
Mathematica Slovaca

Jiří Rachůnek
Semilinearly and semilattice right ordered groups

Mathematica Slovaca, Vol. 50 (2000), No. 1, 25--30

Persistent URL: http://dml.cz/dmlcz/132571

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/132571
http://project.dml.cz


Mathematica 
Slovaca 

©2000 
. . ., ~. _ r t /««««\ », - nr- -.,-» Mathematical Institute 
Math . SlOVaCa, 5 0 ( 2 0 0 0 ) , NO. 1, 2 5 - 3 0 Slovák Academy of Sciences 

SEMILINEARLY AND SEMILATTICE 
R I G H T ORDERED GROUPS 

J I Ř Í RACHŮNEK 

(Communicated by Tibor Katriňák ) 

ABSTRACT. A right partially ordered group (rpo-group) G = (G, • , < ) is a 
group endowed with a partial order relation < which is compatible to the right 
with the group multiplication. If an rpo-group G is up-directed and the set 
{x G G; a < x} is linearly ordered for each a G G, then G is called a semilin-
early ordered group. If (G, < ) is moreover an upper semilattice then G is said 
to be a semilinear V-group. It is shown t h a t the partial order of any semilincar 
V-group is isolated, t h a t each normal convex directed subgroup of a semilinearly 
ordered group is isolated and each convex V-subgroup of a semilinear V-group is 
2-isolated. 

A right partially ordered group (rpo-group) is a system G = (G, •, <) such 
that (G, •) is a group, (G, <) is a partially ordered set and a < b implies ac < be 
for all a,b,c G G. Let P -= P(G) = {x G G; e < x}, where e is the unit element 
of G. Then P is called the positive cone of G. 

It is obvious that if G is a group and 8 / P C G , then P is the positive 
cone of a right partial ordering of the group G if and only if 

a) P - P C P , 
b) PHP'1 = {e}. 

(For this fact, and also for all necessary properties of right partially ordered 
groups, see the book [3].) 

A right partially ordered group G is called directed (or more precisely up-
directed) if for each a, b G G there is c G G such that a,b < c. The directedness 
of a right partially ordered group is equivalent to the condition 

c) G = P l P. 

1991 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 06F15. 
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Note that if G is partially (two-sided) ordered, that means G is right partially 
ordered and moreover a < b implies ca < cb for all a^b^c G G, and if it is up-
directed, then it is also down-directed, i.e. for each a, b G G there exists also 
d G G with d < a, b. But for right partially ordered groups which are directed, 
this second condition is not true in general. 

If G is a right partially ordered group such that a < b or b < a for each 
elements a,b in G, then G is called a (linearly) right ordered group (in short: 
ro-group). The theory of right ordered groups is developed in the books [2], [3] 
and [4]. 

In the present paper we will deal with the class of semilinearly ordered groups. 
This class of right partially ordered groups is close to the class of ro-groups and 
has no non-linear analogy for two-sided ordered groups. 

DEFINITION. A right partially ordered group G is called a semilinearly ordered 
group if it is directed and satisfies the following condition: 

a < x & a < y = > x < y or y < x . 

It is obvious that every ro-group is semilinearly ordered. In 1903, Frege asked 
a question whether there exists a properly semiordered group, i.e. a semilin
early ordered group not being an ro-group. In 1987, A d e l e k e , D u m m e t t 
and N e u m a n n (see [1]) found such a semilinearly ordered group and so an
swered this question in the affirmative. Another example was constructed by 
V a r a k s i n in [6]. Moreover, he proved that every semilinearly ordered nilpo-
tent group is an ro-group. This result can be generalized for any locally nilpo-
tent group. (See [3; Corollary 8.3.4].) K o p y t o v (see [3; Example 8.1.1, The
orem 8.4.1]) found a large class of properly semiordered groups and gave a general 
method for constructions of such groups. 

Structure properties of semilinearly ordered semigroups were studied in [5] 
and [3]. A survey of the results and methods of the theory of semilinearly ordered 
groups is contained in [3; Chapter 8]. 

In the paper we study some questions of isolatedness in semilinear V-groups. 
It is proved that the order of any semilinear V-group is isolated and this is used 
to show that the semilinearly ordered groups constructed by K o p y t o v are 
not V-groups. Further it is shown that the normal convex directed subgroups 
of semilinearly ordered groups are isolated and that the convex V-subgroups of 
semilinear V-groups are at least 2-isolated. Finally, the existence of proper right-
relatively convex subgroups of properly semilinearly ordered groups is proved. 

PROPOSITION 1. Let G be an rpo-group and a,b,c G G. If the join a V b of 
a and b exists, then the join ac V be exists too and (a V b)c acV be. 

P r o o f . Let a Vb exist. Then (a\/b)c > ac.be. If it G G i such ha 
u > ac, be, then uc l > a, b, thus uc~l > a V 6, and hence a > (a V b)c. • 
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DEFINITION. A right partially ordered group G = (G, •, <) is called a right 
V-group if (G, <) is an upper semilattice. If G is moreover semilinearly ordered 
then it is called a semilinear V-group. 

DEFINITION. The (right) partial order of a (right) partial ordered group G is 
called isolated if for each n G N and a G G, an > e implies a > e. 

It is obvious that the order of any ro-group is isolated. But there are semi
linearly ordered groups with orders that are not isolated. (See [3; Section 8.1.2], 
or a note in this paper below.) Now we will examine the situation for semilinear 
V-groups. 

THEOREM 2. / / G is a semilinear V -group then the partial order on G is 
isolated. 

P r o o f . Let G be a semilinear V-group. 
1. Let a G G, a 2 > e , a ^ e . 
a) Suppose that a < e. Then a2 > a, hence a > e, a contradiction. 
b) Let a2 > e, a || e. Then aWa2>a\/e>e. Let us suppose that 

a\/ a2 = a\/ e. Since a\/ a2 = (e\/ a)a, we get (a V e)a = a V e, thus a = e, 
a contradiction. 

Hence, let a V a2 > a V e. Since a2 > e and a V e > e, we have that a2 and 
a V e are comparable. 

If a2 > a V e then a > e V a _ 1 > e , a contradiction. 
If a2 < a V e then a V a 2 < a V e , a contradiction. 
Therefore a2 > e implies a > e. 
2. Let n G N, n > 2. Let us suppose that for each m G N , m <n — 1: 

bm > e ===> 6 > e for each beG. 

Let aeG,an>e,a^e. Then am ^ e for each m < n — 1. 
a) Let a || e. We know that an and a V e are comparable. 
a) Let an < aVe. Since e < an implies aVe < aVan, we have aVe = aVan. 

Moreover a > a 1 _ n , a || e and a 1 _ n || e, hence a V e = a 1 _ n V e. Thus 
a1 n V e = an V a, therefore (an V a)a~n = an V a: that means a _ n = e, a 
contradiction. 

(3) Let an > a V e. Then an > a, and so a n _ 1 > e, a contradiction. 
b) Let a < e. Then an > e > a, hence a n _ 1 > e, a contradiction. 
Therefore, for all n G N we have: 

an > e ==>• a > e for each a £ G . 

• 
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N o t e . In the book [3; Section 8.1.2], a set of properly semilinearly ordered 
groups have been constructed. Namely, let p G Z , p ^ 0, p ^ ±1 and G be 
the multiplicative group of matrices 

pk q 
0 1 

where q is any rational number in form |P |5m, where k, s and m are integers 
and p is not a divisor of m. If P is the subset of Gp of such matrices that 
k > 1, q G Z , or k = 0, g G Z , g > 0 , then in [3] it is proved that P is the 
positive cone of a properly semilinear right order on G . 

In [3] it is proved that in (Gp,Pp), the order is not isolated. So we have as 
an immediate consequence of Theorem 2: 

COROLLARY 3. For any p G Z , p 7-- 0, p ^ ± 1 ; the properly semilinearly 
ordered group (G ,P ) is not a semilinear V-group. 

So, it remains as an open question: 

PROBLEM. Find a semilinear V-group that is not (linearly) right ordered. 

Now, recall that if G is a group then its subgroup H is called isolated if 
for any a G G and n G N, an G H implies a G H. It is obvious (see also [3; 
Proposition 2.1.1]) that any convex subgroup of a right ordered group is isolated. 
We will deal with isolated subgroups in semilinarly ordered groups. 

THEOREM 4 . 

a) If G is a semilinearly ordered group then each of its proper normal convex 
directed subgroups is isolated. 

b) If P is the positive cone of a semilinearly ordered group and P* = 
{x G P U P " 1 ; xy'1 G P U P~l if y G P U P " 1 } , then Gr = P* H P * " 1 

is an isolated right ordered subgroup of G. 

P r o o f . 
a) If FT is a normal convex directed subgroup of G then by [5; Theorem 6] 

(see also [3; Theorem 8.3.2]), H is a right ordered subgroup of G. Hence, if 
a G G, n G N, an G H and a > e, then from the convexity of H we get a G H. 
Similarly for a < e. 

b) By [3; Theorem 8.3.3], Gr is a convex right ordered subgroup of G. Hence, 
analogously as in a), Gr is isolated. • 

If G is a group and H is a subgroup of G, then H is called 2-isolated if 
a2 G H implies a G H for any a £ G. 
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THEOREM 5. If G is a semilinear V -group and H is a convex V -subgroup of 
G then H is 2-isolated. 

P r o o f . Let a e G and a2 G H. 

1. If a2 > e then by Theorem 2, a > e, hence a2 > a > e, and from the 
convexity of H it follows that a G H. 

2. Similarly for a2 < e. 

3. Let a2 G H, a2 \\ e. Then also a || e, a - 1 || e, a~2 || e, and moreover, 
a2 V e and a V e are comparable. 

a) Let a2 We > aVe. Since a2Ve e H, the convexity of iJ implies a V e G f f , 
and thus (a V e)a~2 G H. Hence (e V a " 1 ^ " 1 = a"1 V a"2 G H. 

If a - 1 V e £ if, then a"1 V e > a2 V e. Hence a V e < a2 V e < a"1 V e, and 
thus e V a"1 < a V a"1 < a"2 V a" 1 . Therefore e < e V a"1 < a"2 V a"1 G H, 
so e V a - 1 G if, a contradiction. Hence a"1 V e £ H. From the fact that 
(e V a l)a~l G FT we get a"1 G H, and hence also a € H. 

b) Let a2 V e < a V e. Then a2 ^ a. 

i) If a2 < a, then a 2 V e = a V e , a contradiction. 

ii) Let a2 || a. Suppose that a"1 V e > a2 V e. 

a) Let a2 V e < a V e < a - 1 V e. Then a V a - 1 < e V a" 1 , but by the 
assumption a V a"1 > e, hence a V a"1 > a"1 V e, a contradiction. 

5) Let a 2 V e < a - 1 V e < a V e . Then analogously as in a) we get a contra
diction. 

7) Let a2 V e < a"1 V e -= a V e. Then a\J e = a2 V a = (aV e)a, thus a = e, 
a contradiction. 

Therefore, if a2 V e < a V e and a2 || a, then a"1 V e < a2 V e, and hence 
a l V e e H. Thus ( a - 1 Ve)a2 G H, i.e. (eVa)a G iJ. Analogously as in part a) 
we get e V a G H, and also a £ H. D 

Recall that if G is a group and IJ is a subgroup of G, then IF is called 
right-relatively convex if II is convex with respect to some right order of the 
group G. For scmilinearly ordered groups WTC have: 

PROPOSITION 6. If G is a properly scmilinearly ordered group, then G con
tains proper right-relatively convex subgroups. 

P i o o f . Ever> scmilinearly ordered group is by [3; Theorem 8.2.1], right 
(K( i abV and by [3; Proposition 5.19], every right orderable gioup without 
pi ope r right-relathcly convex subgroups is an abelian group. By the assumption, 
G is not abelian, hence we get the assertion. D 
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