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Math. Slovaca 34,1984, No. 2,171—176 

THE COVERING OF RINGS 
BY INTEGRALLY CLOSED RINGS 

JURAJ KOSTRA 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

We introduce first some basic notions used in this paper. 
Let K be a field. Let G be a linearly ordered abelian group extended by the 

element oo, greater than any other element of G, and such that 

oo + a = a + oo = oo 
00 = 00 = 00 

for all aeG. 
A mapping v from K into G is called a valuation of the field K if 

1) t>(a) = oo<->0 = O; 
2) v(a • b) = v(a) + v(b) for all a, beK; 
3) v(a + 1>)^min {v(a), v(b)} for all a, beK. 

From the definition of the valuation it follows that v(a + b) = min {v(a), v(b)} 
whenever v(a)^v(b). 

The set of all x e K such that v(x)^0 forms a ring V. This ring V is called the 
valuation ring belonging to v. We shall say that Vcz K is a valuation ring of K if V 
is a valuation ring for some valuation of K. 

The following simple facts will be used. If x e K and V is a valuation ring of K, 
then at least one of the elements x, x~l is contained in V. If both x and x~] are 
contained in V, then x is called a unit of the ring V. If u is a unit and y e V is not 
a unit, then u + y is a unit of the valuation ring V. In particular, if y e V is not 
a unit, then 1 + y is a unit. An element u e V is a unit if and only if v(u) = 0. In 
particular, f ( l ) = v(—1) = 0. 

If V is a valuation ring of a field K, then K — V is multiplicatively closed, i.e. 
a <j. V, b £ V imply a • 6 £ V. 

If a £ V and u is a unit of V, then a • u £ V, since a • w £ V would imply 
auu~x e V, i.e. aeV. 

In the following we shall deal with covering a subring B of K by subrings 
Ax, A2, ..., An of K, i.e. we shall find conditions under which 
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B cz A |UA-»u . . .uA„ 
may hold. 

We first show: 

Lemma 1. / I B , A, , A2 are subrings of K and B cz A , u A 2 , then either B cz A, or 

BczAi. 

Proo f . Suppose that there exist two elements «,, a2 such that A, , a-eB and 

O, e A, — A2 , a2 e A 2 - A, . Since a\ + a2e B cz A , u A 2 we have either a, + a^ e A, or 

O, + a2e A2 . Suppose, e.g. that ax + <72e A, . Then A, + a2 — </, = a, e A, , contrary to 

our assumption. Analogously if ax + t72 € A2 , then «, + a2 — a2 = <7, e A , contrary to 

the assumption. Hence either B c z A , or BczA 2 . This proves our statement. 

Lemma 1 does not necessarily hold if the number of t ' summands , , is larger than 

2. In [4] an example of a field K and subrings B, A\, A2 , A^ of K has been given 

such that B c A , u A 2 u A 3 , while B is contained in none of the A, , A , A,. 

In the following suppose that B , A, , ..., A„ is a finite number of subrings of K. 

In [2] we have shown: If G is Archimedean and 

Bcz A , u A 2 u . . . u A „ , 

where all A, are valuation rings, then B is contained in one of the rings A,. 

In [4] has been shown: If B cz A , u A 2 u . . . u A „ , n ^ 3 , and all A, with the 

exception of at most two "summands" are valuation rings, then B is contained in 

one of the rings A,. 

Let K be a field and A a subring of K. An element x e K is called integral over 

the ring A if there are elements A(), «,, ..., «,, , e A , n ^ l , such that 

x" + a, \x" ' + ... + «0 = 0. 

A ring A is called integrally closed in the field K if each element of K which is 

integral over A is contained in A . 

The purpose of the present paper is to show that the result of [4] (ment ioned 

above) may be sharpened. Instead of supposing that A , , A 2 , ..., A„ with the 

exception of two of them are valuation rings it is sufficient to suppose that 

A i, A2 , . . . , A„ with the exception of at most two of them are integrally closed rings. 

We shall use the following known result 

Theorem 1. ([1], p . 70, Corollary 10.9) 
A subring A of a field K is integrally closed in K if and only if A is an intersection 

of valuation rings of K. 
Note that the intersection of two valuation rings need not be a valuation ring. 

Lemma 2. Let K be a field and B a subring of K containing the unity element of 

K. Let W = { V,, V2, . . . , V,} be a finite set of valuation rings each of which contains 
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a given element b e B. Then there is an element c e B such that c ef]Vj and c is 
i i 

a unit of each V, e W. 
Proof. Denote by vt the valuation of K belonging to V,. Put ba= b and define 

the sequence ft = {/>„, 6,, ..., b,} by the recurrent formula 

6i = l + X\bh 

The supposition 

implies 

Ď o e B n f l V 

k e B n f | V 

and therefore v,(bk)^0 for all u,, i = 1, 2, ..., /. We next show that for a fixed 
chosen v, there is at most one element bs(j)e(3 such that vi(bs(i))>0. 

If for all b„ e ($ we have Vj(bu) = 0, there is nothing to prove. Let bsii) be the first 
term in (3 for which vi(bs{j))>0. Then for any m>s(j) we have 

v,(U Ч>0' 
\ ц - o / 

hence v,(bm) = 0. Hence to any vf there is at most one element bs(i) such that 
^i(b,(,))^0. Since card (3 = I + 1, there is necessarily an element, say b,=c, such 
that v,(c) = 0 for all / e { l , 2 , ..., /}. Hence c is a unit for all V, e W. 

Remark. Let V be an arbitrary valuation ring not containing b. We shall prove 
that the element c chosen from the sequence /3 in the proof of Lemma 2 is not 
contained in V. We show by induction that any b, e(3 is not contained in V. By the 
assumption b0 = b £ V. Let for / < s b, £ V, then from the fact that the complement 
of a valuation ring in the field K is multiplicatively closed it follows that 

FlMv 
'= ( ) 

and so 

&v = 1 + f l /> . £ V, 
hence c f V. 

Theorem 2. Lef B, Ai, A2, ..., An be subrings of a field K containing the unity 
element of K. Suppose that the rings A,, with the exception of at most two of them, 

are integrally closed in K. If Bcz.\jA,, then there is an i (l^i^n) such that 
/ = i 

B e A,. 
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Proof. By Lemma 1 we may suppose that n^3. Without loss of generality we 
may suppose that A^, ..., A„ are integrally closed, hence intersections of valuation 
rings of the field K. Suppose for an indirect proof that BnA,J=B for all ye/V, 

N= {1, 2, ..., n). Again without loss of generality we may suppose that Bc[:[J A, 
I*I 

for any j e N. We shall show that under this condition there is necessarily an x e B 

such that x £ [J A,. 
/ - i 

For any jeN there exists an element «,• such that 

djeBnAj — (JA,-. 
i*i 

Each of the rings {A3, ..., A,,} is an intersection of valuation rings of K. Hence to 
any a, just chosen and to any ring A,, i + \ and / > 2 , there is a valuation ring V,., 
such that A, c VM and a^ VM. The set M = { V , . , | / > 2 , /-?-/} is a finite set of 
valuation rings and, of course, 

A 3 uA 4 u. . .uA„cUV| ' . i / > 2 , /=£/. 

For a fixed a-} let M0 ) be the set of all valuation rings VeM containing a,. If 
M0 ) -£ 0, by Lemma 2 there is a element qeB, c, with the property of Remark, that 
Cj is contained in all valuation rings V e M 0 ) and c, is a unit of each V e M 0 ) . If 
MO) = 0 put c, = ay. Denote 

t/(, = n CJ-
* • - • 

Clearly d()eB. If V=VjoJ() is any valuation ring from M, then by definition 
akl £ V = V,(),,(„ hence q,£ V. Some other cy may be contained in V. The product of 
those c, which are not contained in V is not contained in V (since K — V is 
multiplicatively closed). For those c, which are contained in V the product is a unit 
of V. Since the product of an element not contained in V and a unit of V is not 
contained in V, we have the following result: The element d{) constructed above is 
contained in none of the valuation rings VeM. 

We now consider the following subset of M: 

M ( ) ={V L , | />2 }u {V 2 . , | />2 }u {V , , , | />3 } 

(if n = 3, the last summand is empty) Clearly do^Vi%i for any V,,,eM() and 
A3u . . .uAM is covered by V,,,eM(). 

We next show that there is a positive integer t such that none of the elements 
ar'do, aVd'o, aVd{) is a unit of any VeM ( ) . 

do^ V for any VeM ( ) ; hence for any vM, where y, / run through all admissible 
y, i, there is 
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for positive integers t, =£ t2. Hence for a fixed / e {1, 2, 3} 

for at most one positive integer t̂ . Therefore there is a positive integer t, , , such 
that for any ts^t,,,., we have 

vhi(a, ldli)±Q. 

Now if l = max {tj.u\je {1, 2, 3}, / e { 3 , 4, ..., n} , / > / , / e { l , 2 , 3}}, then none of 
the elements aT'd!,, a2

xd'(), ajxd'() is a unit of any V e M(). 

Put d = da. Clearly d £ | J A,, since for each V e M , rf^V. From de B it follows 
,'=3 

that de A,uA 2 . 
We now finally show that there is an element xeB such that JC £ A,u. . .uA, , . 

There are three possibilities: 

deA\nA2, de A, — A2, deA2 — A,. 

1. Let f / eAinA 2 . Put JC = a3 + d. Then JC£ A , u A 2 u A 3 (For, JC e A, would imply 
a3 = j c - d e A , , JCGA2 would imply A3 = JC — deA2 and JceA3 would imply d = 
j c - a 3 e A 3 , in all cases a contradiction). To show that JC £ A, for / > 3 write 
JC = a3(l + a3"

,d). 
a) Suppose a3~

1J^V3,,. Since «3^V3.. and l + a^'d^V*,, we have JC£V 3 . , 

whence JC £ A,. 
P) Suppose ajxde V3,,. Then 1 + a*xd is a unit of V3,,, since a*xd is not a unit. 

The product of a3£ V3,, and the unit l + a^'d does not belong to V3,,. Hence 
JC £ VXi and so JC£ A,. 

2. Let deA\-A2. Put jc = a2 + d. Then J C ^ A , U A 2 (For, jceA, would imply 
x — d = a2eA\, xeA2 would imply x — a2 = de A2, in both cases a contradiction). 
To show JC £ A, for i > 2 write 

jc = a2(l + a2
xd) 

a) Suppose a2
xd^V2J. Since a2£V2,, and 1 + a2

xd^V2J we have Jc£V2.,, 
whence JC £ A,. 

(3) Suppose a2
xde V2,,, a j ' d is not a unit of V2,,, hence 1 + a2~

1(I is a unit of V2,,. 
The product a2 <£ V2,, and the unit 1 + a2

xd does not belong to V2,,. Hence JC £ V2., 
and x^Ai. 

3. Let deA2 — A,. Put jc = a, + d. Analogously to the case 2 we get 

* * L M , 

Theorem 2 is proved. 
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ПОКРЫТИЕ КОЛЕЦ ЦЕЛОЗАМКНУТЫМИ КОЛЬЦАМИ 

]ит] Ко51га 

Р е з ю м е 

В работе доказана следующая теорема: Пусть В, А,, ..., А„ подкольца с единицей поля К, 

такие что 

Вс=С|А 

и все кольца А,. / = 1, ..., п кроме быть может двух являится цело замкнутыми кольцами. Тогд I 

существует такое кольцо {,, / е {К ..., л}, чтоВ <= А,. 
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