta in 
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8. COROLLARY. Let (X,T) be a topological space, V an ideal of subsets of 

X such that T fl V = {0} and let Y be a regular space. If f': X —> Y is a 

quasi-continuous map, then C(f,T) = C(f,T(V)) . 

Let us remark tha t in Corollary 8 regularity of a space Y is not necessary . 

9. E x a m p l e . In the space (R, r ) of real numbers with the na tu ra l topol­

ogy we denote by V\ the ideal of sets of the first category. T h e space (It, T(V\)) 

is not regular. For instance, let x0 = 0 and let W = ( —1,1) \ < —: n > l> . Ev­

idently x 0 G W G T(V\). Every r ( P i ^ n e i g h b o u r h o o d W\ of x0 is of the form 

W\=U\H, where U G r , H G V\ and c\Vl(W\) = c\(W\) = c l (U ) , [6], so 
c\Vl(W\)gLW. 

Now let T = { (a ,oo ) : a G R } U {0 ,R} and let V be an ideal satisfying 

T nV = { 0 } . A m a p / : (R,T(V)) - • (R,T(V\)) is quasi-continuous if and 

only if it is constant . Thus we have C(f,T(V)) = C(f,T) for each T ( P ) - q u a s i -

continuous m a p / . 

Under some assumptions we can characterize regular spaces in te rms of quasi-

continuous m a p s . 

1 0 . T H E O R E M . Let Y be a first countable T\ Baire space. Then the following 

conditions are equivalent: 

(a) Y is regular; 

(b) for any topological space (X,T), an ideal V satisfying T C\V = {0} 

and for each upper quasi-continuous multivalued map F: (X,T(V)) —> 

Y we have C~(F,T) = C~(F,T(V)) ; 

(c) for any topological space (X,T), an ideal V satisfying T fl V = {0} 

and for each lower quasi-continuous multivalued map F: (X,T(V)) —> 

Y with compact values we have C+(F,T) = C+(F,T(V)) ; 

(d) for any topological space (X, T), an ideal V satisfying T fl V = 

{0} and for each quasi-continuous map f: (X,T(V)) —> Y we have 

C(f,T) = C(f,T(V)). 

P r o o f . The implications (a) =-> (b) and (a) =-> (c) are consequences 
of Theorems 4 and 5; (b) = ^ (d) and (c) => (d) are evident. T h u s it suffices 
to prove (d) => (a). Assume tha t Y is not regular. Then there exists an open 
set VVo C Y and a point y0 G IVo such tha t 

cl(V) (£_ IVo for every neighbourhood V of y0. (1) 
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Let {Wn: n > 1} be an open neighbourhoods base at yo such that TVn+i C 
Wn C Wo for n > 1. Let us put 

oo 

B1 = [A C Y: A C Y \ ({y0} U | J F r (W n ) )} U {cl(TVn): n > 0} , 
n=0 

where Fr(VVn) denotes the boundary of the set Wn , and 

oo 

V=[ACY: AC ]jFr(Wn)}. 
n=0 

Then B' is a base of some topology T on Y, V is an ideal and TCiV = {0} . Let 
us consider the map / : (Y, T) —> Y given by f(x) = x for x G Y. Immediately 
we have 

oo 

Y \ ({yo} U ( J Fr(Wn)) C C(f, T). (2) 
n=0 

Let V be a neighbourhood of /(yo)- Then for some ra > 1 we have Wm C V. 
oo 

Hence we obtain y0 G U = cl(TVm) \ U Fr(TVn) G T(V) and f(U) C V. Thus, 
n=0 

taking into account (1) , we have shown 

y0eC(f,T(-p))\C(f,T). (3) 

OO 

Now let x G U Fr(Wn) and let V be a neighbourhood of f(x). Then c\(Wm) 
n=0 

is a T-neighbourhood of x, Wm fl V ^ 0. Since Y is a T\ -space, the condition 
(1) implies that yo is not an isolated point. Thus Wm fl V \ {yo} is an open 
non-empty set. From the assumption that Y is a Baire space it follows that 

U = Wm fl V \ ({yo} U U Fr(TVn)) ^ 0. Moreover we have U G T(V), U C 
V n=o ^ 

c^WVn) and f(U) C V. It means that / is T(P)-quasi-continuous at x and in 
consequence 

OO 

[JFr(Wn)cE(f,T(V)), (4) 
n=0 

where E(f,T(V)) is the set of all pints at which / : (Y,T(V)) —• Y is quasi-

continuous. From (2), (3) and (4) we have that / : (Y, T(V)) —• Y is quasi-

continuous but C ( / , T ) 7- C(f,T(V)). 

Ill 



JANINA EWERT 

In a topological space (Y, T) let f be the Vietoris topology on the set Z(Y) 
of all non-empty compact subsets of Y. For open sets W\,..., Wm C Y we will 
denote 

m 

V(IVi,..., Wm) = {H G Z ( r ) :Bc\JWi<mdBn IV, ^ 0 for i < m }. 
i = l 

If F is a multivalued map defined on a topological space (X, T) with non-empty 
compact values in Y, then it can be considered also as the single valued map 
F: (X,T) -> (Z(Y),T) . For the set E(F,T,T) of points at which this single 
valued map is quasi-continuous we have E(F, T, f) C E+(F, T, r ) H E~(F, T, T) 
and the inclusion cannot be replaced by the equality. 

1 1 . THEOREM. Let V be an ideal of subsets of a topological space (X,T) such 
that Tf)V = {0} and let (Y, r ) be a regular space. If F: X —> Y is a multivalued 
map with compact values which is upper and lower T(V)-quasi-continuous, then 
E(F,T,T) = E(F,T(V),T). 

P r o o f . Assume that x0 G E(F, T(V), f) \ E(F, T, f ) . Then there exists a 
T-neighbourhood U of x0 and f-neighbourhood V(V i , . . . ,V n ) of F(x0) such 
that each non-empty T-open set U' C U contains a point x' for which F(x') £ 

n 

V(V i , . . . ,Vn). Since F(x0) is compact and F(x0) C |J Vi we can choose open 
i = l 

sets W\,..., IVn such that c\(Wi) C V{ for i < n and F(x0) £ V(W\,..., Wn). 
n 

Let us put IV = IJ Wi. The condition x0 G E[F, T(V), f) implies the existence 
i = i 

of sets Ui G T , Hi G V such that 0 ^ Ui C U and 

F(x)eV(W\,...,Wn) for xeU\\H\. (1) 

On the other hand for some point x\ £ Ui there holds K(xi) ^ V(cl(IVi), 

. . . , c l (W„) ) . Then 

F(.T!) 0 cl(VVt) = 0 for some i < n, (2) 

K(xi)c/cl(IV). (3) 

If (2) holds, then using the upper T("P)-quasi-continuity of F at x we can 
choose a non-empty set U2 G T and H2 G V such that 

F(x) C Y \ cl(TVi) for x G U2 \ I!2- (4) 

118 



HASHIMOTO TOPOLOGIES AND QUASI-CONTINUOUS MAPS 

But Ui fl U2 ^ 0 , so (U2 \ H2) n (Ui \ Hi) ^ 0 . Thus (4) is the contradiction to 

(1). 
Now we assume that (3) is satisfied. Since F is lower T(P)-quasi-continuous 

at x\ there exist sets U3 E T, H3 G P with 0 7-̂  U3 C Ui such that 

F(x)n(y\cl(JV)) 7^0 for x G U 3 , \ H 3 . (5) 

Because (Ui \ Hi) fl (U3 \ H3) 7̂  0 the condition (5) is in contradiction to (1), 
which finishes the proof. 

The next results are consequences of Theorem 4 and 5. 

A multivalued map F: (X,T) —• (Y,T) is called upper (lower) c-quasi-
continuous at xo G X if for each open set V C Y with F(xo) C V (resp. 
F(xo)C\V 7-: 0) and Y\V compact, and for each neighbourhood U of XQ there 
exists a non-empty open set Ui C U such that F(x) C V (resp. F(x) fl V ^ 0) 
for x G Ui . A map F is called upper (lower) c-quasi-continuous if it is upper 
(lower) c-quasi-continuous at each point. 

In a topological space (Y,T) the family rc == {V G r : y \ V i s compact} U{0} 
is a topology and the upper (lower) c-quasi-continuity of a map F: (X,T) —* 
(y, r ) coincides with the upper (lower) quasi-continuity of F: (X, T) —> (Y, rc) . 
Moreover we have 

12. LEMMA. / / (Y,T) is a locally compact T2-space} then the bitopological 
space (Y,TC,T) is pairwise regular. 

P r o o f . One can readily see that for any relatively compact set V there 
holds cl(V) = clc(V), where clc denotes the Tc-closure. 

Let U be a r-open set and x G U. Then there exists a set V G r with 
cl(V) compact such that x G V C cl(V) C U. Since cl(V) = clc(V), we have 
clc(V) C U, so r is regular with respect to r c . 

Conversely, let us take U G rc and a point x G U. We can choose a r-open 
set V such that Y \ U C V and x £ cl(V). Furthermore we can choose a 
r-open relatively compact set W satisfying Y \ U C W C cl(W) C V and 
x eY\ c\(W) C U . The set y \ cl(TV) is rc-open and cl (y \ cl(IV)) C U , thus 
rc is regular with respect to r . 

13. THEOREM. Let V be an ideal of subsets of a topological space (X,T) 
with VHT = {0} and let (Y,T) be a locally compact T2-space. If F: X —>Y 
is an upper (lower) c-quasi-continuous multivalued map with compact values, 
then E~(F, T, r ) = E~ (F, T(V), r ) and C~(F, T, r ) = C~ (F, T(V), r ) , (resp. 
E+(F,T,T) = E+(F,T(V),T) and C+(F,T,T) = C+(F,T(V),T)). 

P r o o f . It is direct consequence of Lemma 12 and Theorems 4 and 5. 

119 



JANINA EWERT 

Finally we will consider real functions. A function / : X —> R is said to 
be upper (lower) quasi-continuous at XQ G X if for each e > 0 and each 
neighbourhood U of xQ there exists a non-empty open set U\ C U such that 
/ (x ) < f(x0) + s (resp. / (x 0 ) -e < f(x)) for a; G Ui , [5]. By Eu(f,T) and 
Ei(f,T) will be denoted the sets of all points at which / is upper or lower 
quasi-continuous respectively; moreover E(f,T) is the set of quasi-continuity 
points. Similarly Cu(f,T) and C\(f,T) denote the sets of points at which f is 
upper or lower semicontinuous. 

A function / is called upper (lower) quasi-continuous if Eu(f,T) — X 
(E,(f,T) = X). 

14. THEOREM. Let V be an ideal of subsets of a topological space (X,T) 
such that (*) is satisfied. For any function / : X —> R the sets Eu(f,T(V)) \ 
Cu(f,T(V)), E,(f,T(V))\Q(f,T(V)) and E(f,T(V))\C(f,T(V)) are of 
the first category in (X,T). 

P r o o f . Let us put n = {( -co , a): a G R}U{0,R}, r2 = {(a,oo): a G 
R} U {0,R} and let r denotes the natural topology on R. Then the conclusion 
is the consequence of Theorem 3 applied to the function / : (X, T) —+ (R, T\) or 
/ : (X,T) -> (R,T2) or / : (X,T) -> (R,T), respectively. 

15. THEOREM. Let V be an ideal of subsets of a topological space (X,T) with 
V D T = {0} and f: X —• R any function. 

(a) If f is lower T(V)-quasi-continuous, then Eu(f,T) — Eu(f,T(V)) 

and Cu(f,T) = Cu(f,T(V)) . 

(b) If f is upper T(V)-quasi-continuous, then E\(f,T) = E\(f,T(V)) 

and d(f,T) = d(f,T(V)). 

P r o o f . Assume rx — {(—oo,a): a G R} U {0,R} and r2 = {(a,oo): a G 
R} U {0, R} . The upper (lower) quasi-continuity means the quasi-continuity with 
respect to T\ (or r2 resp.). Since the bitopological space (R , r i , r 2 ) is pairwise 
regular it suffices to use Theorem 4 to the single valued map / . 
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