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ON A TENSOR PRODUCT
IN INITIALLY STRUCTURED CATEGORIES

JURAJ CINCURA

0. Introduction

Closed categories (see e.g. [4, p. 180]) introduced by Eilenberg and Kelly in
[2] (called there symmetric monoidal closed categories) have been studied inten-
sively and many useful results have been obtained. Thus it is often helpful to know
that a given category is closed.

It is well known that the category of topological spaces and continuous maps is
closed with respect to the “inductive” tensor product (which is obtained by proving
X %Y with the ‘“‘topology of separate continuity’’). The direct generalization of this
closed structure to the initialstructure categories over the category Set (which
coincide with Herrlich’s topological categories over the category Set) is given in
[11, p. 432].

In the first section of this paper, this closed structure is extended to the initially
structured categories in the sense of [5] and shown to be in a certain sense the
smallest possible. In the second section, it is proved that in the category of closure
spaces [1, p. 237] and continuous maps there is (up to a natural isomorphism)
exactly one tensor product (i.e. exactly one structure of closed category). Note that
A (X, Y) denotes the set of all &/-morphisms X — Y and ob &/ denotes the class of
all /-objects.

1. The smallest tensor product in initially
structured categories
First recall the definition and some properties of initially structured category.
1.1. Definition [5]. (1) Let U: of — B be a functor and (A A A))icra source in
A. To say that (a;) is U-initial means that for any source (B i} A.)ier and any
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B-morphism f such that Ua; of = Ub; for all i there is precisely one sd-morphism ¢
such that Uc =f and a;oc =b; for all i eI.

(2) A category s is said to be initially structured with forgetful functor
U provided that there exists a functor U: «{ — Set such that the following hold :

1S1. Any source (X A UA))icr in Set has a factorization (X S uB 3L
UA,);c1such that e is an epimorphism, (Ug;) is a mono-source and (g;) is U-initial.

1S2. U has small fibres, i.e. for every object X in Set there is at most a set of
pairwise non-isomorphic sf-objects A with UA = X.

1S3. There is precisely one sf-object P (up to isomorphism) such that UP is
a singleton in Set.

1.2. Examples [5]. The category I of all topological spaces, the category 7,
of all Hausdorff spaces, the category of all partially ordered sets, the category of all
closure spaces, etc. (with the usual classes of morphisms).

1.3. Basic properties [5]. Let &/ be an initially structured category with forgetful
functor U. Then
(1) U is faithful.
(2) If A, B are f-objects and c: UA — UB is a constant map, then there exists k :
A — B with Uk =c.
(3) The B in 1S1 is determined uniquely up to isomorphism.
(4) If (I1A:, (pi))icr is an A-product, then (U(T1A;), (Up:)): <1 is a Set-product of
(UA))i e, i.e. there exists a bijection m: I1;.;UA; — U(I1; < 1A;) such that Up;om =
q: for all i eI (q::TL,UA;— UA, is the i-th natural projection).
(5) Any non-trivial coreflective and any U-epireflective subcategory of an initially
structured category is an initially structured category (g is an U-epimorphism iff
Ug is an epimorphism).

1.4. Remarks. (1) For the remainder of this section & will be an initially
structured category with forgetful functor U.

(2) Since U is faithful the statement “for f: UA — UB there exists k: A— B
with Uk =f" includes automatically the uniqueness of k.

(3) The natural projections of cartesian products in Set will be always denoted
by ¢, in all other cases by p.

(4) An #-morphism f which forms an U-initial mono-source will be called an
embedding.

We can now start constructing a tensor product in an initially structured category
. We shall use the following notation: Let X, Y, Z besetsand f: X XY —>Z a
map. Then for each ae X f,: Y— U is defined by f.(y)=f(a, y) and for each
beY f°: X— Z is defined by f°(x)=f(x, b).

1.5. Definition. Let A, B be s{-objects. Define A X)B € obH{ as follows : Let $ap
be the class of all maps f: UA X UB — UC, C € obs{ such that for each a € UA and
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b € UB there exist d-morphisms u,: B—C and v°: A —C with Uu,=f, and
Uv® =f". According to 1S1 there exists a factorization (UA x UB s U(SaB) =

UC) of the source $as where eap is an epimorphism, (Ut;);c«,, is a mono-source
and (&)eyas is U-initial. For each pair (A, B) € ob«d make a definite choice of Sap
and eap (and therefore also of (t)). Put AXB = Sas.
In the following we shall always use the notation from 1.5, i.e. eas: UA X UB
— U(A®B) and (&);.y,, for the U-initial source corresponding to $as.

Nowletf: A—A',g: B— B’ be s-morphisms,leth: UA' X UB'— UC belong
to Pa-s-and a € UA. Then (ho(Uf X Ug)). = huraoUg. Since h belongs to & 4.
there exists k,: B—C with Uk,=huw. Then, clearly, U(kiog)
= (ho(Uf X Ug)).. Similarly, we can show that for each b € UB there exists s”:
A —C with Us® = (ho(Uf x Ug))’. Hence ho(Uf x Ug) belongs to %as and
therefore there exists v, =th.wrxuy; AXB—>C for which Uvioeas
= ho(UfxUg). Thus we have the source (Vi)neza.nr With Utio(eas o(Uf X
X Ug)oean = Uvs (eap is bijective — see 1.7.) for all h € Fa-s-. Since (t;) (which
corresponds to $4-p') is U-initial there exists precisely one «f-morphism denoted
by f®g such that Uf®g) = easo(Uf X Ug)oeas and tio(f@g)=vx for all
heSas.

‘AB

UAXUB —————p» UA® B)

Uf X Ug u(t ®g)

Qe -—— ——

UA X UB' B)

AB »U(A
\\:\\‘ ‘///i/
uc Uth

Fig. 1

1.6. Proposition. X: A4 X .o -4 ; (A, B)»AXB, (f,9)—f®g is a functor.
1.7. Proposition: e = (eap): UA X UB— U(A Q) B) is a natural isomorphism.

Proof. Let A, B be s-objects and m: UA X UB — U(A X B) the bijection
mentioned in 1.3.(4). Using the fact that the natural projections q,: UA X UB —
UA, q.: UA X UB— UB belong to ¥as we can verify that m belongs to Fas.
Therefore there exists t,: A Q@B—A XB such that Ut,oess =m. Since m is
a bijection, eap is bijective. The naturalness of e follows from the construction of
f®g. B

The last proposition implies that the properties of the ‘‘indukctive” tensor
product in the initialstructure categories ([11]) like symmetry and associativity
remain valid also for ) in the initially structured categories. Clearly, if P is an
o -object for which UP = {x}, then P is a unit of X).
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Now we shall construct the internal hom functor &£°° X of — o corresponding to

®.
Let B, C be s-objects. Consider the sf-power (C®, (ps)s cus). Then by 1.3. (4)

there exists a bijection mzc: UCY" — U(C™) such that Upsompc =q, for all
b € UB and, evidently, m = (masc) is a natural isomorphism. We know that the map
Usc: A(B, C)— UC" is injective (1.3. (1)). By 1S1 there exists a factorization

A(B, C) X U[B, C] Dpe U(C") of the map mipcoUsc where [B, C] is an

A -object, vpc is a surjection and ksc is an embedding (see 1.4. (4)). For each
(B, C)eobsd x obd choose [B, C], vsc and ksc. Since mgc o Upc is injective vpc is
bijective.

upB,C
vBe B.c] Ukge
V] m
AB,C) B  sucus BC _  »u(c'®)
A(f.g)l 1Ug”’ 1U(g‘")
. U Yol T mea' -~ . .
AME.C) 8¢ »uycve BC »U(C'UB)
VB‘C .. UkB‘C‘
u[B.c’]
Fig. 2

Now consider the diagram where f: B’— B, g: C— C' are arbitrary «-morphi-
sms (and as usual A(f, g) (u) = gouof). The top region, the bottom region and
the left region obviously commute. The right region also commutes by the
naturalness of m. Since kp.c is an embedding and Ukgc.(vscod (f, §)ovsc) =
= U(g”oksc) there exists an sf-morphism [f, g]: [B, C]—[B’, C'] for which
Ulf, gl=vecod (f, g)ovsc and ke-colf, gl =gYoksc. These two equations
together with the next proposition show that v = (vsc) and k = (ksc) are natural
transformations.

1.8. Proposition. [—, —]: A" xod—sd; (B,C)—[B,Cl, (f,9)—If. gl is
a functor. ,
Proof. Straighthorward.

1.9. Theorem. (£, ®,[—, —]) is a closed category.

Proof. By 1.7.,[11] and [8; Theorem 4.4.] it suffices to prove that there exists
a natural isomorphism y = (yasc): (A ®B, C) — A(A, [B, C]). Let u belong
to £ (A ®B, C). Then Uuceas belongs to £as so that there exists s,: B— C with
Us, = (Uuoceas). for all a e UA. Define i: UA - A (B, C); a—>s, and consider
the diagram where for each b e UB w; is the &/-morphism A — C for which
Uwi =(Uuoeas)” and w" is defined by the family (ws)»cus. For each a € UA
Ups o Ukscovpcoii(a) = UppompcoUpc(sa) = qpolU(sa) = qvo(Utoeas)a
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= Uuoceas(a, b) = (Uuoceas)’(a) = Uwj(a). Hence the exterior of the diagram
commutes and therefore both triangles also commute. The morphism kgc is an
embedding, Ukgco(vscoit)=Uw" so that by 1S1 there exists (unique) G: A —
[B, C] with Ul =vpcoti and kpcoti =w". Define yasc: H(A®B, C)

A(A, [B, C]) by u—i. Clearly, u, # u, implies ii; # i, and then i, # ti,. Hence
Yasc is injective. To show that yasc is also surjective take g € &£, ([B, C]). Then Ug
is a map UA — U[B, C]. Put @ =v3coUg and ¢ = Upco@. Define 9: UA X
UB— UC by y(a, b) = y.(b). Then . = (Usco@). = U(q.) where ¢, belongs
to #(B, C). 117" = quUBCOUEé‘O Ug = UpyoUkscoUg = U(pvokscog). Hence
Y € % and therefore there exists g*: A ®B — C with Ug*oeas =1. It is easy to
check that yasc(g*)=g.Letf: A'’>A, g: B'>B, h: C—C' be s{-morphisms,
let u belong to (A®B, C)and u’' = A(f®g, h) (u) = houo(f®g). Then u’
belongs to #(A'®B’, C'). Consider the diagram 5. The interior of this diagram

Uk
AB,c) — 8¢ y[B,d B, u(c'8)

»ufp.c] —2EC Ly (')
3 Uw Up, \ / / \
Uw: ve
UA —»UC A(B,C) » UC
Fig. 3 Fig. 4
o o ket -
AlB',C) ‘BC___,yB,0) BC > u(c'Y8) |
1 Alg.h) ufg.h] U(hY9)
Uk
AB.C) —BC & y[B,c) —BC, y(cU8)
- . ud Uwt
u u Upug(b) Upb
UA Ug (6) » UC
V Uh
. uwd v
UA b » UC
Fig. 5

commutes by the preceding part of this proof. The upper regions commute by the
naturalness of v = (vsc) and k = (ksc), respectively, the right region evidently also
commutes. By the first part of this proof i: UA — (B, C); aw>s, such that Us,
= (Uuceas)s and i’ : UA'—> A (B’', C'); a’' — s, such that Us, = (Uu'oceas)a-
A(g,h)ouoUf(a') = oA(g,h)(Sur@r) = hoSuayog. But U(h oS uf@nog)
Uho USUf(a')o Ug = Uh o(Uu OEAB)Uf(a')O Ug = (Uh oUlloean o(Uf X Ug)),.'
(Uh oUuo U(f@g)oeA'B'),,- = (U(h ol o(f®g))oeA'B').,» = (Uu’oeA'B'),,»
= Us.. Hence hoSurwayog =s. for each a’ € UA’ so that the left region
of the diagram commutes. Now wi = UpioUkgcoVpcoil’
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commutes. Therefore Uw* = UMHRY)cUW“Uf = UhYow“sf) and then
Ua' = U(folio[g, h]). Thus we obtain #4'=folio[g, h]. Finally
Yascod(f®g,h) () = yascW') = @' = fololg,h] = SA(f,[g,h]) (&)
= A(f,[g, h])oya(u). Thus y =(yasc) is natural.

The next theorem is very useful for our study. Recall (see [4, p. 26]) that a

concrete category is a pair (%, V) where J is a category and V: ¥ — Set is

a faithful functor.

= UhoUpywyoUkpcovpcoil o Uf = UhoUwyoUf so that the lower region also

1.11. Theorem [6]. Let (%, V) be a concrete category with the following

properties:
(1) For any constant map c: VA — VB there exists a J{-morphism k: A — B

with Vk =c.

(2) For any bijection f: VA — X there exists a J-isomorphism s: A — B with
Vs =f.

(3) There is a J-object A with card VA Z2.

If there is a closed structure (O, H) on %, then there exists a closed structure
(O, G) on ¥ isomorphic with (d, H) with the following properties :

(a) Card VI=1, where I is the unit of O.

b) VA X VBc V(AOB) for all A, B obJt.

(c) Forf,g: AOB—C Vf|VA x VB = Vg | VA X VB implies f = g (] denotes
a restriction of a map).

d) V(fOg)| VA X VB=Vfx Vg.

(e) VG(B, C)=%(B, C).

) V(©f) (a)=(b~ Vf(a, b)), where @:%(AOB,C) - H(A,G(B,C))is
the corresponding adjunction.

g) V(@7'g) (a, b)=(Vg(a)) (b).

If, moreover, J satisfies

(4) X < VA implies that there exists a %-morphism j: B— A such that VB = X
and Vj: VB— VA ; x+—x and

(5) for every J-epimorphism g Vg is a surjection, then

i) VAXVB=V(AOB) for all A, B eobl.

It is obvious that any initially structured category together with its forgetful

functor is a concrete category satisfying (1)—(3) of 1.18.

1.12. Theorem. Let & be an initially structured category and (O, H) a closed
strugture on s{. Then there exist natural transformations n: ®—0O and ©:

H-[—-, —].
Proof. By 1.11. we can suppose (O, H) to satisfy (a)—(g) of 1.11. and to have

the same unit as (&, [, —]). Then it is easy to check that if /°= ({5): POB —B
and r“=(r3): AOP—A are natural isomorphisms corresponding to [J, then
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UIS|UP x UB =q%: (+,y)—y and Ur3|UA x UP=q?: (x, +)r>x for all A,
B e obsf. Denote by jas the embedding UA X UB c U(A OB) for all A, B e obsd
and consider the following diagram

IAB

VAXUB C— U(A@B)
ud, X yg I Iu(d0 o 1g)
irg
UPXUB C— U(PoB)
8|
UB
Fig. 6

Let a e UA and b € UB. Denote by d, the morphism P— A for which Ud.(*)=a
and by d, the morphism P — B with Ud,(x)=5b. Then it is easy to see that (jas)a
= U((d.018)o(I5)™") and (jas)’ = U((14a Ods)o(r2)""). Thus jas belongs to Fan
so that there exists ap: A ®B — A OB with Unasoceas = jas. The naturalness of
1 =(nas) follows from the naturalness of j=(jas) and e =(eas) and from the
faithfulness of U. The existence of @ immediately follows from the existence of
n. A

2. Tensor products in the category of closure spaces

Recall (see [1]) that a closure space is a pair (P, u) where P is a set and u:
2" 2" is a map satisfying (i) u@# =9, (ii) M c uM for all M c P and (iii) u(L UM)
= uL uuM for all L, M €2”. If (P, u), (Q, v) are closure spaces, then a map f:
P — Q is said to be continuous provided that f[uM]c vf[M] for each M c P. The
category of all closure spaces and continuous maps will be denoted by €. We shall
often write only P instead of (P, u) and then M instead of uM for M c P. If (P, u),
(Q, v) are closure spaces, then we shall write (P, u)=(Q,v) iff P=0Q and
uM cvM for each M = P. Note that € is an initially structured category.

Let (P, u), (Q, v) be closure spaces. Define u ®v on P X Q by (u@v)M =

= (User({x} x vM2)) U (Uy co(uMi X {y})),

where M; = {yeQ; (x,y)eM} and M} = {xeP; (x,y)eM}. Then (PXQ,
u®v) is a closure space called in [1] the inductive product of (P, u), (Q, v) and it
will be denoted by (P, u)®(Q, v). Itis easy to see that for arbitrary P, Q, S € ob¥€
a map f: P@®Q —S is continuous iff f, and f° are continuous for each a € P and
b € Q. Hence the inductive product in € is a special case of the tensor product
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introduced in the first section (evidently f&®g =f X g). Now let (Q, v), (S, w) be
closure spaces and (S, w) a (object part of) €-power. Denote by [(Q, v), (S, w)]
the subspace of (S, w) consisting of all continuous maps (Q, v)— (S, w). Then
[(Q,v), (S, w)] is the value of the internal hom functor corresponding to the
inductive product at ((Q, v), (S, w)) (obviously [f, g](t) =gotof). Evidently, €
satisfies (1)—(5) of 1.11., so we can adopt the following restriction without loss of
generality.

2.1. Convention. Throughout the remainder of this section all closed struc-
tures on € will be assumed to fuifil (a)—() of 1.11.

2.2. Proposition. If (6, 0, H) is a closed category, then PQRQQO =POQ =P xQ
for all P, Q e ob¥.

Proof. The left part immediately follows from 1.12. Note that by 2.1. the
natural isomorphism I°= (I3): {+*}0Q — Q fulfils /g(%, y) =y and similarly r” =
(r7): PO{+}— P fulfils r3(x, +) =x. Then rpo(1,0c) = p,: POQ - P; (x,y)—
x and lgo(kO1o) = p,: POQ—Q; (x,y)—y, where ¢: Q— {x}, k: P— {x},
are €-morphisms so that idpxo = p1Xp,: POQ—-PXQ; (x,y) —(x,y) is
a €-morphism. Thus POQ =P X Q. &

Now let A be an infinite set and % a non-principal ultrafilter on A. Leta ¢ A
and let G denote the corresponding non-principal ultraspace defined on A U{a}
(for each x e A{x} is open in G” and {Uu{a}; Ue %)} is the family of all
neighbourhoods of a in G*). Then we shall always write O instead of a and
Ax(=G*—{0y)) instead of A. Denote by ¥ the class of all non-principal
ultraspaces. The coreflective hull C(£) of £ in € coincides with € (it can be easily
verified that any closure space is an extremal quotient of a suitable coproduct of
non-principal ultraspaces in €). Hence every tensor product in € is uniquely
determined by defining its values on £ x £ (because it preserves 6 -coproducts and
extremal €-epimorphisms which coincide with regular ones in €). In the following,
by “ultraspace” we shall always mean ‘‘non-principal ultraspace” and B will always
denote the Sierpinski doubleton defined on {0, 1} where {0} = {0}, {1} = {0, 1}.

2.3. Remark. Let G¥, G” be ultraspaces and (x, y) belong to (G* x G”) —
{(O«, Ov)}. Then foreach M c G* x G” (x,y)eM in G*®G" iff (x, y)e M in
G*xG". Hence G*®G” < G*0OG” (=G*x G”) for some tensor pro-
duct O in € iff there exists M = G*0G” with (Ow, Oy)eM in G*OG” and
(Ow, Ov)¢éM in G*®G” . Note also that a €-morphism f: (P, u)— (Q, v) is an
extremal €-epimorphism iff vX = fluf '[X]] for each X < Q.

2.4. Proposition. If (€, 0, H) is a closed category and BOB =B & B, then
0-Q.

Proof. Let G¥, G” be ultraspaces, Aoa =G* — {04}, Av=G’ —{Oy}. To
prove that G*O0G” =G*®G" we need to show that (O, Ov) € M —M in
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G*OG" implies that Oy € M3* or Oy e MY, ie. (Ou, Ov) e M —M in G*®G”.
Thus, on the contrary, let (O«, Ov) belong to M —M in G*OG” and O ¢ M2,
Oy ¢ M3*. Then, evidently, (Ox, Ov) é {Ox} X M37* and (Ox, Oy) é MY* X {Oy}
in G*OG" (because G*OG” =G*xG"). Clearly M = ({O4)} x M%%) U
(M?*x {O+}) U M, where Ms< Aq X Av. Hence (O«, Oy) € M, and therefore

(Ou, Oy) belongs to Ay X Av in G¥*OG”. Define f: G*—B; Oy—0, f[Ax] =
{1} and g: G” - B; Oy—0, g[A+]={1}. Obviously f, g are €-morphisms and
therefore fO0g: G*O0G” — BOB is a $-morphism. But then f(Oa, Oy)

= (0,0)e(fOg)[A«xAv] = {(1,1)} in BOB=B®B and this yields
a contradiction. W

Since B®QB=BOB=B xB implies BOB=B®B or BOB=B XB, we
have: :

2.5. Proposition. If (€, 0, H) is a closed category and O # X), then BOB =
B X B.

2.6. Lemma. If (¢,0, H) is a closed category and O # ), then for any

ultraspaces G* G” (O, Oy) € Aa X Ay in G*OG".
Proof. The maps f: G*—B; Ou—0, f[Ax]={1), g: G'—>B; Oy+—0,
g[Av]={1} are evidently extremal €-epimorphisms so that fOg: G*O0G” —

B OB is an extremal €-epimorphism. Since BOB = BxB (0,0) € {(1,1)} in

BOB so that (Ox, Oy) € Au XAy = (fOg) '[(1,1)] in G*OG” (because
{(Ox, Ov)} = (fOg)7'[(0,0)]). m

2.7. Theorem. If (€, O, H) is a closed category, then 0= ).

Proof. Suppose O# . Let {N%; ke N} be a sequence of pairwise disjoint
copies of N* where N is the discrete space of all non-negative integers and N* is
the Alexandroff compactification of N (the new point will be denoted by w, the
elements of Nt will be indexed by k). Put ¥ = L, cxIN ¥ (the €-coproduct). Denote
by ¥’ the extremal quotient of /' in € obtained by identifying all w, into one point
denoted by . Then the map e: N > N'; wi+— Q2 for all k € N and x — x otherwise
is an extremal €-epimorphism. Since for each Kc N’ K=K or K=Ku{Q} in ¥’
it follows that &' € obJ so that e is also an extremal J -epimorphism (N is
obviously a J-object). Consider the space N'ON*. Put A,=N,

j=k
(Nj=N*—{w;}cN') and M =Jkn(Ak X {k}). We claim that (Q,w)eM in
N'ON*. Put Fo={U—-{}; U is a neighbourhood of Q in N'}. Clearly,
& ={Ax; ke N}UFq has a finite intersection property and n¥=@ in ¥’ — {Q} so
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that there exists a non-principal ultrafilter % on the set X = Uk enNe (=N — {Q})
containing #. Denote by X the corresponding (non-principal) ultraspace defined
on XU{Q}. Obviously, the map j: X“—N"'; x+—>x is a €-morphism. Now define
the map f: X >N by ny—k forall ke N and n e N.. Put V'={f[W]; We%}. v
is a non-principal ultrafilter on N (f is surjective) and denote by N” the
corresponding ultraspace on NU{w}. Then g: X“ — N" defined by g(2) = and
g(x) = f(x) otherwise is evidently an extremal %-epimorphism. Obviously
McX*ON”. Put L=(g01x) [M] = Uken([k, )% {k}), where [k, )

= {neN;n=k). Let (w,w)¢L in N"ON”. Since by 2.6. (w,w) € NXN in

N”ON”, we have (v, w) € (NxN)—L.. Ois symmetric so that c: N"ON"
—N"ON";(x,y)— (y,x) is a €-isomorphism. Consider L' =c[L].ThenL'=
Uken({k} X [k, w)) and it is easy to see that (NXN) — L cL’. Therefore
(w, w)eL'in N"ON” but this is impossible. Hence (w, w)e L in N” ON”. Since
(g01x) '[L]=M and (¢ O1x") [(w, )] = {(2, w))} it follows that (Q, w)e M
in X*ON”. Evidently, h: N* > N*; x+>x is a €-morphism so that jOh:
X“0ON" — N'ON*is a €-morphism and then (2, w)eM in X*ON” implies
that (Q,(u)eM in N'ON*. Finally, consider e O1n«: NON* — N'ON*.
Clearly, (eO1x)"'[M]=M, NON*= (L aNH)ON* = L. (NEON*). Ob-

viously, M = kMM (NEON*)) in ¥ON*. Since MA(NtON*) = N, x {0,

1, ..., k}, we obtain that MN(NtON*) = Ntx {0, 1, ..., k} (because NfQ@N*
= NiON* = N¥XxXN*) so that (o, w)éM in ¥ON* for all ke N. Hence

(eO1n) '[(2, w)] N (e01x) '[M]=6 in ¥ TN*. Therefore e d1x. is not an
extremal €-epimorphism and this is impossible. &

2.8. Remark. Note that throughout this section we have not used the as-
sociativity of [J.
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OB OOJHOM TEH3O0PHOM ITPOU3BEIEHHNHN
B MHULHNAJIIBHO CTPYKTYPOBAHHbBIX KATEIOPHUAX

IOpait Yunuypa
Pe3ome

B pa6oTe noka3bIBaeTCsl, YTO B KaXKA0H HHAIMANIBLHO CTPYKTYPOBaHHOH KaTeropuu B cMbicie Hena
(onpepenenue 1.1.) MOXHO ONPERETUTL CTPYKTYPY 3aMKHYTO#H KaTErOpHH Tak, YTO COOTBETCTBYIOLIEE
TEH30pHOE IPOU3BENECHHE ABJISETCS B ONPEACICHHOM CMbICIIe HaUMEHbIIMM. JJ0Ka3bIBaETCA TaKXe, YTO
B KaTeropuH NPOCTPAHCTB C 3aMbIKaHUEM (TIPOCTPAHCTBOM C 3aMbIKaHMEM Ha3bIBaeTcs ABoika (P, u),
rme P — wmuoxectBo M u: 2 —2" — oro6paxenue, ucnonnsiomee uf), McuM n u(MUK)
= uMuuK ans scex M, K = P n HenpepsbiBHbIX oTo6paxenui (f: (P, u) — (Q, v) HenpepbIBHO, eCIIH
fluM]cvf[M] mas kaxmoro K cP) MOXHO ONpEEIMTL TOJNLKO ORHY CTPYKTYPY 3aMKHYTOM
KaTeropymi.

255



		webmaster@dml.cz
	2012-07-31T22:11:21+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




