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ON THE OSCILLATION OF SOLUTIONS OF 
yi2H) + By' + Ai(t)y = 0, B<0 

JURAJ MAMRILLA 

In this paper we consider the differential equation 

/2")+By' + A>(t)y = 0, (1) 

where B = constant<0, A,(t)€ C<to, oo). Using the substitution 

2 * j 

< = <p(x)=-yj^x (2) 

we obtain the equation 

y(2n)-2ny' + A(x)y = 0, (3) 

where A(x)e C<q?(t0), °°), Xo = <p(to). Equation (3) and the system of equations 

/ 2 n 2) + 2y(2n 3) + 3 v(2" <> + ... + (2n - 1 )y = ze' 
z" + [A(x)-(2n-l)]e 'y = 0 ( 4 ) 

are mutually equivalent. 
First the existence of oscillatory solutions of equation (3) will be investigated. 

A solution of equation (3) is called oscillatory on (JC0, °°) if it has at least one zero 
point on any interval (x, °°), x>xn and it is called nonoscillatory in the reverse 
case, i.e. if there exists an interval (x, °°), x>xn such that the solution y(x) of (3) is 
not vanishing in any point of this interval. 

The oscillatory properties of solutions of equation (1) for B = 0 were investi
gated in many papers by various authors. For illustration we quote only some of 
them — [1], [4], [5], [6]. The case B > 0 was investigated in the author's paper [2]. 

In the present paper the following lemmas and theorem are proved: 

Lemma 1. Let the coefficients a, fory'= 1, 2, ..., 2m of the differential equation 

ul2m)+a,ul2m-,)+.+a2mU = z(x) (5) 

be (real) constants such that the characteristic equation 
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k2m + aik
2m ' + ... + a2m = 0 (6) 

has not any real roots and it possesses at most one couple of conjugate pure 
imaginary roots Let z(x), x>x» be a concave positive function. Then there exists 
a solution of the equation (5) such that 

u(x) = ̂  + o(\),u'(x) = o(\) (7.) 
a2m 

(r f l im - ' (* ) = 0) or 
X — oc 

u(x) = ̂ - - - ^ + o(\),u'(x)~+o(\) (72) 
«2m «2m «2m 

(if Mm z'(x) = a>0). 

Lemma 2. Equation 

k2n 2 + 2k2" 3 + 3A:2" 4 + ... + (2n -2)k + (2n - 1) = 0 (8) 

has neither real nor pure imaginary roots and at most one couple of roots is in the 
form \±ai, aeR, a£0, i.e. both the number \ + a,iand \ +a2i for 0<\a,\< 
\a2\, a,, a2eR cannot be roots of equation (8). 

Lemma 3. Equation 

k2" A + 2kln " + ... + (n-2)k2 + (n-\) = 0 (9) 

has neither real nor pure imaginary roots for n — even, but it has one couple of 
conjugate pure imaginary roots for n — odd and at most one couple of conjugate 
roots is in the form -\±ai, aeR, a£0, i.e. both the number —\ + ati and 

1 + a2i for 0 < | a i | < | a 2 | , a,, a2eR cannot be roots of equation (9). 

Theorem. Lef v" + At
 u/(x)v = 0 bean oscillatory equation (i.e. its every solution 

is oscillatory) such that UJ(x) = A(x)-(2n - \)>0 and A,=—^ TT-£>0, 

n(2n — 1) 
where e is small arbitrary positive constant. Then every solution of the differential 
equation (3) is oscillatory on (x0, °°). 

R e m a r k 1. If W(x) = A(x) - (2n — \) = 0, then equation (3) has the fundamen
tal system of solutions; two of which are nonoscillatory (yt = e', y2 = xe') and the 
remaining (n—2) solutions are oscillatory. 

R e m a r k 2. This theorem generalizes a sufficient condition of the oscillation of 
all solutions of equation (3) from paper [3] (Theorem 2). The generalization 
concerns both the order equation and the coefficient A(x). 

Proof of Lemma 1. This lemma is proved in [2] (Lemma 1). 
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Proof of Lemma 2. Directly from the characteristic equation (8) it follows that 
the number k = 1 is not its root. Modifying the left-hand side of (8) we obtain 

*2" -2*« + 2».- l 
7j—[)2 = 0 ' k* ( 8 | ) 

Hence we see that equation (8i) has neither real (k£ 1) nor pure imaginary roots. 
In order to prove that there does not exist more than one number a > 0 such that 
\±ai are roots of equation k2n -2kn + (2n — 1) = 0 for A: = 1 + ai instead of (8). 
Then 

(l + a/)2" = l + 2 « a / 

and for the modulus of these complex numbers we get 

(l + a 2 ) " = V l + 4 « V and (1 + a2)2" = 1 + 4 « V . 

Consider the functions 

/ ( a ) = ( l + a 2 ) 2 " - ( l + 4 « V ) and 
g(P) = (\+p)2n-(\+4n2p) with a2 = p. 

Since the function g(P) is convex and gr(0) = 0, g'(0) = 2n —4n2<0, the function 
g(P) possesses at most one root besides the one p = 0. The number /J = 0, i.e. a = 0 
or k = 1 is not a root of equation (8), which we showed above. 

Proof of Lemma 3. Proof of this lemma is analogous to that of Lemma 2. From 
characteristic equation (9) we have that the numbers k e R are not its roots. 
Modifying the left-hand side of equation (9) we get 

**"£ •>"'-"• *•*'• <9'> 
Then if n is an even number, equation (9) has no pure imaginary roots and for n — 
odd it has one couple of conjugate pure imaginary roots. For the proof of the 
second part of Lemma 3, we use the equation k2n — nk2 + (n —1) = 0 for k = 
— 1 + ai, i.e. the equation 

( - 1 + ai)2n = 1 - na2-2nai. 

Hence for the modulus of these numbers we obtain 

(1 + a2)2" = 1 -2a2n + 4a2n2 + a4n2. 

Consider the function 

f(a) = (1 + a2)2" - (1 - 2a2n + 4 a V + a V ) 

or after the substitution a2 = P 
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g((}) = (\ + P)2" -(\-2n0 + 4n2p + n2p2) 

Function g(P) is convex. Since g"(P) = 2n(2n - 1 ) ( 1 + Pf 2-2n2>0 for n > l 
and g(0) = 0, g'(0) = 4n—4n2<0, the function g(P) has at most one zero point 
besides the point /3 = 0. The number P = 0, i.e. a = 0 o r k = — 1 is not the root of 
equation (9), which we shoved at the beginning. This concludes the proof of 
Lemma 3. 

Proof of Theorem. Assume that equation (3) has a nonoscillatory solution 
y = y(x). Using the substitution e "y = u it is evident that to the solution y(x)>0 
there corresponds ii(x)>0, x>x,. We can write the system of equations (4) 
(equivalent to equation (3)) in the form 

„„ » + [ ( 2 7 2 ) + 2 ] „» »+[(2"2-2)+2(273) + 3] (.0.) 

•w(2n 4)+... + [\ + ... + (2n-\)]u = z(x) 

z" + [A(x)-(2n-\)]u = 0. ( 10 ) 

From the assumption of this Theorem we have that the function 

z ( x ) = M ( 2 n - 2 ) + [ Y 2 ' ,
1 " 2 ) + 2 l u(2n , ) + . . . + [ l + 2 + . . . + ( 2 n - l ) ] t . ( 10 ) 

is concave for x>x, and it is either z(x) = k>0 or z(x)<0 for x>x2 = x . 
Investigate now the solutions of equation (10i) with the right-hand side defined by 
(10^). It is evident that u = u(x) is the solution of (10,). 

First of all consider the case z(x) = k>0, x>x2. From the characteristic 
equation corresponding to the first equation (4) and by Lemma 2 we get that the 
characteristic equation corresponding to ( I d ) has only complex roots or one 
couple conjugate pure imaginary roots. In view of Lemma 1 for m = n - l > 0 w e 
can write equation (10,) in the form 

u = u,, u"+c,u',+d,u, = u2, 
u2 + c2u'2 + d2u2 = w,, 

• • (11) 
u'„'2 + c„ 2u'„2 + d„ 2u„ 2=u„ i, 
w"-i+c„ ,u'„ , + d„ xu„ ,=z(x), 

where c„ d, are (real) constants such that D, = d, — l-'J > 0 f o r / = 1, 2, ..., n — 1. If 

the characteristic equation corresponding to (10,) has pure imaginary roots then we 
write the corresponding linear differential equation as the last one in (11). Thus we 
have guaranteed its solution in the form (7i) or (72). Take (7i) (the following 
consideration holds also for (72)) and put it into (102). As a result we obtain 
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-» + [ A W - ( 2 n - l ) ] [ ^ T j + f g ] - = 0. (12) 

Hence and by the assumptions of the Theorem it follows that equation (12) is 
oscillatory. This gives the contradiction with the inequality z(x) ="A:>0, x>x2, 
which implies the nonexistence of solution y = y(x)>0 of equation (3). 

Now consider the case of z(x) being a negative concave function for x > x2. In 
this case it is possible to write the first equation (4) as follows 

{e'[y<2n"4) + 2y<2""6) + 3y(2""8) + ... + (n - 2)y" + (n - l)y]}" + ne'y = e2xz. 
(13) 

Since z(x)<0, considering only y(x)>0 for x>x2, we obtain that the function 

zl(x) = e'[y{2n-4) + 2yi2--6)+... + (n-2)y" + (n-l)y] (14) 

is concave. We can understand relation (14) as a differential equation with constant 
coefficients and the right-hand side Z\(x)e~x, where Zi(x) is a concave function. 

Let Z\(x)~% k, >0, x>x3. According to Lemma 3 the corresponding characteris
tic equation 

*2"-4 + 2*2"-6 + ... + (n-2)i t2 + ( n - l ) = 0 

has complex roots (if n is an odd number it has also one couple conjugate pure 
imaginary roots) but at most one couple roots — 1 ± ai, aeR. Using the substitu
tion e"y = u in (14) we obtain 

M(2"-4) + ( 2 - I - 4 ) M « - 5 > + . . . + [ I + 2 + ... + ( / I - 1 ) ] M = Z,(X). (15) 

With regard to the substitution e'y = u and to the assertion of Lemma 3 and to 
Lemma 1 we have 

M(*) = ̂ V ° ( 1 ) ' u'(x) = o(\) (16) 

(we took the "smaller" solution of (7i)). Putting (16) in e'y = u we obtain 

y(x)>s,e-*, j , = konst>0, x>x*>x3. (17) 

Using (17) and (13) we get hm -;(*) =-oo, which is a contradiction to the 

inequality zi(*)§fci>0, x>Xi. Now it is sufficient to investigate the case of 
z,(x)<0 (z,(x)-concave) x>X3. From (14) we obtain 

[ y " - 6 ) + 2y (2"-8)
+... + (M_2)y] ' ' + ( . I - l ) y = - I(^) (7- ' . (18) 
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Then the function 

z2(x) = y{2n-i) + 2yi2-*) + ... + (n-2)y (19) 

is concave and it is either z2(x)^k2>0 or Z2(JC)<0 for x^x^x,. 
Relation (19) can be understood again as a differential equation with a concave 

right-hand side Z2(JC), x > x4. It is evident that the characteristic equation corres
ponding to (19) has only complex roots (if for n — even there is one couple 
conjugate pure imaginary roots; this characteristic equation is an equation of type 
(9) with the diference that here we have (n-l) instead of n). If z2(x)^k2>0, 
jc = jt5, then we can use Lemma 1 and the obtained solution (7i) (it is sufficient to 
confine ourselves to the solution (7i), which we pointed out several times above) is 

put into (18) (precisely into the expression (n — l)y), whence lim Z2(JC) = —oo. This 

gives a contradiction with z2(x)^k2>0, x^xs. We must again investigate whether 
the inequality z2=-2(*)<0 (z2(x)-concave) for x>xs implies y(x)>0 for X>JC,. 

In this case we write (19) in the form 

[/--•> + 2y(2- ,°) + ... + ( « - 3)y]" + (n - 2)y = z2(x). 

Repeating the same consideration as above we obtain always a contradiction for 
concave functions Zi(x), z*(x), ..., z2n-s(x). It remains to investigate equation 

>'" + 2>' = Z2n-6(jt) ( 2 0 ) 

for the concave function z2„-6(*). K z2n-e,(x) < 0 for x^xN (xs is a sufficiently large 
number), then from (20) it is obvious that y(x) cannot be positive. 

Now consider the case Z2„-6(A:) = Ar2„-6>0, x^xN. In this case we proceed as 
follows: Dividing (20) by x and integrating over (xN, x) we obtain 

where K=(x~1y'+ x~2)(xN). With regard to that J rl
Zim-t(t) d/ = oo and 

lim J (2 r 3 + 2r ,)y(»)dr exist, one obtains either I (2 r 3 + 2 r ' ) y df = » or 

J (2 r 3 + 2r ' )ydr<oo. if the last case holds, then lim (x~ly'+ x-*y\ = + 0 0 i„ 

other words from (21) it follows 

y' + x~ly = xg(x), .--. 
where W 

g(x)=K+ I r'z2n-6dt- f (2 r 3 + 2r ' )> , d / 
J*N JxN 
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and 

lim g(x) = ™. 

The solution of equation (22) has the form 

y(x) = [jj2g(t)dt + y(xN)^x-1, 

for which lim ^-^ = oo. Then y ^ k0x
2 (k0 = const >0 ) . Applying the last inequality 

x—" x 

we get that the integral I (2t 3 + 2f ')y(f) df is divergent as x—>oo. This gives 

a contradiction to the assumption lim I (It 3 + 2f ')y df<oo. Then the integral 

I (2/ 3 + 2f_l)y df = oo and hence also the integral I y(t) At = oo. It means that if 
Zin-6(x)> Ar2„-6>0, there exists the solution y(x) of (20) (which is also the solution 

of equation (3) and we assume that it is positive) with the property I y(t) df = oo. 

Now we easily derive a contradiction. Indeed, from (18) the same procedure by 
which we got equation (20) gives 

[y" + 2y]" + 3y = z2„ 5, (23) 

where z2„ s(x) is a concave negative function for x>xN-i- Just on the basis of the 

proved property y(t) df = oo it follows that lim z5„ *(x) = -oo, which leads to the 
J Jt—»» 

contradiction with Zin-6(x)^k2n-6>0, x^xN-
This ends the proof of the Theorem. 
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о КОЛЕБЛЕМОСТИ РЕШЕНИЙ УРАВНЕНИЯ 

у"~'+Ву + А (1)У = 0, В<0 

Юрай Мамрилла 

Резюме 

В работе доказана теорема: все решения дифференциального уравнения (3) колеблются, если 
тем же свойством обладает уравнение V" + А.,I/(x)V = 0, где 

Пх)=А(х)-(2п-1)>0, д. = - ^ 1 _ ^ - Е > 0 , 

причем Е произвольная положительная постоянная. 
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