Mathematic Slovaca

Heinz Mitsch
Semigroups and their natural order

Mathematica Slovaca, Vol. 44 (1994), No. 4, 445--462

Persistent URL: http://dml.cz/dmlcz/132918

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SEMIGROUPS AND THEIR NATURAL ORDER

HEINZ MITSCH

(Communicated by Tibor Katriñák)

Abstract

For any semigroup (S, \cdot) the relation: $a \leq b$ if an only if $a=$ $x b=b y, x a=a$ for some $x, y \in S^{1}$ is called the natural partial order of S (see $[8])$. The relationship between the structure of S and certain properties of its natural partial order is investigated: trivial or total order, principal order ideals defined by \mathscr{D}-related elements, compatibility with multiplication, primitive or completely simple or group congruences, retract extensions of regular semigroups, and strong semilattices of semigroups.

1. Introduction

For any semigroup (S, \cdot) a partial order was defined in [8] by

$$
a \leq b \Longleftrightarrow a=x b=b y, \quad x a=a \quad \text { for some } \quad x, y \in S^{1}
$$

the so called natural partial order of S. Its restriction to the subset E_{S} of all idempotents of S (if it exists) coincides with the usual ordering: $e \leq f$ if and only if $e=e f=f e$. If S is a regular semigroup, then the relation \leq on S is equal to the natural partial order found by Hartwig [5] and N a mbooripad [10], independently:

$$
a \leq b \Longleftrightarrow a=e b=b f \quad \text { for some } \quad e, f \in E_{S}
$$

If S is group-bound (in particular, periodic), then its natural partial order has the same form as that for regular semigroups (Higg ins $[7 ; 1.4 .6]$).

AMS Subject Classification (1991): Primary 20M10.
Key words: Semigroup, Natural partial order, Order ideal, Compatibility, Congruence, Retract extension.

By [8; Theorem 4, Corollary] for an arbitrary semigroup S and its natural partial order the following are equivalent:
(i) $a \leq b$.
(ii) $a=x b=b y, a y=a$ for some $x, y \in S^{1}$.
(iii) $a=x b=b y, x a=a=a y$ for some $x, y \in S^{1}$.

In the following, \leq will always denote the natural partial order of the semigroup S.

It is the purpose of this note to study the natural partial order with respect to the structure of the semigroup and to provide some applications of this concept. In Section 2, the semigroups totally ordered by \leq are characterized. Further. it is shown that for every semigroup S the principal order ideals defined by any two \mathscr{D}-related elements of S are order-isomorphic. This yields an extension of the Corollary of Green's lemma on the equipotency of the \mathscr{H}-classen of such elements (enlarged by the corresponding order ideals). Section 3 deals with the problem of (right-, left-) compatibility of the natural partial order with multiplication. After two criteria for compatibility, some classes of semigroupare shown to have this property in general: commutative or centric semigroups. inflations of rectangular, periodic groups, or monoids which are strong semilattices of trivially ordered semigroups. Section 4 contains three applications. First, the least primitive congruence is investigated. showing that for certain semigroups this relation can be defined by means of the natural ordering (for regular semigroups, see Nam booripad[10]). Then retract extensions of regular semigroups are characterized by an order-theoretical property (generalizing a result of Petrich [11]). Finally, order properties of strong semilatticen of semigroups S_{α} satisfying some mild conditions are proved (for the case that each S_{α} is regular and simple, see Petrich [12]).

2. General properties

First we make some elementary observations concerning idempotents and regular elements (if they exist) - see also Higgins [7: 1.4.4.

LEMMA 2.1. For every semigroup S the following hold:
(i) $a \leq e, a \in S, e \in E_{S}$ imply $a \in E_{S}$;
(ii) $a \leq b, b \in S, b$ regular imply a regular;
(iii) $a \leq b, a, b \in S$, a regular imply $a=e b=b f . c f \in E_{S} \cdot e \sqsupset f$.

Proof.
(i) $a \leq e, \quad a \in S, \quad e \in E_{S} \Longrightarrow a=x e=e y, \quad x a=a=a y \quad\left(x, y \in S^{1}\right)$ $\Longrightarrow a^{2}=x e \cdot e y=x e \cdot y=a \cdot y=a \Longrightarrow a \in E_{S}$.
(ii) $a \leq b, b$ regular $\Longrightarrow a=x b=b y, a=a y \quad \Longrightarrow \quad$ for every inverse element b^{\prime} of $b: a=a y=x b \cdot y=x \cdot b b^{\prime} b \cdot y=x b \cdot b^{\prime} \cdot b y=a b^{\prime} a \Longrightarrow a$ regular.
(iii) $a \leq b, a$ regular $\Longrightarrow a=x b=b y, \quad x a=a=a y\left(x, y \in S^{1}\right) \Longrightarrow$ for every inverse element a^{\prime} of $a: a=a a^{\prime} a=a a^{\prime} \cdot x b=e b$ for $e=a a^{\prime} x \in E_{S}$; similarly, $a=b f$ for $f=y a^{\prime} a \in E_{S}$. Finally, $e \mathscr{R} a$ since $e=a \cdot a^{\prime} x, a=e \cdot b$, and $a \cdot \mathscr{L} f$ since $a=b \cdot f, f=y a^{\prime} \cdot a$; hence $e \mathscr{D} f$.

Remark. The natural partial order is trivial if all elements are incomparable (note that the zero, if it exists, is the least element). For example, this occurs if
(1) S is weakly cancellative (i.e. $a x=b x, x a=x b$ imply $a=b$);

$$
\begin{aligned}
a \leq b & \Longrightarrow a=x b=b y, \quad x a=a=a y \quad(x, y \in S, \text { otherwise } a=b) \\
& \Longrightarrow y x \cdot a=y a=y x \cdot b, a \cdot y x=a x=b \cdot y x \Longrightarrow a=b
\end{aligned}
$$

(2) S is right-(left-) simple;

$$
\begin{aligned}
a \leq b, a \mathscr{R} b & \Longrightarrow a=x b=b y, x a=a, \quad b=a z \quad\left(x, y, z \in S^{1}\right) \\
& \Longrightarrow a=x b=x \cdot a z=x a \cdot z=a \cdot z=b
\end{aligned}
$$

(3) S is right-(left-) stratified (i.e. $a \in a b S$ for all $a, b \in S$); if S contains an idempotent, then by Clifford-Preston [2; Theorem 8.14], S is completely simple, hence by Petrich [13; IV.2.4], weakly cancellative, thus (S, \leq) is trivially ordered by (1);
if S is idempotent-free, then by Clifford-Preston $[2$; Lemma 8.15], the equation $x a=a$ cannot hold for $a, x \in S$; thus $a<b$ is impossible in S. (Note that by [2; Theorem 6.36], S is right-stratified if and only if S is simple and contains a minimal right ideal.)
The class of semigroups having a trivial natural partial order is not known ret. But in the class of all E-inversive semigroups S without zero (i.e. for every $a \in S$ there is $x \in S$ such that $a x \in E_{S}$), the trivially ordered semigroups are exactly the completely simple ones (see Mitsch [9; Proposition 3]). Note that every regular and every periodic (in particular, finite) semigroup is E-inversive. Thus we have

Proposition 2.2. A periodic semigroup is trivially ordered if and onty if it is completely simple. In particular, a finite semigroup is trivially ordere! if and only if it is simple.

For the other extreme, where all elements of the semigroup S are comparable. i.e. (S, \leq) is a chain, we have the following

THEOREM 2.3. A semigroup S is totally ordered with respect to its natural partial order if and only if S is one of the following:
(i) $S=E_{S}$ and $\left(E_{S}, \leq\right)$ is a chain,
or
(ii) $S=E_{S} \cup\{a\}$ for some $a \notin E_{S}$ such that ea $=a e=\epsilon$ for erer! $e \in E_{S}$, and E_{S} is a chain with a greatest element a^{2}.

Proof. If S is of type (i) or (ii), then (S, \leq) is a chain since in the second case $e<a$ for every $e \in E_{S}$.

Conversely, suppose that (S, \leq) is totally ordered. Then we have:
(1) $e f=f e$ for all $e, f \in E_{S}$:
$e \leq f$ or $f \leq e$ implies that $e=e f=f e$ or $f=f e=e f$;
thus, $e f=f e$.
(2) $a^{2} \in E_{S}$ for every $a \in S$:
if $a \leq a^{2}$, then $a=x a^{2}, x a=a\left(x \in S^{1}\right)$ and $a^{2}=x a \cdot a=x a^{2}=a$: if $a^{2} \leq a$, then $a^{2}=x a, x a^{2}=a^{2}\left(x \in S^{1}\right)$ and $a^{2} \cdot a^{2}=x a \cdot a^{2}=$ $x a^{2} \cdot a=a^{2} \cdot a=x a \cdot a=x a^{2}=a^{2}$.
(3) $e<a$ for every $e \in E_{S}, a \notin E_{S}$:
if $a \leq e$, then $a \in E_{S}$ by Lemma 2.1.(i).
(4) $e a=a e=e$ for all $\epsilon \in E_{S}, a \notin E_{S}$:
$e<a$ by (3), hence $e=f a=a g$ for some $f, g \in E_{S}$ by Lemma 2.1.(iii):
thus, $f e=e$, and by (1), ef=e; consequently, $e=e^{2}=e \cdot f a=e a$. and similarly, $a e=e$.
(5) $\left|S \backslash E_{S}\right| \leq 1$:
if $a, b \notin E_{S}$ and $a<b$, then $a=x b=b y, x a=a(x . y \in S)$:
thus $x^{2} a=x a=a$; since $x^{2} \in E_{S}$ by (2), it follows that $x^{2} a=r^{2}$ by (4), and $a=x^{2} a=x^{2} \in E_{S}$, which is a contradiction.
Now if $\left|S \backslash E_{S}\right|=0$, then $S=E_{S}$, and $\left(E_{S}, \leq\right)$ is totally ordered. If $\left|S \backslash E_{S}\right|=1$. then there is only one $a \in S$ such that $a \notin E_{S}$; by (4), it follows that $e a=a f$ $=e$ for every $e \in E_{S}$. Finally, $a^{2} \in E_{S}$ by (2), and a^{2} is the greatest element of E_{S} because $e a=e$ implies $e a^{2}=e a=e$ and $a^{2} e=e$ for all $e \in E_{s}$.

For any semigroup S the partially ordered set (S, \leq) shows some remarkably: strong symmetries; for any $a \in S$ the principal order ideal defined by a is the set $(a]=\{x \in S \mid x \leq a\}$.

Proposition 2.4. Let S be a semigroup, and $a, b \in S$ such that a b : then there is a bijection from (a] onto (b].

Proof. We will not give the details of calculations here, since the result follows from Theorem 2.6 below. But we will indicate a bijection because we will need it later. Since $a \mathscr{D} b$, there is some $c \in S$ such that $a \mathscr{R} c$ and $c \mathscr{L} b$. Hence there exist $s, t, u, v \in S^{1}$ such that $a s=c, c t=a, u c=b, v b=c$. Then the mappings

$$
\varphi:(a] \rightarrow(b], \quad x \varphi=u x s \quad \text { and } \quad \psi:(b] \rightarrow(a], x \psi=v x t
$$

are mutually inverse functions.
The last result leads to the following extension of a corollary of Green's lemma. Recall that this states that for any semigroup S and every pair of ($)$-related elements $a, b \in S$ there is a bijection between the \mathscr{H}-classes H_{a} and H_{b} in S. Enlarging the \mathscr{H}-class H_{a} by $(a]$ we observe that $H_{a} \cap(a]=\{a\}$ for any $a \in S$. In fact, by the Remark (2) above, all elements of an arbitrary : $\because \boldsymbol{r}$ - or \mathscr{L}-class, hence of any \mathscr{H}-class of S, are incomparable. Thus, extending the bijection $f: H_{a} \rightarrow H_{b}$ given by the Corollary of Green's lemma (see for example $[2$; Theorem 2.3]) by the bijection $\varphi:(a] \rightarrow(b]$ specified in the proof of Proposition 2.4, we obtain

THEOREM 2.5. For every semigroup S and all $a, b \in S$ such that $a \mathscr{D} b$ there is a bijection between $H_{a} \cup(a]$ and $H_{b} \cup(b]$.

Remark. It is interesting to note that f and φ above are given by the same elements by which each $x \in H_{a}$ or $x \in(a]$ is multiplied on the left and on the right, respectively.

By Proposition 2.4, the principal order ideals defined by two \mathscr{D}-related elements of a semigroup are equipotent. Since these ideals are also partially ordered sets, it is natural to ask if they are even order-isomorphic. In case that e, f are ($\boldsymbol{\lambda}$-related idempotents of a semigroup S, F arès [3] showed that indeed, (e] and (f] are order-isomorphic. For arbitrary \mathscr{D}-related elements of a regular semigroup this was proved by $\mathrm{Hickey}[6]$. P. R. Jones generalized this property of principal order ideals to arbitrary semigroups, in fact proving a more general result. I am grateful to him for providing me with the following proof.

THEOREM 2.6. (P. R. Jones) Let S be a semigroup, and $a, b \in S$ such that a 分b. Then there exists $c \in S$ such that $a \mathscr{R} c, c \mathscr{L} b$, and there are s.t.u,v $\in S^{1}$ such that $a s=c$, ct $=a, u c=b, v b=c$. Let $\varrho_{s}: S^{1} a \rightarrow S^{1} c$, $r \varrho_{s}=r s, \varrho_{t}: S^{1} c \rightarrow S^{1} a, x \varrho_{t}=x t$; then
(i) ϱ_{s} and ϱ_{t} are mutually inverse order-isomorphisms; dually for the left-translations $\lambda_{u}: c S^{1} \rightarrow b S^{1}, \lambda_{v}: b S^{1} \rightarrow c S^{1} ;$
(ii) the partially ordered sets $\bigcup_{a^{\prime} \in H_{a}}\left(a^{\prime}\right]$ and $\bigcup_{b^{\prime} \in H_{b}}\left(b^{\prime}\right]$ are order-isomophic; in particular, (a] and (b] are order-isomorphic.

Proof.

(i) By Green's lemma [4], ϱ_{s} and ϱ_{t} are mutually inverse bijections between the principal ideals $S^{1} a$ and $S^{1} c$ of S. These mappings are also orderpreserving; in fact:

Let $x, y \in S^{1} a$ such that $x \leq y$. Then $x=p y=y q, p x=x\left(p, q \in S^{1}\right)$. Thus, $x s=p \cdot y s=y q s$, where $y q s=y s t \cdot q s$, since $y \in S^{1} a$ implies $y s t=$ $y\left(\varrho_{s} \circ \varrho_{t}\right)=y$. It follows that $x s=p \cdot y s=y s \cdot z\left(z \in S^{1}\right)$, and $p \cdot x s=r s$. That is, $x s \leq y s$, and $x \varrho_{s} \leq y \varrho_{s}$. Similarly, for $\varrho_{t}, \lambda_{u}, \lambda_{v}$.
(ii) Let $d \in \bigcup_{a^{\prime} \in H_{a}}\left(a^{\prime}\right]$; then $d \in\left(a^{\prime}\right]$ for some $a^{\prime} \in H_{a}$. Thus, $d \leq a^{\prime}$ and $S^{1} a^{\prime}=S^{1} a$. Hence $d \in S^{1} a^{\prime}=S^{1} a$, so that by (i) - with d instead of x and with a^{\prime} instead of $y-d s=d \varrho_{s} \leq a^{\prime} \varrho_{s}=a^{\prime} s$.

We next show that $a^{\prime} s \in H_{c}$ for $c=a s$ (specified in the statement):

$$
\begin{aligned}
& a^{\prime} \mathscr{H} a \Longrightarrow a^{\prime}=x a=a y\left(x, y \in S^{1}\right) \Longrightarrow a^{\prime} s=x a s=a y s . \\
& \text { where ays }=a s t \cdot y s=a s \cdot z\left(z \in S^{1}\right) \Longrightarrow a^{\prime} s=x c=c z
\end{aligned}
$$

similarly,

$$
\begin{aligned}
& a \mathscr{H} a^{\prime} \Longrightarrow a=w a^{\prime}=a^{\prime} r\left(w, r \in S^{1}\right) \Longrightarrow a s=w a^{\prime} s=a^{\prime} r s \\
& \text { where } a^{\prime} r s=a^{\prime} s t \cdot r s=a^{\prime} s m\left(m \in S^{1}\right) \Longrightarrow c=w \cdot a^{\prime} s=a^{\prime} s \cdot m
\end{aligned}
$$

consequently,

$$
a^{\prime} s \mathscr{H} c
$$

Thus we have proved that $d \varrho_{s} \in\left(c^{\prime}\right]$ for $c^{\prime}=a^{\prime} s \in H_{c}$; it follows that $\left(\bigcup_{a^{\prime} \in H_{a}}\left(a^{\prime}\right]\right) \varrho_{s} \subseteq \bigcup_{c^{\prime} \in H_{c}}\left(c^{\prime}\right]$. Similarly, $\left(\bigcup_{c^{\prime} \in H_{c}}\left(c^{\prime}\right]\right) \varrho_{t} \subseteq \bigcup_{a^{\prime} \in H_{a}}\left(a^{\prime}\right]$.

Applying ϱ_{s} to the latter inclusion we obtain by (i) equality in the first inclusion. Dually, using the mappings λ_{u}, λ_{v} we get

$$
\left(\bigcup_{c^{\prime} \in H_{c}}\left(c^{\prime}\right]\right) \lambda_{u}==\bigcup_{b^{\prime} \in H_{b}}\left(b^{\prime}\right] .
$$

The composed function $\varrho_{s} \circ \lambda_{u}$ thus yields the desired order-isomorphism. These arguments applied to a single order-ideal (a] (related with (c]) and (b] (related with $(c])$ give again the order-isomorphism $\varrho_{s} \circ \lambda_{u}$ since $a s=c$ and $u c=b$.

3. Compatibility

A useful property of the natural partial order would be its compatibility with multiplication:

$$
a \leq b \Longrightarrow a c \leq b c \text { and } c a \leq c b \text { for all } c \in S
$$

But already for regular semigroups these implications do not hold, in general. Nam booripad [10] proved that for a regular semigroup S the natural partial order is compatible (on both sides) if and only if S is locally inverse (that is, each local submonoid $e S e, e \in E_{S}$, of S is an inverse semigroup). The regular semigroups satisfying the one-sided implication were characterized by Blyth(\mathcal{H} omes [1] as those S for which in each local submonoid $e S e, e \in E_{S}$, every \mathscr{L}^{\prime} - (象-) class contains exactly one idempotent. - For general semigroups we give the following characterization of compatibility which is quite close to the definition.

Proposition 3.1. For a semigroup S the natural partial order is compatible on the right with multiplication if and only if for all $a, b, x, y \in S$ such that $r^{\prime 2} a=x a=a y$ there is some $z \in S^{1}$ such that $a y b=a b z$.

Proof.
Sufficiency: Let $a<b$ in S; then $a=x b=b y, x a=a(x, y \in S)$. Thus, $x^{2} b=x a=a=x b=b y$, and by hypothesis, for each $c \in S$ there is some $z \in S^{1}$ such that byc $=b c z$. Hence, $a c=x \cdot b c=b y c=b c \cdot z$ and $x a c=a c$; that is, $a c \leq b c$.

Necessity: Let $a, b, x, y \in S$ such that $x^{2} a=x a=a y$. Then the element $c=x a=a y$ satisfies $c \leq a$ (since $x c=x^{2} a=x a=c$). Thus $c b \leq a b$ by hypothesis, and $c b=a b \cdot \bar{z}$ for some $z \in S^{1}$. But $c=a y$ implies $c b=a y b$, so that $a y b=a b z$.

COROLLARY 3.2. For every commutative semigroup the natural partial order is compatible with multiplication.

COROLLARY 3.3. For every semigroup S which is an inflation of a rectangular band, the natural partial order is compatible with multiplication. More precisely, $a<b$ in S implies $a c=b c$ and $c a=c b$ for all $c \in S$.

Proof. By Petrich [13; III.4.10.4], S satisfies the identity $x y z=x z$ (for all $x, y, z \in S$). Consequently, $a<b$ in S implies $a=x b=b y(x, y \in S)$ and $a c=b y \cdot c=b c$; similarly, $c a=c \cdot x b=c b$.

Remark. Note that \leq is not trivial if the inflation S of the rectangular band B is not trivial. In fact: let $S=\left(\bigcup Z_{\alpha}, *\right), Z_{\alpha}$ the inflation of $\alpha \in B$: then $\alpha<a$ for each $a \in Z_{\alpha}, a \neq \alpha$, because $\alpha \in E_{S}$ and $\alpha=\alpha \alpha=\alpha * a=a * a$.

For periodic semigroups, Proposition 3.1 takes the following form:

Proposition 3.4. Let S be a periodic (in particular, finite) semigroup. Then the natural partial order of S is compatible on the right if and only if for all $a, b, x, y \in S$ such that $x a==a y$ there is some $n \in \mathbb{N} . z \in S^{1}$ such that $a y^{n} b=a b z$.

Proof.

Sufficiency: Let $a<b$ in S; then $a=x b=b y, x a=a=a y(x, y \in \zeta)$. Hence $a c=x \cdot b c=b y c$ for every $c \in S$. Also $a=a y=b y^{2}=b y^{k}$. and $a c=b y^{k} c$ for every $k \in \mathbb{N}$. Since $x b=b y$, by hypothesis there is $n \in \mathbb{N}$ and $z \in S^{1}$ such that $b y^{n} c=b c z$. Thus, $a c=x \cdot b c=b c \cdot z$ and $x \cdot a c=a c:$ hence $a c \leq b c$.

Necessity: Let $a, b, x, y \in S$ such that $x a=a y$. Then $x^{2} a=x x a=x a y=$ $x a \cdot y=a y^{2}$ and $x^{k} a=a y^{k}$ for every $k \in \mathbb{N}$. Let $n \in \mathbb{N}$ such that $x^{\prime \prime}=e \in E=$. Then the element $c=e a=a y^{n}$ satisfies $c \leq a$. Thus, by hypothesis. $c b \leq a b$. Hence $c b=a b \cdot z$ for some $z \in S^{1}$. But $c=a y^{n}$ implies that $c b=a y^{n} b$; it follows that $a y^{n} b=a b z$.

Remark. Note that the condition in 3.4 is sufficient for right compatibility in every semigroup. Furthermore, it can be formulated in the following way: for: all $a, b, x, y \in S$ such that $x a=a y$ there is some $n \in \mathbb{N}, z \in S^{1}$ such that $y^{n}=e \in E_{S}$ and $a e b=a b z$. This form is more appropriate for its application to the more general inflations of rectangular groups:

COROLLARY 3.5. Let S be a semigroup which is an inflation of a recturgular, periodic group. Then the natural partial order of S is compatible with multiplication; more precisely, $a<b$ implies that $a c=b c$ and $a=c b$ for ere ry $c \in S$.

Proof. First note that S is a periodic semigroup since the group (i in the rectangular group $T=R \times G(R$ a rectangular band) is periodic: $a \leqslant S=$ $\bigcup Z_{\alpha} \Longrightarrow a \in Z_{\alpha}$ for some $\alpha=(e, g) \in T \Rightarrow$ if $g^{\prime \prime} \Rightarrow 1$. $a^{\prime \prime}=a^{\prime \prime}=$ $\left(\epsilon, g^{n}\right)=(e, 1) \in E_{T}=E_{S}$. Let $a<b$ in S; then by Remark in Section 1. $a=e b=b f$ for some $e, f \in E_{S}$. Now, by Petrich [13; IV.3.12.3]. S satiation the identity $x e y=x y$ (for all $x, y \in S, e \in E_{S}$). It follows that $a c=b f c=b c$ and $c a=c e b=c b$.

Remark. Again, \leq on S is not trivial if the inflation of the rectangular group $T=R \times G$ is not trivial: $\alpha<a$ for every $\alpha \in T, a \in Z_{\alpha}, a \neq \alpha$, because $\alpha=(e, g)=(e, 1)(e, g)=(e, g)(e, 1) \Longrightarrow \alpha=(e, 1) \alpha=\alpha(e, 1) \Longrightarrow$ の $=(e .1) * a=a *(e, 1)$ with $(e, 1) \in E_{S} \Longrightarrow \alpha<a$.

In the following, some further classes of semigroups are specified for which \leq is compatible on the right or left or both.

Proposition 3.6. Let S be a semigroup such that $S a \subseteq a S$ for every $a \in S$. Then the natural partial order of S is compatible on the right with multiplication.

Proof. $a<b \Longrightarrow a=x b=b y, x a=a(x, y \in S) \Longrightarrow a c=x \cdot b c=$ $b y \cdot c=b \cdot y c=b c z(z \in S), x \cdot a c=a c \Longrightarrow a c \leq b c$.

COROLLARY 3.7. For every centric semigroup S (i.e. $a S=S a$ for every $a \in S)$ the natural partial order is compatible with multiplication.

Examples of semigroups satisfying the condition of 3.6 are given by semilattices of right-simple semigroups (see Petrich [13; II.4.9]). Note that by Remark (2) in Section 2, the natural partial order on a right-simple semigroup is trivial. (For further properties of centric semigroups see CliffordPreston [2; Theorem 10.29]). Considering strong semilattices of trivially ordered semigroups we first show

THEOREM 3.8. Let S be a strong semilattice Y of monoids $S_{\alpha}(\alpha \in Y)$. Then the natural partial order on S is compatible on the right with multiplication if and only if the natural partial order \leq_{α} is compatible on the right in each S_{α} $(a \in Y)$.

Proof. We first prove: $a \leq b\left(a \in S_{\alpha}, b \in S_{\beta}\right)$ if and only if $\alpha \leq \beta$, ${ }^{a} \leq_{\alpha} b \varphi_{\beta, \alpha}$, where $\varphi_{\beta, \alpha}: S_{\beta} \rightarrow S_{\alpha}$ is the given structure homomorphism.

If $a=b$, then $\alpha=\beta$ and $a=b=b \varphi_{\alpha, \alpha}$. Let $a<b$ in S; then $a=x b=b y$, $x a=a=a y$ for some $x \in S_{\gamma}, y \in S_{\delta}$. Since $a=x b \in S_{\gamma \beta}$, we have $\alpha=\gamma \beta$; similarly, $\alpha=\beta \delta$; thus, $\alpha \leq \beta$ and $\alpha \leq \gamma$. It follows that

$$
\begin{array}{rll}
a & =x b=\left(x \varphi_{\gamma, \gamma \beta}\right)\left(b \varphi_{\beta, \gamma \beta}\right)=\left(x \varphi_{\gamma, \alpha}\right)\left(b \varphi_{\beta, \alpha}\right)=w\left(b \varphi_{\beta, \alpha}\right) & \text { with } \\
a=b y=\left(b \varphi_{\beta, \beta \delta}\right)\left(y \varphi_{\delta, \beta \delta}\right)=\left(b \varphi_{\beta, \alpha}\right)\left(y \varphi_{\delta, \alpha}\right)=\left(b \varphi_{\beta, \alpha}\right) z & \text { with } & z \in S_{\alpha}, \\
w a & =\left(x \varphi_{\gamma, \alpha}\right) a=\left(x \varphi_{\gamma, \alpha}\right)\left(a \varphi_{\alpha, \alpha}\right)=\left(x \varphi_{\gamma, \alpha \gamma}\right)\left(a \varphi_{\alpha, \alpha \gamma}\right)=x a=a .
\end{array}
$$

Hence $\alpha \leq \beta$, and $a \leq_{\alpha} b \varphi_{\beta, \alpha}$ in S_{α}. Conversely, let $\alpha \leq \beta$ in Y, and ${ }^{1} \leq_{{ }_{1}} b \varphi_{\beta, \alpha}$. Then $a=w\left(b \varphi_{\beta, \alpha}\right)=\left(b \varphi_{\beta, \alpha}\right) z, w a=a$ for some $w, z \in S_{\alpha}$ (since S_{α} is a monoid). Thus, $a=\left(w \varphi_{\alpha, \alpha}\right)\left(b \varphi_{\beta, \alpha}\right)=\left(w \varphi_{\alpha, \alpha \beta}\right)\left(b \varphi_{\beta, \alpha \beta}\right)=w b$; similarly, $a=b z$. Since $w a=a$, it follows that $a \leq b$ in S.

By the argument above, the restriction of \leq on S to S_{a} coincides with \leq_{α} on S_{α} for each $\alpha \in Y$: for, if $a, b \in S_{\alpha}$, then $a \leq b$ in S if and only if $a \leq_{\alpha} b \varphi_{\alpha, \alpha}=b$ in S_{α}. Thus for the proof of the statement, we only have w show sufficiency.

Let $a \leq b$ in S and $c \in S$. Then $a \in S_{\alpha}, b \in S_{\beta}, c \in S_{\gamma}$, say: and thus $\alpha \leq \beta$ and $a \leq b \varphi_{\beta, \alpha}$ in S_{α}. Applying the homomorphism $\varphi_{\alpha . \alpha \gamma}$ to the last inequality we obtain:

$$
a \varphi_{\alpha, \alpha \gamma} \leq\left(b \varphi_{\beta, \alpha}\right) \varphi_{\alpha, \alpha \gamma}=b \varphi_{\beta, \alpha \gamma} \quad \text { in } \quad S_{\alpha \gamma \gamma}
$$

and by hypothesis,

$$
\left(a \varphi_{\alpha, \alpha \gamma}\right)\left(c \varphi_{\gamma, \alpha \gamma}\right) \leq\left(b \varphi_{\beta, \alpha \gamma}\right)\left(c \varphi_{\gamma, \alpha \gamma}\right) .
$$

Thus, since $\alpha \gamma \leq \beta \gamma$:

$$
\begin{aligned}
a c & \leq\left[\left(b \varphi_{\beta, \beta \gamma}\right) \varphi_{\beta \gamma, \alpha \gamma}\right]\left[\left(c \varphi_{\gamma, \beta \gamma}\right) \varphi_{\beta \gamma, \alpha \gamma}\right] \\
& =\left[\left(b \varphi_{\beta, \beta \gamma}\right)\left(c \varphi_{\gamma, \beta \gamma}\right) \varphi_{\beta \gamma, \alpha \gamma}=(b c) \varphi_{\beta \gamma, \alpha \gamma} .\right.
\end{aligned}
$$

Since $a c \in S_{\alpha \gamma}, b c \in S_{\beta \gamma}$ and $\alpha \gamma \leq \beta \gamma$. we conclude that $a c \leq b c$.
As a consequence, this result implies for the case of a trivial partial order on each S_{n} (which evidently is compatible with multiplication) the following

COROLLARY 3.9. Let S be a strong semilattice of trimally ordoned momoins. Then the natural partial order on S is compatible with multiplicatoon.

Remarks.

1) If the semilattice Y has at least two elements, a >3, bay. then the natural partial order on S is not trivial. Indeed, for any $a \in S_{a}$ we trivially have

2) The result 3.9 can be seen as an order-theoretical generalization of Cliford-semigroups, that is, sitong semilattices of groups. In fact. every grmp is a trivially ordered monoid with respect to its natural partial order swa Renark (1) in Section 2). But a strong sembattice of gronps is an imwot semigroup, and the natural partial order on every invers somigroup is cont-
 Lemma 7.2]).
3) Theorem 3.8 and Corollary 3.9 also hold for momoids if which are anmat semilattices of semigroups. To set this. let s be a semigronp with identit: which is the strong semilattice Y of semigroups S_{a} ($a \in$) Then $\in \leq \rightarrow$. The proof of 3.8 runs through up to: Conversely, let $a \leq 3, a \leq a \leq, \ldots$. 11
is not a monoid, then a problem arises in the case when $\alpha<\beta$ and $a=b \varphi_{\beta, \alpha}$. But $a=e a=e\left(b \varphi_{\beta, \alpha}\right)$ implies that $\alpha \leq \gamma$ and

$$
\begin{aligned}
a & =\left(e \varphi_{\gamma, \alpha \gamma}\right)\left[\left(b \varphi_{\beta, \alpha}\right) \varphi_{\alpha, \alpha \gamma}\right]=\left(e \varphi_{\gamma, \alpha}\right)\left(b \varphi_{\beta, \alpha}\right)=e_{\alpha}\left(b \varphi_{\beta, \alpha}\right) \\
& =\left(e_{\alpha} \varphi_{\alpha, \alpha}\right)\left(b \varphi_{\beta, \alpha}\right)=\left(e_{\alpha} \varphi_{\alpha, \alpha \beta}\right)\left(b \varphi_{\beta, \alpha \beta}\right)=e_{\alpha} b,
\end{aligned}
$$

where $c_{c} \in E_{S}$ denotes the image of $e \in S_{\gamma}$ under the homomorphism $\varphi_{\gamma, \alpha}$.
Similarly, $a=b e_{\alpha}$; consequently, $a \leq b$ in S. Thus the characterization of the natural partial order on S given in the proof of 3.8 also holds in this case.

Our last result concerning the compatibility of \leq on a semigroup S is related with the so called \mathscr{L}-majorization in E_{S} : if $e, f, g \in E_{S}$ are such that $c>f . c>g$ and $f \mathscr{L} g$, then $f=g$. For regular semigroups this property of idempotents is equivalent to the fact that in every local submonoid eSe, ,$\in L_{s}$, of S each \mathscr{L}-class contains exactly one idempotent. But this property of S is equivalent to right-compatibility of \leq on S by the result of Bl y thGomes [1] mentioned at the beginning of this section. Now, M. Petrich pointed out that for regular semigroups S, \mathscr{L}-majorization in E_{S} is equivalont to \mathscr{L}-majorization in $S:$ if $a, b, c \in S$ are such that $a>b, a>c$ and $b \mathscr{L}^{\prime} c$, then $b=c$. Following his ideas, we will show that for certain non-regular semigroups this last property is equivalent to right-compatibility of the natural partial order. too.

Theorem 3.10. Let S be a semigroup such that S^{2} is regular. Then the nalural partial order on S is compatible on the right with multiplication if and ouly if S satisfies \mathscr{L}-majorization.

Proof. Let \leq on S be right-compatible, and let $a, b, c \in S$ such that $a>b . \|>c, b \mathscr{L} c$. Then $b=x a=a y, x b=b=b y, c y \leq a y$ and $c=z b$ for some $r \cdot y \cdot z \in S^{1}$. Thus $c=z b=z \cdot b y=z b \cdot y=c y \leq a y=b$. Together with 1. $\not \subset$ (. this implies by Remark (2) in Section 2 that $b=c$.
conversely, suppose that S satisfies \mathscr{L}-majorization, and let $a<b, c \in S$. Then $\|=x^{i}=b y$. $x a=a=a y$ for some $x, y \in S$. Since $a c \in S^{2}$, there is sume $:=S$ such that $a c \cdot z \cdot a c=a c$ and $z \cdot a c \cdot z=z$. Consequently,

$$
\begin{aligned}
& a r=\| \leq b \quad \text { because } a c z a=a c z \cdot x b=b y \cdot c z a \text { and } \\
& a c z x \cdot \operatorname{ar} z a=a c z \cdot a \cdot c z a=a c z a c \cdot z a=a c z a ; \\
& \text { beza } b \quad \text { becanse be } z a=b c z \cdot x b=b \cdot c z a \text { and } \\
& b c z x \cdot b c z a=b c z a \cdot c z a=b c \cdot z a c z \cdot a=b c z a ; \\
& \text { ac:u:L'bcza because } a c z a=x b \cdot c z a, \quad b c z a=b c \cdot z a c z \cdot a=b c z \cdot a c \cdot a \text {. }
\end{aligned}
$$

By hypothesis, it follows that $a c z a=b c z a$. Thus,

$$
a c=x \cdot b c, \quad a c=a c z a \cdot c=b c z a \cdot c=b c \cdot w\left(w \in S^{1}\right) \quad \text { and } \quad x a c=a c .
$$

This means that $a c \leq b c$.
Remark. Note that without regularity of S^{2}, for any semigroup S rightcompatibility of \leq implies \mathscr{L}-majorization.

4. Applications

In this section, we will make use of the concept of a natural partial order to show how structural properties of a semigroup can be described by its natural order.

The first application concerns the following binary relation, which can be defined on every semigroup S :

$$
\beta=\{(a, b) \in S \times S \mid c \leq a \text { and } c \leq b \text { for some } c \in S\} .
$$

For an inverse semigroup S, β is the least group congruence on S as described by V.V.V ag ner [14]. For regular semigroups S, this relation was st udied by N a mbooripad [10], who showed, in particular, that for locally inverse semigroups (see Section 3) β is the least primitive, and hence completely simple congruence. For general semigroups S, similar to [10; 4.2] we have

LEMMA 4.1. Let S be a semigroup. Then β is an equivalence on S if and only if each principal order ideal (a] of S is directed downwards.

A sufficient condition for β to be an equivalence is the compatibility of \leq on S with multiplication. This also ensures that β is a congruence:

LEMMA 4.2. Let S be a semigroup such that the natural partial order on ${ }^{\text {s }}$ is compatible with multiplication. Then β is a congruence on S.

Proof. Note that if S has a zero, then β is the universal relation. Trivially. β is reflexive and symmetric. In order to show transitivity, let $a, 3 b$ and $b .3 c$. Then there are $s, t \in S$ such that $s \leq a, s \leq b$ and $t \leq b, t \leq c$. Thus. $s=x b=b y, t=w b=b z$ for some $x, y, w, z \in S^{1}$. Consequently, $s z=x b \cdot z=$ $x \cdot b z=x t$; let $u=s z=x t$ (this idea is due to S . Reither). Then by hypothesis. $s \leq b$ implies that $u=s z \leq b z=t$, and $t \leq b$ implies that $u=x t \leq x b=s$. From $u \leq s \leq a$ and $u \leq t \leq c$ it follows that $a \beta c$.

Together with Lemma 4.1, this result implies the following

COROLLARY 4.3. If the natural partial order of a semigroup S is compatible, then cach principal order ideal of S is directed downwards.

Remark. The converse of 4.3 (4.2) does not hold: let $S=\left(T_{2}, \circ\right)$, the (regular) transformation semigroup on two elements, and consider S^{0}. Then β is the universal relation on S^{0}, hence by 4.1 , each principal order ideal of S^{0} is directed downwards, but \leq on S^{0} is not compatible (on the left).

Nambooripad [10] called a mapping $f: X \rightarrow Y$ of a quasi-ordered set (X, \leq) into a quasi-ordered set (Y, \preccurlyeq) reflecting if for all $y, y^{\prime} \in X f$ such that $y^{\prime} \preccurlyeq y$ and $x \in X$ with $x f=y$ there is some $x^{\prime} \in X$ such that $x^{\prime} \leq x$ and $r^{\prime} f=y^{\prime}$. An essential property of homomorphisms of regular semigroups is that they reflect the natural partial order (see [10; Theorem 1.8]).

Theorem 4.4. Let S be a semigroup such that β is a congruence and the natural homomorphism for β is reflecting the natural partial order. Then β is the least primitive congruence on S, that is, such that $(S / \beta, \preccurlyeq)$ is trivially ordered.

Proof. Let φ denote the natural homomorphism defined by β, i.e. $\sim: S \rightarrow T=S / \beta, a \varphi=a \beta$. Suppose that $s \preccurlyeq t$ in T. Since φ reflects the natural partial order, there exist $a \leq b$ in S such that $a \varphi=s, b \varphi=t$. But $a \leq b$ implies that $a \beta b$, thus $s=a \varphi=a \beta=b \beta=b \varphi=t$. Hence \preccurlyeq on T is trivial. Let ϱ be any congruence on T such that ($S / \varrho, \preccurlyeq$) is trivially ordered. If ι denotes the natural homomorphism corresponding to ϱ, then we have:

$$
\begin{aligned}
a .3 b & \Longrightarrow c \leq a, c \leq b \text { for some } c \in S \Longrightarrow c \psi \preccurlyeq a \psi, c \psi \preccurlyeq b \psi \text { in } S / \varrho \\
& \Longrightarrow c \psi=a \psi=b \psi \Longrightarrow a \varrho=b \varrho \Longrightarrow a \varrho b, \text { i.e. } \beta \subseteq \varrho .
\end{aligned}
$$

For E-inversive semigroups (see Section 2) β gives the following type of congruence:

COROLLARY 4.5. Let S be an E-inversive semigroup such that β is a congrurnce whose natural homomorphism reflects the natural partial order. Then β is the lenst completely simple congruence on S.

I'roof. Since S is E-inversive, S / β is E-inversive, too. By 4.4, the natural partial order on S / β is trivial. Hence, by $[9$; Proposition 3], S / β is completely simple. The relation β is the least such congruence because for each such congruence ϱ on $S .(S / \varrho, \preccurlyeq)$ is trivially ordered (see [9; Proposition 3]), and thus $j \subseteq g$ by 4.4.

For E-dense monoids, that is, E-inversive monoids S with commuting idempotents (see [9]), 3 is of the following form:

THEOREM 4.6. Let S be an E-dense monoid such that β is a congruerce: then β is a group congruence on S. If, furthermore, S is group-bound. then . 3 is the least group congruence on S.

Proof. First we will show that S / β is a group. By hypothesis, we have for $g=e f=f e\left(e, f \in E_{S}\right)$ that $g \leq e$ and $g \leq f ;$ thus $e \beta f$ for all $e, f \in E s$. Consequently, the β-class of S containing the identity 1 of S contains all the idempotents of S and, further, is the identity of S / β. Since S is E-inversive. for every $a \in S$ there exists $x \in S$ such that $a x=e \in E_{S}$. It follows that $(a \beta)(x \beta)=(a x) \beta=e \beta=1 \beta$, and S / β is a group.

Let, furthermore, S be group-bound and suppose that ϱ is any group congruence on S. If $a \beta b$ for some $a, b \in S$, then there exists $c \in S$ such that $c \leq a$. $c \leq b$. Since S is group-bound, there are $e, f \in E_{S}$ such that $c=e a==f b$ ($\mathrm{Hig} \mathrm{gins}[7 ; 1.4 .6]$). Now ϱ being a group congruence, $e \varrho=f \varrho$ is the identity of S / ϱ. Consequently, $(e \varrho)(a \varrho)=(f \varrho)(b \varrho)$ implies that $a \varrho=b \varrho$. hence $a \varrho b$ and $\beta \subseteq \varrho$.

By Lemma 4.2 and Corollary 3.2, the conditions of 4.6 are satisfied for ever: periodic (finite), commutative monoid; for example, the residue class semigroups $\left(\mathbb{Z}_{n}, \cdot\right), n \in \mathbb{N}$. Thus we have

COROLLARY 4.7. For every periodic, commutative monoid S the least group congruence is given by $\beta=\{(a, b) \in S \times S \mid c \leq a, c \leq b$ for some $c \in S\}$.

The second application deals with an order-theoretical characterization of retract extensions of regular semigroups. Recall that a semigroup T is called a ideal extension of a semigroup S if S is an ideal of T. Further, an ideal extension T of S is called a retract extension if there is a (surjective) homomorphism $\varphi: T \rightarrow S$ whose restriction to S is the identity mapping. The following characterization involves the principal order ideals of T. Restricted to principal order ideals generated by idempotents, this result was proved by Petrich [11] imposing some mild restriction on T : for each $a \in T$ there are e, $f \in E_{T}$ such that $e a=a=a f$. Note that such a semigroup T is necessarily weakly reductic (i.e. for any $a, b \in T, a x=b x$ and $x a=x b$ for all $x \in T$ imply $a=b$). Indeed. we have more generally:
$a=r a=a s(r, s \in T)$ implies that $a=r b=b s, r a=a$, thus $a \leq b:$ similarly, $b \leq a$, and the equality follows.

THEOREM 4.8. Let T be an ideal extension of a regular semigroup S sich that for each $a \in T$ there are $e, f \in E_{T}$ with ea $=a=a f$. Then T is a retract extension of S if and only if $(a] \cap S$ admits a greatest element for each $a \in T \backslash S$.

SEMIGROUPS AND THEIR NATURAL ORDER

Proof. Sufficiency is clear by Petrich [11] (see also Petrich [13; III.4.7]). Conversely, let T be a retract extension of S. Then by Petrich [11]. ($e] \cap S$ admits a greatest element e^{\prime} for each $e \in E_{T \backslash S}$. Note that by Lemma 2.1.(i), every element in (e] $\cap S$, in particular e^{\prime}, is an idempotent of S. Let $a \in T \backslash S$; then there are $e, f \in E_{T}$ such that $e a=a=a f$. Let $x \in S$; then $a x \in S$ since S is an ideal of T. Since S is regular, $a x=a x \cdot u \cdot a x$ for some $u \in S$. Put $t=$ axue; then $t \in S$ (S is an ideal). But $a x u \in E_{S}$; thus $t=a \cdot r u \cdot e=e \cdot a x u e$ implies that $t \leq e$. Since $e \notin S$ (otherwise, $a=e a \in S$), it follows that $t<e$; hence $t \leq e^{\prime}$, the greatest element of $(e] \cap S$. Now we will show:
(1) $a x=e^{\prime} a x:$
$a . x=a x u a x=a x u \cdot e a \cdot x=t a x=e^{\prime} t \cdot a x=e^{\prime} \cdot a x u e \cdot a x=e^{\prime} \cdot a x u a x=e^{\prime} a x ;$
(2) $x a=x e^{\prime} a$:

Since $x \in S$, $x e \in S$ and $x e=x e v x e$ for some $v \in S$; then $s=e v x e$ satisfies $s \in S, s<e$, and $s \leq e^{\prime}$; consequently, since $e^{\prime} \leq e$, it follows that $r a=x \cdot e a=x e v x e \cdot a=x \cdot s a=x \cdot s e^{\prime} \cdot a=x \cdot e v x e \cdot e^{\prime} a=x e \cdot e^{\prime} a=x e^{\prime} a$;
(3) $a x=a f^{\prime} x, x a=x a f^{\prime}$, where f^{\prime} denotes the greatest element of $(f] \cap S:$
The proof of (3) is similar to that of (1) and (2).
Put $x=f^{\prime} \in S$ in (1); then $a f^{\prime}=e^{\prime} a f^{\prime}$. Put $x=e^{\prime} \in S$ in (3); then $f^{\prime} a=e^{\prime} a f^{\prime}$. It follows that $a f^{\prime}=e^{\prime} a=e^{\prime} a f^{\prime}$ and $e^{\prime} a f^{\prime} \leq a$. Since $e^{\prime} \in S$, we have $e^{\prime} a f^{\prime} \in S$. Thus, $a \in T \backslash S$ implies that $e^{\prime} a f^{\prime}<a$ and $e^{\prime} a f^{\prime} \in(a] \cap S$.

Finally, we show that $e^{\prime} a f^{\prime}$ is the greatest element of $(a] \cap S$. Let $b \in(a] \cap S$; then $b \in S$ and $b<a(b=a$ implies $b=a \in T \backslash S)$. Hence $b=x a=a y$, $x b=b=b y$ for some $x, y \in T$. We can choose $x, y \in S$ because:
$b=g b=b h$ for $g=b b^{\prime}, h=b^{\prime} b \in E_{S}$ (S is regular) implies that

$$
\begin{array}{llll}
b=g b=g \cdot x a=x^{\prime} a & \text { for } & x^{\prime}=g x \in S & \left(\text { since } g=b b^{\prime} \in S\right), \\
b=b h=a y \cdot h=a y^{\prime} & \text { for } & y^{\prime}=y h \in S & \left(\text { since } h=b^{\prime} b \in S\right) ;
\end{array}
$$

furthermore, $x^{\prime} b=g x \cdot b=g b=b$. Consequently, $b=x a=a y$ implies by (2) that $b=x \cdot e^{\prime} a$, and by (1) that $b=e^{\prime} a \cdot y$. Together with $x b=b$ it follows that $b \leq e^{\prime} a=e^{\prime} a f^{\prime}$.

The third application describes order-theoretical properties of strong semilattices of semigroups. For semigroups S which are strong semilattices of regular and simple semigroups S_{α}, $\mathrm{Petrich}[12 ; 3.5]$ found two such properties concerning the \mathcal{J}-classes of S (note that for such semigroups S, Green's relation

HEINZ MITSCH

\mathcal{J} yields the semilattice decomposition of S into the subsemigroups S_{18} : see [12; 3.2]). We will show these properties for strong semilattices of semigroups satisfying a condition weaker than that of Theorem 4.8 (note that every regular semigroup fulfills this condition).

Theorem 4.9. Let S be a strong semilattice Y of semigroups $S_{\alpha}(\alpha \in Y)$ such that for every $a \in S_{\alpha}$ there are $r, s \in S_{\alpha}$ with $r a=a=\alpha s\left(\alpha \in Y^{\prime}\right)$: then
(i) for any $a \in S_{\alpha}$ and all $\beta<\alpha$ in Y, the partially ordered set (a]مS. admits a greatest element;
(ii) for all $\alpha>\beta>\gamma$ in Y and any $a \in S_{\alpha}, c \in S_{\gamma}$ such that $a>c$. if \bar{a} is the greatest element of $(a] \cap S_{\beta}$, then $\bar{a}>c$.

Proof.

(i) Let $a \in S_{\alpha}$; then there are $r, s \in S_{\alpha}$ such that $r a=a=a s$. Let $r \in \dot{s}_{;}$ with $\beta<\alpha$; then we have for $r^{\prime}=r \varphi_{\alpha, \beta} \in S_{\beta}$:

$$
\begin{aligned}
x a & =\left(x \varphi_{\beta, \alpha \beta}\right)\left(a \varphi_{\alpha, \alpha \beta}\right)=x\left(a \varphi_{\alpha, \beta}\right)=x \cdot(r a) \varphi_{\alpha, \beta}=x\left(r \varphi_{\alpha, \beta}\right)\left(a \rho_{\alpha, i}\right) \\
& =x r^{\prime}\left(a \varphi_{\alpha, \beta}\right) \\
x r^{\prime} a & =\left(x \varphi_{\beta, \alpha \beta}\right)\left(r^{\prime} \varphi_{\beta, \alpha \beta}\right)\left(a \varphi_{\alpha, \alpha \beta}\right)=x r^{\prime}\left(a \varphi_{\alpha, \beta}\right)
\end{aligned}
$$

it follows that
(1) $x a=x r^{\prime} a$ for every $x \in S_{\beta}$ with $\beta<\alpha$;
(2) similarly: $a x=r^{\prime} a x$ for every $x \in S_{\beta}$ with $3<\alpha$;
(3) similarly: for $s^{\prime}=s \varphi_{\alpha, \beta} \in S_{\beta}$

$$
x u=x a s^{\prime} \quad \text { and } \quad a x=a s^{\prime} x \quad \text { for every } \quad x \in S_{3} \quad \text { with } \quad 3<0 .
$$

Put $x=s^{\prime}$ in (2); then $a s^{\prime}=r^{\prime} a s^{\prime}$. Put $x=r^{\prime}$ in (3): then $r^{\prime} a=r^{\prime} a s^{\prime}$. Hence, $a s^{\prime}=r^{\prime} a=r^{\prime} a s^{\prime} \in S_{\beta}$; since $r^{\prime} \cdot a s^{\prime}=a s^{\prime}$, it follows that $r^{\prime} a s^{\prime} \leq a$ and $r^{\prime} a s^{\prime} \in(a] \cap S_{\beta}$.

We show that $r^{\prime} a s^{\prime}$ is the greatest element of $(a] \cap S_{3}$. Let $b \in(a] \cap S_{3}$: then $b \in S_{\beta}$ and $b<a\left(b=a\right.$ implies $\left.b \in S_{\alpha}\right)$. Hence, $b=u a=a r . u b=b=b c$ for some $u, v \in S$. We can choose $u, v \in S_{\beta}$. Indeed, by hypothesis, for $b \in \mathfrak{S}$ there are $p, q \in S_{\beta}$ such that $p b=b=b q$; thus. $b=p b=p \cdot u a=z a$ cor: $z=p u$; whence $z b=p u \cdot b=p b=b$ and $z \in S_{3}$ (because $p \in S_{3} . u \in S_{3}$ say, $\Longrightarrow z=p u \in S_{\beta \gamma}$ and $b=z b \in S_{\beta \gamma \beta}=S_{3 \gamma} \Rightarrow 3=3 \gamma$). Similarly. for $v \in S$. Thus, $b=u a=a v$ implies by (1) that $b=u \cdot r^{\prime} a$ and by (2) that $b=r^{\prime} a \cdot v$. Together with $u b=b$, it follows that $\dot{b} \leq r^{\prime} a=r^{\prime} a s^{\prime}$.
(ii) Let $\alpha>\beta>\gamma$ in $Y, a \in S_{\alpha}, c \in S_{\gamma}, a>c$. Then by (i). ($a \mid \cap S_{;}$has a greatest element $\bar{a}=r^{\prime} a=a s^{\prime}=r^{\prime} a s^{\prime}$, where $r^{\prime}=r \psi_{0,3}, s^{\prime}=s_{q_{1}, \ldots}$. Wie have to show that $c<\bar{a}$:

SEMIGROUPS AND THEIR NATURAL ORDER

Since $c<a$, there are $x, y \in S$ such that $c=x a=a y, x c=c=c y$. Consequently,

$$
\begin{aligned}
r & =x a=x \cdot a s=c s=\left(c \varphi_{\gamma, \alpha \gamma}\right)\left(s \varphi_{\alpha, \alpha \gamma}\right)=c\left(s \varphi_{\alpha, \gamma}\right)=\left(c \varphi_{\gamma, \beta \gamma}\right)\left[\left(s \varphi_{\alpha, \beta}\right) \varphi_{\beta, \beta \gamma}\right] \\
& =c \cdot\left(s \varphi_{\alpha, ; \beta}\right)=c s^{\prime}=x a \cdot s^{\prime}=x \bar{a} .
\end{aligned}
$$

Similarly, $c=\bar{a} y$. Since $x c=c$, it follows that $c \leq \bar{a}$. But $c \in S_{\gamma}$ and $a=r^{\prime} a \in S_{\beta \alpha}=S_{\beta}$ with $\gamma<\beta$; whence $c<\bar{a}$.

Note added in proof. Corollary 3.5 can be generalized as follows:
If S is an inflation of a semigroup T, then the natural partial order of S is (right-, left-) compatible if and only if that of T is (right-, left-) compatible. Since a rectangular group T is trivially ordered, every inflation S of T has a compatible natural partial order.

REFERENCES

[1] BLYTH, T.-GOMES, G.: On the compatibility of the natural partial order on a regular semigroup, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 79-84.
[2] (LIFFORD, A. H.-PRESTON, G. B.: The Algebraic Theory of Semigroups. Vol. I, II. Math. Surveys Monographs 7, Amer. Math. Soc., Providence, R.I., 1961, 1967.
[3] FARÈS, N.: Idempotents et \mathscr{D}-classes dans les demigroupes et les anneaux, C.R. Acad. Sci. Paris 269 (1969), 341-343.

[5] HARTWIG, R.: How to partially order regular elements, Math. Japon. 25 (1980), 1-13.
[6] HICKEY, J.: On variants of a semigroup, Bull. Austral. Math. Soc. 34 (1986), 447-459.
[7] HIGGINS, P.: Techniques of Semigroup Theory, Clarendon Press, Oxford, 1992.
$[8]$ MITTSCH, H.: A natural partial order for semigroups, Proc. Amer. Math. Soc. 97 (1986), $384-388$.
[9] MITSCH, H.: Subdirect products of E-inversive semigroups, J. Austral. Math. Soc. Ser. A 48 (1990), 66-78.
[10] NAMBOORIPAD, K. S.: The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. (2) 23 (1980), 249-260.
[11] PE'TRICH, M.: On extensions of semigroups determined by partial homomorphisms, Indag. Math. 28 (1966), 49-51.
[12] PETRICH, M.: Congruences on strong semilattices of regular, simple semigroups, Semigroup Forum 37 (1988), 167-199.
[13] PETRICH, M.: Introduction to Semigroups, Ch. E. Merill Publishing Company. Coltimbus, Ohio, 1973.
[14] VAGNER, V. V.: Generalized groups (Russian), Dokl. Akad. Nauk. SSSR (N.S.) 84 (1952), 1119-1122.

Received January 24, 1994
Department of Mathematics
University of Vienna
Strudlhofgasse 4
A-1090 Wien
Austria

