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AN OCCUPANCY PROBLEM WITH 
GROUP DRAWINGS OF DIFFERENT SIZES 

SALEH M. MITWALLI 

(Communicated by Gejza Wimmer) 

ABSTRACT. We consider the classical occupancy problem with group drawings 
of different sizes. We derive the exact distribution of the number of balls occurring 
in all sampled groups and its asymptotic behavior. Furthermore , the numbe r of 
drawings until at most k balls are observed in all samples is studied. 

1. Introduction 

Consider an urn containing s different balls. Groups of mi balls (mi < s, 
m{ ^ m2 y£ •••) are drawn successively with replacement; in each draw
ing all (jn ) , i = 1 ,2 , . . . , possible samples of balls are equally likely. Let 
U-(-s,7t7l,7n2,... ,7nn ,n) be the number of balls occurring exactly j times in 
the first 77 drawings. Problems concerning the distribution of {UAs,ml,m2,... 
. . . , miV n) : j = 0 , 1 , . . . , n , n G N} or of functions of this sequence are called 
occupancy problems. Their history can be traced back to DeMoivre, Laplace, 
and Euler (see S t a d j e (1990)). For the case m1 = m2 = • • • = mn = 1 
we refer to H o i s t (1986) for a survey and a unifying approach. For arbi
trary m1 = m2 = •••=-: rnn = I > 1 in particular U0(,s,/,n), the number 
of balls that have not shown up in n drawings, has been extensively stud
ied. H a r r i s et al. (1987) derive its finite and asymptotic distribution (in 
their model each sampled ball has a probability q G [0,1] of "disappear
ing" after being drawn). Asymptotic results on U0(s,l:n) can be found e.g. 
in M i k h a i l o v (1980) and P a r k (1981). If s = 2/, the exact probability 
distributions of C/0(«s,/,n) and Un(s,l,n) are equal. In this note we consider 
C/(s, m[,m2,..., ran, n) = Un(s, m1? ra2,..., mn), the number of balls occurring 
in all n sampled groups, which is a generalization of S t a d j e et al. (1998). 
We determine its exact distribution and its asymptotic behavior for fixed 7t, as 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 60E05, 62E15. 
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s,mvm2,... , m n —> oo. If ^-, m = ml = m2 = • • • = mn , is fixed, U(s,m, n) 
n 

is asymptotically normal, while for fixed s fj ̂  it tends to a Poisson distribu-
i=l 

tion. The functional limit theorem for exchangeable random variables and the 
method of moments are used in the proofs. 

2. The exact distribution 

We derive formulas for the probability distribution of U(s, m1, m 2 , . . . , m , n) 
b-i 

and its factorial moments. Let (a)b = fj (a — i) for a,b £ Z + and /iA = 
i=o 

E((f / (5, m2 , m 2 , . . . , m n , n))AJ . 

T H E O R E M (1). We have 
P(U(s,mvm2,... ,mn,n) = Л) 

m i n { 7 7 г i , . . . , 7 7 i n } — A, 

=0 £ (-i)-(';*)п 
«=o \ г / / = 1 

/ s—k—i \ 
\irn—k — iJ 

(') 

A; = 0 , l , . . . , m m { m 1 , m 2 , . . . , m n } , 

H = (s)к П K ) A 

řЛ V (*)* 

, ( І ) 

(2) 

;'j iч 

(3) 

P r o o f . We use the inclusion-exclusion formula for the events B 
in all n sampled groups", j = 1, 2 , . . . , 5. We obtain 

P(exactly k of Bx,..., Bs occur) 

= £<-i)f ̂  £ P(fl,,n...nBJ.J. 
»=0 V ' l<ji<--<jk+i<s 

Since the n drawings are independent, 

f ft [( *'',)/( s )] if l€ { 0 , . . . , m i n { n . 1 , m „ . . . , 7 n }} 
P ( 5 J . i n - - - n B i l ) = < ,= 1 lKm'-"'Km>'\ x ' ' x v 2 ' ' » / ; 

! 0 if l > m i n { m 1 , m 2 , . . . , mn} . 

It follows from (3) and (4) that 

P(U(s,mvm2,...,mn,n) - k) 

m i n { 7 7 i i , . . . , m „ } A; , x 7 \ ?* 

- E <-<r G;, n 
7 0 X 7 V 7 / I 

(4) 

C, 
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which, after a slight simplification, yields (1). 
To prove (2), note that the conditional distribution of U(s, m1,m2,..., mn, n) 

given U(s,ml,m2,... ,mn_i,n — 1) is hypergeometric Setting U(n) = 
U(s,ml,m2,...,m,n,n) we have 

>(U(n) = k\U(n-l)=j) = fy 
i\ ( S~j ) 
J \\mn—k' (5) 

( ") ' 
\m„/ 

Thus, 

v({U{n))k | U(n - 1) = j) = (j)k(mn)k/(s)k (6) 
(see J o h n s o n and K o t z [4; p. 81]) and, by (6), 

E((tf (»))*) = [(mn)k/(s)k]E((U(n-l))k) 

= fl[(mi)J(s)k]E({U(l))h) 
i=2 

71 

ПtЮdШЮfc-
i=2 

3. Asymptotic results 

For obtaining asymptotic results on U(s,m1,m2,... ,mn,n) the following 
theorem is crucial. 

THEOREM (2). Let s —•> co and m- —> oo for all i = l,...,n such that 

X{= lim rs± exists and X{e (0,1). Let ln= f[ A-2( £ ( l - A - " 1 ) - l ) + f[ A-. 
s-+°° t = l V i = l ' i=l 

Then 
7n = ton s~lVa.r(U(s,m1,m2,... ,mn,n)) (7) 

and for every e > 0, 

51 £ls 1U(s,ml,m2,...,mn,n)-Y[(mi/s) j —rO 
^ i = i ' 

m L2 , as s —> oo . 

(8) 

P r o o f . It follows from (2) that 
n 

E(U(s, mvm2, ...,mn,n))=s J\(mjs) (9) 
i=\ 
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and 
Var(/7 ( s ,m 1 ,m 2 , . . . , m n , n ) ) 

n JI n 

li m ť ( m ť - 1) ~mi ]7 ™2 

i=\ 
+ 

І=\ 7 = 1 (10) 

5 n - Ҷ ő _ 1 )n-l 5 n - l ő2n-2 
n / ч 2 n л — 1 n n / ч 2" 

_ І = 1 Ч 7 ѓ = l 7 = 1 i = l x 7 _ 

Since 

ѓ = l ч v 

1 — m] 
_ - i 1 Ьй-A- 1), 

i=l 

equation (10) yields 

S-1Var(U(5,m1,m2,...,mn,n))^r[VE(1-Ar1)-nA" + nA<' 
П П 

ѓ = l ѓ = l i=\ 7 = 1 

proving (7). Assertion (8) now follows from E( \s 1U(s,mi,i 

l l K W l 2 ) = V a r ^ C t ^ m . , 
7 = 1 J ' 

m 2 , . . . , m n , n ) ) s 7 n , as s —> oo. 

D 

THEOREM (3). Under the conditions in Theorem (2). if A = A: = • • • = An , let 
m\ = m2 = • • • = ™>n = m = m(s) as function of s and U(s, mX)m2,..., mn n 
= U(s, m, n ) . T/ie asymptotic behavior of U(s, m, n) is 

s~~l/2(U(s,m,n) - (mn/sn~1)) —> N(0,an) in distribution, as 

where an = A 2 n ( n ( l - A" 1 ) - l) + An = lim s - 1 V a r ( U ( s , m , n ) ) . 

s — > OC 

(11 

P r o o f . First consider the case n = 2. Let (X[& , . . . , X^) be an equidis-
tributed random permutation of the numbers 1,. . . , s. A short reflection shows 
that the random variable 

V , = # { t e { l , . . . , m } : X(

t

s) <m} 

has the same distribution of U(s,m,2). Define the number a^(i) for s G N 
and i = 1, . . . , s by 

a(s}(i) 
[(s — m)/ms] , i 1,. . , m , 

,1/2 
[ÎІI/(S(S — m))] , i m + 1,. . , s 
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and introduce the D[0,1]-valued process V ( s ) = (V ( s )(i)) /6[0 xl by setting 

[st] 

V<*>(t) = 5 > ( ' ) ( . Y ) ' ) ) . *€[0,1] . 
i=l 

Since 

and 

J2ais)(i) = 0, 2>W(i))2 = l 
?:=i 7 = 1 

max |a^(i) l —> 0 as s —> co , 
Ki<s • W | 

we can use a functional limit theorem for exchangeable random variables (see 
A 1 d o u s (1985)) and conclude that V^5^ converges in distribution to a Brown-
ian bridge W° = (W°(«)) te[0 i r This yields 

V w ( f ) ^ W ° ( A ) as s—>oo. (12) 

But a short computation shows that 

V("(f) = (^)1 / 2VS - (-(-?-u)l/2(m-V.) 

= (v .—(?) a ) / (? ( i -? )«) 1 / 2 (13) 

g{u(s,m,n)-s(f)2)/{f(l-^)s)] 1/2 

As W°(A) is 7V(0, A(l - A)) -distributed, m/s —> A , and a2 = A2(l - A)2, 
wTe obtain assertion (11) for n = 2 from (13) and (12). 

We can now proceed by complete induction. Suppose that the theorem holds 
for some n > 2. Then let Ys be a random variable that has the same distribution 
as U(s, m, 77) and is independent of (Ar{ , . . . , X^) and thus also of the process 
(V(s)(£))/(_[0 x]. Then as V ( s ) A W° , the induction hypothesis implies that 

( V ( s , ( 0 + ( ^ ^ y ) 1 / 2 [ Y , - S ( m / S ) » ] ) / e [ M A ( W ( t ) + Z) t 6 [ 0 i ] ] 1 (14) 

where Z is jV(0, -rzy^J -distributed and independent of W° . Let us take for 
t in (14) the random time t = Ya/.s. By Theorem (2), YJ.s —•» An in L2 so 
that 

V('s) ( ^ ) + ( ^ ) V 2 [Y, - s(m/s)n] A W°(A") + Z . (15) 
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The limiting distribution in (15) is 

JV(0, A"(l - A")) * N(0, ^ a n ) = -V(0, -g±fr) 

To evaluate the left-hand side of (15), let 

V3 = #{z: 1<*<YS , XIS)<YS}. 

Then 

v (ä)(^)=É« (s)Hs)) 
ѓ = l 

= * s\ sm ) ~~ l*s ~ * J \s{s-m) ) 

i=ì 
ll2 , ~ s / Ч 1 / 2 

so that 

V ( S )(^) + ( Ä ) > . - ( ? П 
~V.sП~.~r7Гj + ^5(s-m)J ) ~ (S(s-77г)J 5 ( ~ ? ) 

_*-1/2(v.-s(?)n+1) 
(16) 

( T ( I - T ) ) 1 / 2 

Now note that by (5), 

V s = # { i : l < i < Y s , x | s ) < Y , } = C/(S,m,n + l ) . (17) 

Combining (15), (16) and (17) we obtain (11) for n+1 instead of n. The theorem 
is proved. D 

n 

THEOREM (4). Assume that s f_ (2jL) —> a as s —> oo, for some a > 0 
z = l 

and some n G N. 

Then c7(«s,m_,m2,... ,mlVn) converges to the Poisson distribution na with 

mean a. 

P r o o f . By (2), the factorial moments fik of U(s, m_, m 2 , . . . , mn, n) con
verge to the corresponding factorial moments ak of 7rtt. Thus, the moments 
of U(s, m1,m2,..., m n , n) also converge to the corresponding moments of 7rtt . 
Since 7rtt is the only distribution on R with this moment sequence, U(s, /??_, m 2 , 
. . . , m n , n) must converge to 7rtt in distribution. D 
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4. The waiting times 

The number of balls occurring in all n sampled groups U(s,m1,m2,... 
. . . , m n , n ) , n = 1,2,... , may be considered as a system observed at time points 
n. The system will be said to be in state i if and only if U(s,ml,m2,..., m n , n) 
= i, i = 0 , 1 , . . . , min{m1, ra2,..., ran}. The transition probabilities are 

p . ^ n ) = P\U(s,mvm2,... ,mn,n) =j \ U(s,mvm2,... ,mn_x,n - 1) = ij 

Vj/ \mn-jJ 

\mnJ 

and the initial distribution P(U(s,m1,m2,... , ra n ,0) = mx) = 1, and 

P(U(s,m1,m2,... , ra n ,0) = i) = 0, i = 0 , 1 , . . . ,ml — 1. This completely defines 

a discrete nonhomogeneous Markov chain with states 0 , 1 , . . . , min{ra ], ra2,... 

. . . , m n } . We denote by Tk (the waiting time) the random variable represent

ing the number of drawings necessary, after which at most k elements will be 

observed in all drawings. The probability distribution of Tk is 

P(r f c = n + 1 ) 

7?i / \ n — 1 / \ —1 m — h / j v 

= E : n ; E(-')"/-
h=k+l X 7 1=1 X l / i=0 V ' 

j = 0, l,...,i, 

П Í í ' л ' i ì í i - í í ì " ï , ' f c ' i ì 
7=i \mj~h~*/ [ Vmn/ \mn-Һ-ІJ 

where the random variables Tk and U(s, ml,m2,..., mn, n) are related to each 

other in an obvious way for the distribution function 

P(rA. > n) = P(U(s,ml,m2,... , r a n , n ) > fc) 

and, by (1), the result follows. 

The absorbtion t ime into state zero. 

Denote by r the first entrance time into state zero, i.e., r = min{n : 

U(s,m1,m,2,... , r a n , n ) = 0} . Then 

P ( т = n) = $ > - ! ) ' 

3 = 1 

n-ì 

п С
4) 

\mr—jJ 

r = l V771.,/ 

\mn-jJ __ 1 

(•') 

using the facts that 

P ( r = n) 

= P ( r < n ) - P ( r < n- 1) 

= P ( { 7 ( s , m 1 , r a 2 , . . . , r a n , n ) = 0) - P(U(s,mvm2,..., m n , n - l ) = 0) 
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and 

P{U(s,mvm2,...,mn,n) = 0) = ү/(-lýГ 
j = o 

n í s-j \ n \mr-jJ 

( s ) 
r=\ \mnJ the result follows. Also, the pth factorial moments of r are 

P-1 ( »-]' \ ra ( - 1 ) 
\mr — iJ E((r)p)=p.nfíf D-Dj+i E n fn 

r=\ \mr) j = \ ^J/
 n=0 i=p U J 

oo n + p - 1 / s-j Í*-J\ 
\71li—jj r ( s~j ) 

\mp+n-jJ 

( s ) - i 
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