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ON CONDITIONAL EXPECTATIONS OF VECTOR 
VALUED VARIABLES 

FRANTlSEK RUBLIK 

As proved in [1], the property of convergence of conditional expectations holds 
also for vector valued variables and is used for proving the martingale convergence 
theorem for such functions. We shall give a proof of convergence of conditional 
expectations, which is based on commutation of a continuous linear operator and 
a linear operator of conditional expectation. 

We shall assume that we are given a probability space (Q, &*, P) and a separable 
Banach space X. We shall use notions of step, measurable and integrable functions 
defined in [3]. 

Lemma 1. Let f: Q-^X be an integrable function and <€ c^ be a o-algebra. If 
Y is a separable Banach space and T: X—> Y is a continuous linear operator, then 
E«(T(f)) = T(E«(f)), a.e. 

Proof. If a function g: Q-*X is integrable, then T(g) is also integrable and 
J T(g)dP = T(jg dP). Since T(0) = 0 ' , it is easy to see that for every set C e ^ 
we have 

j E«(T(f))dP = f T(f)dP = JT(fXc)dP = 

= T (f E«(ndP) = f T(E"(f))dP. 

Since E«(T(f)), T(E«(f)) are « measurable, E«(T(f)) = T(E«(f)) a.e. by 
Lemma 3 in [2]. 

Let {^„}r=i be an increasing sequence of a-algebras, i.e. for every n the 

inclusion <#„ <= ^„+i <= & is valid. If we denote the a-algebra generated by (J c€n as 
n = 1 

V ^n, the following lemma holds. 
n —1 

Lemma 2 . Let Y be an m-dimensional normed linear space and {<£„}r=i be an 
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increasing sequence of o-algebras. If f: £2—*Y is integrable and %=\J c€„, then 

lim ||E*(f) - E"-(f)\\dP = 0 and Ev(f) = ]im E*-(f) a.e. 
n—*•<» J n—*°° 

Proof. (I) Let Y = Rm. If we denote n,((yl9 ..., ym)) = y,, then this linear 
functional is continuous and Lemma 1 implies that 

n,(E*(/)) = E*(n,(/)), n,(E,e"(/)) = E*"(n/(/)), a.e. 

for / = 1,. . . , m and every n. According to theorems about integrable functions with 
real values the following equality 

lim n,(E"-(f)) = lim E*-(n,(/)) = E«(n,(rt) = n,(E*(/)) 
n—»w n—»-°° 

is valid a.e. for y=l , ..., m. Since the convergence in Rm is identical with the 
coordinate convergence, we have 

lim E*"(/) = (n i(E*(/)), ..., nm(E«(f))) = E'*(f) a.e. 
n—>°° 

Similarly, according to theorems about integrable functions with real values 

lim f|E«(n,(/))-E«"(n,(/))|dP = 0 / = l,...,m, 

m 

and since the norm in Rm is given by the formula ||(jti,..., jcm)|| = ^ \xi I > w e have 
; = i 

lim f||E*(/)-E,g"(/)l|dP = 

r m 

= lim Sln,(E^(/))-n,(E*"(/))|dP = 

n - > ° ° J J = l 

= £ l i m f |E , e (n , ( / ) ) -E*"(n ; ( / ) ) |dP = 0. 

(II) By the assumption Y is an ra-dimensional normed linear space. It is proved 
in [4] that there exists such a continuous linear operator T: Y->Rm that Tl exists 
and is a continuous linear operator. Thus 

E«(f) =T~\E<€(Tf)) = \im T-\E^(Tf)) = \imE^(f) a.e. 

by the first part of this proof and Lemma 1. Similarly, the first part of this proof 
implies that 
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O^lim í | |E^ ( / ) -E*»( / ) | | dP = 
n-»oo J 

lim J||T-[r(E«(n-E«-(t))]||dP.s 

;lim | |T- ' | | í | | E * ( T / ) - E ^ ( r / ) H d P = 0 . 
n —oo J 

Convergence Theorem for Conditional Expectations. Iff: Q^>Xis an integrable 

function, {^„}r=i is an increasing sequence of o-algebras and <€ = V ^«> tnen 

n = \ 

E'€(/) = limE'€"(/) a.e. and lim f | |E*( / ) -E < € - ( / ) | |dP = 0. 
n—»°o n—*<*> J 

Proof. As the function/ is integrable, we can choose step functions {/m}m=i such 
that | | / - / m | | - » 0 and ||/m|| ^ 2 | | / | | for all m. Since X possesses a Hamel basis, the 
step function fm takes values in a finite-dimensional subspace of X. If we denote 

m m 

E*(f) = 2 ^ ( 4 ) where / = ^ ^ X A , and P<*(A/) is a conditional probability, then 

we see we can choose variants of conditional expectations £^( / m ) , E*n(fm) n = 1,2, 
... so that they take values in the same finite-dimensional subspace as the function 
/m . Let us choose such functions for m = 1, 2, ... and choose variants of conditional 
expectations £« ( / ) , E«~(f), E « ( | | / - / m | | ) , ^ ( | | / - / m | | ) for n, m = 1, 2, .... Pro
perties of conditional expectations imply that there exists such a set A that 
P(A)= 1 and A has the following properties. If ooe A , then for every integers n, 
m ^ l we have 

(I) | |E*(/)((rt)-E*»(/)((o)| |^ 

^ | |E*(/)(co)-E*(/m)((o) | | + | |E*(/m)(co)-E*"(/m)(a))| | + 

+ | |E*"(L , ) ((o)-E*-(/)(o)) | |^E*( | | / - /m | | ) ( (o) + 

+ | |E*(/m)((o)-E*"(/m)(a))| | + E«.(| |/m - / | | ) ( (o ) , 

(II) HmE«( | | / -M| ) ( (o ) = 0, 

(HI) lim | |E«(/m)((o)-E«'(L ,)(a>)|| = 0, 
fc—*<» 

(IV) l i m E ^ ( | | / - / m | | ) ( o , ) = E*( | | / - / m | | ) ( a ) ) . 

Since ||/ — fm\\ ^ 3 | | / | | , the property II is a consequence of a theorem about the 
domination of random variables with real values. The property III is a consequence 
of Lemma 2. 
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Let 0)6 A and 8 be a positive number. Let m0 be such an integer that m^m0 

implies E* (\\f - fm\\)(<o) ̂  e. If rn*?m0y then the properties III and I imply that 

O^limsup | | ^ ( / ) (a ) ) -£^( / ) (a ) ) | | ^ 

^e+IimE , e"(||/m-/| |)(co) = e + E*(||/-/m | |)((o)^2e 
n—+<x> 

and this inequality completes the proof of the convergence a.e. Since P(A) = 1, we 
have 

J | |E* ( / ) -E^ ( / ) | | dP^2 j | | / - / m | | dP + J||E , e(/m)-E*"(/m)| |dP. 

If e>0, then 2j | | / - /m | |dP<(£ |2) for sufficiently large m, hence 

J | |E«( / ) -E^( / ) | | dP<e 

for sufficiently large n by Lemma 2. 

REFERENCES 

[1] CHATTERJI, S. D. : Martingale Convergence and the Randon—Nikodym Theorem in Banach 
Space. Mathematica Scandinavia, 22, 1968, 21—41. 

[2] HANS, O.—DRIML, M.: Conditional Expectation for Generalized Random Variables. In : 
Transaction of the Second Prague Conference on Information Theory etc., Prague I960. 

[3] NEVEU, J.: Discrete-parameter martingales. Amsterdam 1975. 
[4] TAYLOR, A. E.: Introduction to Functional Analysis. New York 1967. 

Received March 1, 1976 UstavmeraniaameracejtechnikySAV 
Dubravska cesta 
885 27 Bratislava 

О УСЛОВНЫХ МАТЕМАТИЧЕСКИХ ОЖИДАНИЯХ ФУНКЦИИ 
С ВЕКТОРНЫМИ ЗНАЧЕНИЯМИ 

Франтишек Рублик 

Р е з ю м е 

В работе показывается доказательство теоремы о сходимости условных математических 
ожиданий для случайной величины со значениями в пространстве Банаха, основано на переста
новке оператора условного математического ожидания с непрерывным линейным оператором. 
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