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Math. Slovaca 29,1979, No. 3 

ON A TENSOR PRODUCT 
IN INITIALLY STRUCTURED CATEGORIES 

JURAJ ClNCURA 

0. Introduction 

Closed categories (see e.g. [4, p. 180]) introduced by E i l e n b e r g and Ke l ly in 
[2] (called there symmetric monoidal closed categories) have been studied inten­
sively and many useful results have been obtained. Thus it is often helpful to know 
that a given category is closed. 

It is well known that the category of topological spaces and continuous maps is 
closed with respect to the "inductive" tensor product (which is obtained by proving 
X x Y with the "topology of separate continuity"). The direct generalization of this 
closed structure to the initialstructure categories over the category Set (which 
coincide with Herrlich's topological categories over the category Set) is given in 
[11, p. 432]. 

In the first section of this paper, this closed structure is extended to the initially 
structured categories in the sense of [5] and shown to be in a certain sense the 
smallest possible. In the second section, it is proved that in the category of closure 
spaces [ l , p . 237] and continuous maps there is (up to a natural isomorphism) 
exactly one tensor product (i.e. exactly one structure of closed category). Note that 
sd(X, Y) denotes the set of all j^-morphisms X—> Y and ob s4 denotes the class of 
all ^/-objects. 

1. The smallest tensor product in initially 
structured categories 

First recall the definition and some properties of initially structured category. 

1.1. Definition [5]. (1) Let U: sd —> £8 be a functor and (A —> At)ieia source in 

sd. To say that (at) is U-initial means that for any source (B -4 At)iei and any 
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%-morphism f such that Uat of = Ubt for all i there is precisely one sd-morphism c 
such that Uc=f and aiQc = bt for all i e I. 

(2) A category si is said to be initially structured with forgetful functor 
Uprovided that there exists a functor U: sd-+ Set such that the following hold: 

fi e Ugi 

151. Any source (X —> CJA,-)»e/ in Set has a factorization (X —> UB —> 

UAi)iGlsuch that eis an epimorphism, (Ugt) is a mono-source and (gt) is U-initial. 
152. U has small fibres, i.e. for every object X in Set there is at most a set of 

pairwise non-isomorphic sd-objects A with UA=X. 
153. There is precisely one sd-object P (up to isomorphism) such that UP is 

a singleton in Set. 
1.2. E x a m p l e s [5]. The category :T of all topological spaces, the category -T2 

of all Hausdorff spaces, the category of all partially ordered sets, the category of all 
closure spaces, etc. (with the usual classes of morphisms). 

1.3. Basic properties [5]. Let sd be an initially structured category with forgetful 
functor U Then 
(1) U is faithful. 
(2) If A, B are sd-objects and c: UA —> UB is a constant map, then there exists k: 
A-+B with Uk = c. 
(3) The B in 1S1 is determined uniquely up to isomorphism. 
(4) If (IIAi, (pi))ieiis an si-product, then (U(UAi), (Ll/?,)),ej is a Set-product of 
(UAi)ieI, i.e. there exists a bijection m: nieIUAi-+ U(Y\ieIAi) such that Upi0m = 
qt for all i el (q>r.n,UA(--> UAt is the i-th natural projection). 
(5) Any non-trivial coreflective and any U-epireflective subcategory of an initially 
structured category is an initially structured category (g is an U-epimorphism iff 
Ug is an epimorphism). 

1.4. R e m a r k s . (1) For the remainder of this section sd will be an initially 
structured category with forgetful functor U. 

(2) Since U is faithful the statement " for / : UA -> UB there exists k: A—>B 
with Uk=f" includes automatically the uniqueness of k. 

(3) The natural projections of cartesian products in Set will be always denoted 
by q, in all other cases by p. 

(4) An ^-morphism / which forms an ^/-initial mono-source will be called an 
embedding. 

We can now start constructing a tensor product in an initially structured category 
sd. We shall use the following notation: Let X, Y, Z be sets and / : X x Y—>Z a 
map. Then for each aeXfa: Y-^U is defined by fa(y)=f(a,y) and for each 
beY f: X-+Z is defined by f(x)=f(x, b). 

1.5. Definition. Let A, B be si-objects. Define A ®B e obsd as follows: Let 9*AB 

be the class of all maps f: UA x UB --> UC, C e obsd such that for each a e UA and 
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beUB there exist sd-morphisms ua: B-+C and v°: A-+C with Uua=fa and 

Uvb =fb. According to 1S1 there exists a factorization (UA x UB -4? U(SAB) —> 

L^C) of the source &>

AB where eAB is an epimorphism, (Lfy)te*AB is a mono-source 
and (tf)fezf^g is U-initial. For each pair (A, B)e obsdmake a definite choice of SAB 

and eAB (and therefore also of (tf)). Put A ®B =SAB. 

In the following we shall always use the notation from 1.5., i.e. eAB: UA x UB 
-+U(A®B) and (tf)feyAB for the (7-initial source corresponding to ^AB. 

Now let /: A —• A ', g: B - » B ' be sd-morphisms, let h: UA ' x UB' —> UC belong 
to ?fA>B' and a e UA. Then (ho(Uf x Ug))a = huf(a)o Ug. Since h belongs to ^AB> 
there exists ka: B-+C with Uka=huna). Then, clearly, U(ka0g) 
= (ho(Ufx Ug))a. Similarly, we can show that for each b e UB there exists sb: 

A->C with Usb = (ho(Ufx Ug))b. Hence ho(Ufx Ug) belongs to &>AB and 
therefore there exists vh = tho(Ufxug); A®B-*C for which UvhoeAB 

= ho(UfxUg). Thus we have the source (vh)h*<fA.B. with Ut'ho(eABo(Ufx 
x Ug)oeAB = Uvh (eAB is bijective — see 1.7.) for all h e^fAB-. Since (th) (which 
corresponds to ZfA>B) is [7-initial there exists precisely one j^-morphism denoted 
by f®g such that U(f®g) = eABo(Ufx Ug)oeAB and t'ho(f®g) = vh for all 
heyAB'. 

•AB 
UA X UB - U(A® B) 

Uf XUg U(t в g ) 

UAXUB-
rAB -•U(A ® B) 

1.6. Proposition. ®: si x s4 —> .tf ; (A, B)^A ®B, (f, g)-+f®g is a functor. 

1.7. Proposition: e = (eAB): UA x UB-+U(A®B) is a natural isomorphism. 

Proof. Let A, B be /^-objects and m: UA x UB^U(A xB) the bijection 
mentioned in 1.3.(4). Using the fact that the natural projections # i : UA x UB—> 
UA, q2: UA x L7B—> UB belong to ZfAB we can verify that m belongs to &)

AB. 
Therefore there exists tm: A®B^A xB such that UtmoeAB=m. Since m is 
a bijection, eAB is bijective. The naturalness of e follows from the construction of 
f®g. D 

The last proposition implies that the properties of the "indukctive" tensor 
product in the initialstructure categories ([11]) like symmetry and associativity 
remain valid also for ® in the initially structured categories. Clearly, if P is an 
/^-object for which UP = {*}, then P is a unit of ®. 
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Now we shall construct the internal horn functor siop xsd-*si corresponding to 
®. 

Let B, C be ^-objects . Consider the ^-power (C1™, (pb)bGuB). Then by 1.3. (4) 
there exists a bijection mBC: UC1™ —> L ^ C ^ ) such that UpbomBC = qb for all 
b e UB and, evidently, m = (mBC) is a natural isomorphism. We know that the map 
UBC: si(B, C)-^UCUB is injective (1,3. (1)). By 1S1 there exists a factorization 

si(B,C) ^ U[B, C] ™BC U(CUB) of the map mBCOUBC where [B, C] is an 

si-object, vBC is a surjection and kBC is an embedding (see 1.4. (4)). For each 
(B, C)eobsi x obsi choose [B, C], vBC and kBC. Since mBCoUBC is injective vBC is 
bijective. 

VBC ^ - ^ ^ ^ \ U k B 

UBC . _ 1 J B m 8 C - { c U B ) 

U[B\C"] 

Fig. 2 

Now consider the diagram where/ : H'—>H, g: C^C are arbitrary ^-morphi-
sms (and as usual sd(f, g) (u) = g0u0f). The top region, the bottom region and 
the left region obviously commute. The right region also commutes by the 
naturalness of m. Since kB-c is an embedding and UkB>c>XyBCo.d (/, g\vBC) = 
= U(gUfokBC) there exists an ^-morphism [/, g]: [B, C]—»[H', C] for which 
U[f, g] = vBCod (/, g)oVBC and kBCo[f, g] = gufokBC. These two equations 
together with the next proposition show that v = (vBC) and k = (kBC) are natural 
transformations. 

1.8. Proposition. [ - , - ] : sdopx si -> si ; (B, C)-»[H, C], (/,<?)->[/, <?] is 
a functor. 

Proof. Straighthorward. 

1.9. Theorem, (si, (x), [ - , - ] ) is a closed category. 
Proof. By 1.7., [11] and [8; Theorem 4.4.] it suffices to prove that there exists 

a natural isomorphism y = (yABC): si(A(g)B, C) -> sd(A, [B, C]). Let u belong 
to si (A (x)H, C). Then UuQeAB belongs to £fAB so that there exists sa: B --> C with 
Usa = (Uu0eAB)a for all a e UA. Define u: UA-^si(B, C ) ; a>-+sa and consider 
the diagram where for each beUB wu is the /i^-morphism A-^C for which 
Uwb = (UuoeAB)b and wu is defined by the family (wb)beUB. For each aeUA 
UpboUkBCoVBCoii(a) = UpbomBCoUBC(sa) = qboU(sa) = qbo(UuQeAB)a 
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= UuoeAB(a, b) = (Uu0eAB)b(a) = Uwl(a). Hence the exterior of the diagram 
commutes and therefore both triangles also commute. The morphism kBC is an 
embedding, UkBCo(vBCOu)=Uwu so that by 1S1 there exists (unique) u: A—> 
[B, C] with Uu=vBCoil and kBCOu = wu. Define YABC: sd(A®B, C) —> 
sd(A, [B, C]) by u»->u. Clearly, ux±u2 implies ux + u2 and then ux + u2. Hence 
7ABC is injective. To show that YABC is also surjective take g esd, ([B, C]). Then Ug 
is a map L/A-> U[B, C]. Put cp = vBCOUg and ^ = UBCocp. Define \p: UAx 
UB-*UC by \p(a,b) = \pa(b). Then \jra = (UBCocp)a = U(cpa) where cpa belongs 
to s£(B,C). tpb = qboUBCovBCoUg = UpboUkBCoUg = U(pb,okBCOg).Hencz 
t/> e ZfAB and therefore there exists g *: A (x)JB —> C with £/# * oeAB = $. It is easy to 
check that Y*BC(g*) = g. Let / : A'^A, g: B'-*B, h: C-+C be ^-morphisms, 
letw belong to sd(A®B,C) and u' = sd(f®g,h)(u) = hoUo(f®g).Thenu' 
belongs to s4(A' ®B', C). Consider the diagram 5. The interior of this diagram 

A(B.C) 

Fig.З 
VBC 

Л(в,o 

U k B C 

Fig. 4 

>UC 

Fig.5 

commutes by the preceding part of this proof. The upper regions commute by the 
naturalness of v = (vBC) and k = (kBC), respectively, the right region evidently also 
commutes. By the first part of this proof u: UA -*sd(B, C ) ; a «->sa such that Usa 

= (UuoeAB)a and u': UA'^>sd(B', C); a'^s'a>, such that Us'a. = (Uu'0eAB)a>. 
s4(g,h)oUoUf(a') = sd(g,h) (sUf(al) = hosUf(a>)0g. But U(h0suf(a)0g) 
= Uh0Usuf(a>)0Ug = Uho(UuoeAB)uf(a>)oUg = (UhoUuQeABo(UfxUg))a> 
= (Uh0Uu0U(f®g)0eA>B)a: = (U(h0u0(f®g))0eAB)a' = (Uu'0e A>B>)a> 
= Us'a>. Hence h0sUf(a)0g = s'a- for each a' e UA' so that the left region 
of the diagram commutes. Now wu> = Up'b>0UkBCoVB>c>ou' 

249 



= UhoUpg{b')oUkBcoVBcoUoUf = UhoUwioUf so that the lower region also 
commutes . Therefore Uwu = U(hUa)oUWuoUf = U(hUdowuof) and then 
Uu' = U(foilo[g, h]). Thus we obtain u' =fotio[g, h]. Finally 
YAB>cosd(f®g,h)(u) = YABC(U') = u' = foUo[g,h] = ^(f,[9,h])(u) 

= s&(fAQ*h])oYABc(u). Thus Y = (YABC) is natural. B 
The next theorem is very useful for our study. Recall (see [4, p. 26]) that a 

concrete category is a pair (%, V) where % is a category and V: J£-+Set is 
a faithful functor. 

1.11. Theorem [6]. Let (jf{, V) be a concrete category with the following 
properties: 

(1) For any constant map c: VA —> VB there exists a %-morphism k: A—±B 
with Vk = c. 

(2) For any bijection f: VA —>X there exists a ^{-isomorphism s: A-+B with 
Vs=f. 

(3) There is a X-object A with card VA^2. 
If there is a closed structure ( • , H) on J{, then there exists a closed structure 

(O, G) on jf{ isomorphic with (D, H) with the following properties: 
(a) Card VI = 1, where I is the unit of O. 
b) VAxVBcz V(AOB) for all A, Bzob%. 
(c) Forf,g: AOB-^C Vf\ VA x VB = Vg \ VA x VB implies f = g (| denotes 

a restriction of a map). 
d) V(fOg)\VAxVB = VfxVg. 
(e) VG(B,C) = 3C(B,C). 
(f) V(0f)(a) = (b^Vf(a,b)), where 0:X(AOB,C) -> W(A,G(B,C)) is 

the corresponding adjunction. 
g) V(0-1g)(a,b) = (Vg(a))(b). 
If, moreover, jf{ satisfies 
(4) X cz VA implies that there exists a ffl-morphism j : B —> A such that VB = X 

and Vj: VB-> VA ; x^x and 
(5) for every %-epimorphism g Vg is a surjection, then 
i) VAxVB = V(A OB) for all A, B eob^f. 
It is obvious that any initially structured category together with its forgetful 

functor is a concrete category satisfying (1)—(3) of 1.18. 

1.12. Theorem. Let s4 be an initially structured category and ( • , H) a closed 
structure on si. Then there exist natural transformations r\: (x)—->• and 0: 
H4[-,-]. 

Proof. By 1.11. we can suppose ( • , H) to satisfy (a)—(g) of 1.11. and to have 
the same unit as ((x), [ - , - ]). Then it is easy to check that if lu = (Is): PUB —> B 
and rn=(TS): ADP—>A are natural isomorphisms corresponding to • , then 
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UlB\UPxUB=q2'. (*, y)n->y and UrA \ UA x UP = qt: (x,*)^x for all A , 
B e obstf. Denote by JAB the embedding UA x UB cz U(A UB) for all A , B e obsd 
and consider the following diagram 

UA XUB 

Ud„ X 1,, 

JAB 

JPB 
UPXUB 

U(Aп B) 

U(dQ ° 1в) 

U ( P D B) 

Fig. 6 

Let a e UA and b e UB. Denote by da the morphism P—>A for which Uda(*) = a 
and by db the morphism P—>B with Udb(*) = b. Then it is easy to see that (JAB)a 

= U((da D 1B)O(/B) _ 1 ) and (JAB)" = U((1A • i ) o ( r ° ) " 1 ) . Thus j A B belongs to <fAB 

so that there exists nAB: A®B-+A HB with Ur]ABOeAB =jAB. The naturalness of 
r)=(r\AB) follows from the naturalness of J = (JAB) and e = (eAB) and from the 
faithfulness of U. The existence of 0 immediately follows from the existence of 
77. B 

2. Tensor products in the category of closure spaces 

Recall (see [1]) that a closure space is a pair (P, u) where P is a set and u: 
2P —> 2P is a map satisfying (i) u 0 = 0, (ii) M cz uM for all M cz P and (iii) u (L u M ) 
= uLuuM for all L, M e 2P. If (P, u), (Q, v) are closure spaces, then a map /: 
P—>Q is said to be continuous provided that f[uM] cz vf[M] for each MczP. The 
category of all closure spaces and continuous maps will be denoted by <#. We shall 
often write only P instead of (P, u) and then M instead of uM for M czP. If (P, u), 
(QyV) are closure spaces, then we shall write (P, u)^(Q,v) iff P = Q and 
uM czvM for each MczP. Note that ^ is an initially structured category. 

Let (P, u),(Q, v) be closure spaces. Define u®v onPxQ by (u®v)M = 

= (LUp({*} *vMx

2))lJ(UyeQ(uM\ X {y})), 

where M\ = {y e Q ; (x, y)eM} and M\ = {x eP; (x, y)eM}. Then (Px Q, 
u®v) is a closure space called in [1] the inductive product of (P, u),(Q, i>)and it 
will be denoted by (P, u)®(Q, v). It is easy to see that for arbitrary P,Q,S e o b ^ 
a map /: P®Q-+S is continuous iff fa and fb are continuous for each aeP and 
b eQ. Hence the inductive product in % is a special case of the tensor product 
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introduced in the first section (evidently/(x)g =fxg). Now let (Q, v), (S, w) be 
closure spaces and (S, w)° a (object part of) % -power. Denote by [(Q, v), (S, w)] 
the subspace of (S, w)° consisting of all continuous maps (Q, v)—.>(S, w). Then 
[(Q, v), (S, w)] is the value of the internal horn functor corresponding to the 
inductive product at ((Q, v), (S, w)) (obviously [f, g](t) = gotof). Evidently, <g 
satisfies (1)—(5) of 1.11., so we can adopt the following restriction without loss of 
generality. 

2.1. C o n v e n t i o n . Throughout the remainder of this section all closed struc­
tures on ^ will be assumed to fulfil (a)—(i) of 1.11. 

2.2. Proposition. If (<€, D, H) is a closed category, thenP®Q =\PUQ^PxQ 
for all P,Qeob<€. 

Proof. The left part immediately follows from 1.12. Note that by 2.1. the 
natural isomorphism / n = ( /£ ) : {*}DQ-»Q fulfils /Q(*, y) = y and similarly r n = 
(rp):PD{*}->Pfulfilsr?(A:,*) = jc .Thenr?o(lpDc) = px: PDQ->P ; (x, y)-> 
x and / g o ( k D l o ) = p2: PHQ^Q; (x,y)^y, where c: Q->{*}, k: P-»{*}, 
are ^-morphisms so that idP*Q = p\Xp2\ PDQ—>PxQ; (JC, y) »—>(x, y) is 
a ^-morphism. Thus PDQ^PxQ. B 

Now let A be an infinite set and °ll a non-principal ultrafilter on A. Let a <£A 
and let G* denote the corresponding non-principal ultraspace defined on Au{a} 
(for each xeA{x} is open in G* and {Uu{a}; Ue°U} is the family of all 
neighbourhoods of a in G^). Then we shall always write O^ instead of a and 
Aou( = G — {On}) instead of A. Denote by 5£ the class of all non-principal 
ultraspaces. The coreflective hull C(Z£) of 5£ in % coincides with % (it can be easily 
verified that any closure space is an extremal quotient of a suitable coproduct of 
non-principal ultraspaces in %). Hence every tensor product in % is uniquely 
determined by defining its values on SB x 5£ (because it preserves ^-coproducts and 
extremal ^-epimorphisms which coincide with regular ones in c€). In the following, 
by "ultraspace" we shall always mean "non-principal ultraspace" and B will always 
denote the Sierpinski doubleton defined on {0, 1} where {0} = {0}, {1} = {0, 1}. 

2.3. Remark . Let G%', G% be ultraspaces and (x, y) belong to (G* x G v ) -
{(O*, Or)}. Then for each M c z G * x G r (x,y)eM in G^t&G^ iff (x, y) eM in 
G^xGT. Hence G^®G^ < G^UG^ (^G^xG^) for some tensor pro­
duct D in <£ iff there exists M ^ G * D G r with (Ov, 0^)eM in G * D G V and 
(O^, Ov)£M in G*(x)Gv . Note also that a ^-morphism/: (P, w)->(Q, v) is an 
extremal ^-epimorphism iff vX = f[uf~l[X]] for each X c z Q . 

2.4. Proposition. If (<£, D, H) is a closed category and B OB =B(g)B, then 
• = ®. 

Proof. Let G*, G r be ultraspaces, A*u = G* -{O^}, A^ = G^-{0^}. To 
prove that G * D G r = G * ® G r we need to show that (O^, Or) e M-M in 
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G * D G r implies that O r e M ^ o r O^eM?^ i.e. (O^, O r ) G M - M in G* ®G°ir. 

Thus, on the contrary, let (O^, Or) belong to M - M in G D G r and O^ <£ M?v , 

Ov£M°«. Then, evidently, (O^, O r)«- {0<*} x M ? * and (O^, O r ) £ M ^ x f O r } 
in G * D G r (because G ^ D G r ^G*xGY). Clearly M = ({O^} x M?-) u 
( M ? v x { O r } ) u M3, where M 3 c A ^ x A r . Hence (O^, O r ) e M 3 and therefore 

(O*,, Or) belongs to A ^ x A r in G*(DG"". Define / : G * - » B ; O^»->0, /[A*,] = 
{1} and g: G^-^B; Or»->0, #[Ar] = { l} . Obviously/, g are ^-morphisms and 
therefore fUg: G * D G r -> £ D H is a ^-morphism. But then f(Ov,Ov) 

= ( 0 , 0 ) e ( / D 0 ) [ A < * x A r ] = {(1,1)} in BUB=B®B and this yields 
a contradiction. • 

Since B®B^BUB^BxB implies J B D B = B ® B or B D B = B x B , we 
have: 

2.5. Proposition. If (%, D, H) is a closed category and D =£ (x), fnen B D B = 
BxB. 

2.6. Lemma, i / (<#, D, H ) is a closed category and D =£ (x), then /or any 

ultraspaces G*, G r (Ow, Or) e A® x A r in G * D G r . 
Proof. The maps / : G*^>B; O<*-->0, /[A^] = {1}, #: G r - » H ; Or»->0, 

#[Ar] = {l} are evidently extremal ^-epimorphisms so that fUg: G ^ D G r —> 

BUB is an extremal ^-epimorphism. Since BUB = BxB (0, 0) e {(1, 1)} in 

BUB so that (Ov,Ov) e A^xAv = (fUg) '[(1,1)] in G ^ D G r (because 
{(0«,Ov)} = (fDflf)'1[(0,0)]). • 

2.7. Theorem. If (c€, U, H) is a closed category, then U = ®. 

Proof. Suppose UJ=®. Let {Nt; k eN} be a sequence of pairwise disjoint 
copies of N* where N is the discrete space of all non-negative integers and N* is 
the Alexandroff compactification of N (the new point will be denoted by w, the 
elements of Nt will be indexed by k). Put^V= U fceNNJ (the ^-coproduct). Denote 
by JV*' the extremal quotient of Jf in <£ obtained by identifying all wk into one point 
denoted by Q. Then the map e: Jf—>N' ; to* •-»£> for all k e N and x •—>JC otherwise 
is an extremal ^-epimorphism. Since for each KczJf' K = K or K = K*u{Q} in Jf' 
it follows that N' e obZT so that e is also an extremal ^-epimorphism (N is 

obviously a :T-object). Consider the space Jf'UN*. Put Ak = (jNj 

(Nj=NJ-{wj}czjr') and M = U*e.v(Afc x {£}). We claim that (Q,w)eM in 
./V'DN*. Put &Q = {U-{Q}; U is a neighbourhood of _Q in .JV*'}. Clearly, 
Sf={Ak;keN}v2Fa has a finite intersection property and nSf = 0 in ,/V' — {.Q} so 
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that there exists a non-principal ultrafilter °ll on the set X = [Jk<=NNk ( = Jff — {Q}) 
containing 5^. Denote by X^ the corresponding (non-principal) ultraspace defined 
on Xu{Q}. Obviously, the map / : X*'-+N'; x>-*x is a ^-morphism. Now define 
themap/ :X->Nbyrz f c . -»k for all k eN and nk eNk. Put T= [f[W]; We°U}.T 
is a non-principal ultrafilter on N (/ is surjective) and denote by JVV the 
corresponding ultraspace on Nu{a>} . Then g: X ^ - » N r defined by g(Q) = co and 
g(x) = f(x) otherwise is evidently an extremal ^-epimorphism. Obviously 
M c X * D N r . Put L = (#D1N^)[M] = [JkeN([k, co) x {k}), where [k, co) 

= {neN; n^k}. Let (co,co)eL in N DIV . Since by 2.6. (co, co) e IV x IV in 

/V^DIV^, we have (<u, Oj) e (N x IV)- L.. D is symmetric so that c: N^DIV^ 
- > N r D N ^ ; ( j c , y ) ^ (y,x) is a ^-isomorphism. Consider L ' = c [L l .ThenL '= 
UfceN({k} x [k, co)) and it is easy to see that (NxN) — LczL'. Therefore 
(co, co)eL' i n N r D N ^ but this is impossible. Hence (co, co)eL i n J V r D N r . Since 
(g D 1N^)_1[L] = M and (g D \N^)~1[(co, co)] = {(Q, o)} it follows that (Q, co)eM 
in X^D IV r . Evidently, h: IVV—>N*; Jt»->jt is a ^-morphism so that y'D/i: 
X * D N r -> . ^ 'DN* is a ^-morphism and then (Q, co)eM m X* UN^ implies 
that (Q,co)eM in .JV'DiV*. Finally, consider eDlN.: .7VDN* -> .vVDN*. 
Clearly, (eDl N . ) _ 1 [M]=M, .fVDIV* = (U f ceNN?)DN* = Uk e N(NfDiV*). Ob-

viously, M = U*eIv(Mn(N*DN*)) in .fTDN*. Since M n ( N ? D N * ) = Nk x {0, 

1, . . . , k } , we obtain that M n ( N * D N * ) = N * x { 0 , 1, ..., k} (because Nt®N* 
^ IV*DN* ^ NfxN*) so that (<Dfc,o>)<£M in .vVDN* for all keN. Hence 

(eDl N - ) '[(.G.co)] n (eD l N - ) '[M] = 0 in.JV*DN*. Therefore eDlN. is not an 
extremal ^-epimorphism and this is impossible. D 

2,8. R e m a r k . Note that throughout this section we have not used the as­
sociativity of D . 
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ОБ ОДНОМ ТЕНЗОРНОМ ПРОИЗВЕДЕНИИ 
В ИНИЦИАЛЬНО СТРУКТУРОВАННЫХ КАТЕГОРИЯХ 

Юрай Чинчура 

Резюме 

В работе показывается, что в каждой инициально структурованной категории в смысле Нела 
(определение 1.1.) можно определить структуру замкнутой категории так, что соответствующее 
тензорное произведение является в определенном смысле наименьшим. Доказывается также, что 
в категории пространств с замыканием (пространством с замыканием называется двойка (Р, и), 
где Р — множество и и: 2Р—>2Р — отображение, исполняющее и0, МсиМ и и (Ми К) 
= иМииК для всех М, К <=Р и непрерывных отображений (/: (Р, и) —• (О, V) непрерывно, если 
/[мМ]с:г/[М] для каждого К<=Р) можно определить только одну структуру замкнутой 
категории. 
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