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THE GALOIS CONNECTION 
BETWEEN WEAK TORSION AND 

SUB-PRODUCT CLASSES OF L-GROUPS 

D A O - R O N G T O N 

(Communicated by Tibor Katriňák ) 

A B S T R A C T . In this paper, we establish the Fundamenta l Connection Theorem 
between weak torsion classes and sub-product classes of 1-groups, which general
izes the Fundamenta l Connection Theorem between torsion classes and torsion-
free classes of 1-groups in [Martinez, J.; The fundamental theorem on torsion 
classes of lattice-ordered groups, Trans. Amer. Math . S o c 259 (1980), 311-317]. 

We use the standard terminologies and notations of [1], [2], [3]. Throughout 
the paper, G is an 1-group. We use additive group notation. Let {Ga \ a G A} 
be a family of 1-groups, and let ~J Ga be their direct product. We denote the 

aeA 
1-subgroup of Yl Got consisting of the elements with only finitely many non-zero 

aeA 
components by ~~ Ga. An 1-group G is called a completely subdirect product 

aeA 
of {Ga | a G A} if G is an 1-subgroup of ~J Ga and ~~ Ga C G, we denote 

aeA aeA 
it by 

xxcOcn^. 
aeA aeA 

Let G be an 1-group. If G = Gx © G2, Gx and G2 are called cardinal 
summands of G. By C(G), C(G) and S(G) will be denoted the sets of all 
convex 1-subgroups, all 1-ideals and all cardinal summands of G, respectively. 
All classes of 1-groups are assumed to be closed under 1-isomorphisms. A class 
T of 1-groups is said to be complete if G G T whenever H G C(G) and both 
H G T and G/H € T. T is said to be weak complete if G G T whenever 
H G T and G/H G T . Let ip be an 1-homomorphism from G onto G' such 
that the kernel H = ip~l(Qi) G S(G), then <p is called a strong 1-homomorphism. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06F15; Secondary 08B26, 08C99.. 
K e y w o r d s : 1-group, weak torsion class, sub-product class, s trong 1-homomorphism. 
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An 1-isomorphism is always a strong 1-homomorphism. The join in a lattice L is 

denoted by \ / ' . If G is 1-isomorphic to G', we write G = G'. 

LEMMA 1. Strong l-homomorphisms are transitive. 

P r o o f . Suppose that <p is a strong 1-homomorphism from G onto G', 
and <p' is a strong 1-homomorphism from G' onto G". Let K[ = <p'~ (0) and 
^ = <p^(0). Then G' = # ; 0 K'2, G = ^ © if2 and G" S_ G'/K[^K'2, 
G'^G/KX^K2. 

Therefore 

G = Kx © ^ © # 2 , 

G" 9*K'2^H2^ G/(KX © Hx), 

and v?V -s a strong 1-homomorphism from G onto G" with the kernel K1®Hl. 

• 
DEFINITION 1. A class H of 1-groups is called a weafc torsion class if it is 
closed under taking strong 1-homomorphic images and forming joins of convex 
1-subgroups. Let W be the set of all weak torsion classes of 1-groups. 

A torsion class of 1-groups is closed under taking 1-homomorphic images and 
forming joins of convex 1-subgroups, so every torsion class is a weak torsion class. 
If U is a weak torsion class of 1-groups, and G is an 1-group, let U(G) be the 
join of all the convex 1-subgroup of G belonging to U. U(G) is called a weak 
torsion radical of G. It is clear that U(G) is characteristic, and U(G) is the 
largest 1-ideal of G belonging to U. 

PROPOSITION 2. Suppose that U is a weak torsion class of I-groups and G is 
an I-group. Then 

(1) IfCe C(G), then U(C) C U(G). 
(2) If <p: G —> G' is a strong l-homomorphism, then <p[U(G)] C U(G'). 

(3) U(U(G)) =U(G). 

Conversely, if we associate with each l-group G an l-ideal T(G) subject to (\), 
(2) and (3) above, and let U = {G | T(G) = G } , then U is a weak torsion 
class of l-groups, and U(G) = T(G) for each l-group G. 

The proof of Proposition 2 is similar to Lemma 1 of [4]. 

DEFINITION 2. A class of 1-groups is called a sub-product class if it is closed 
under taking convex 1-subgroups and forming completely subdirect products. 
Let V be the set of all sub-product classes of 1-groups. 

It is easy to see that W and V are complete lattices under inclusion. 
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A torsion-free class of 1-groups is closed under taking convex 1-subgroups 
and forming subdirect products, so every torsion-free class of 1-groups is a sub-
product class. Let 1Z be a sub-product class of l-groups and G be an l-group. 
Put 

Hn,G = {He S(G) | G/H e 1Z) 

and 

1Z(G)= f | H. 
Hereto 

1Z(G) is called a sub-product radical of G. 

PROPOSITION 3 . A sub-product radical 1Z(G) of an l-group G has the follow
ing properties: 

(1) 1Z(G) is the smallest cardinal summand of G such that G/1Z(G) e 1Z. 
(2) G elZ if and only if 1Z(G) = 0. 
(3) If1Zv1Z2eV, then 1ZX C 1Z2 if and only if 1ZX(G) D 1Z2(G) for each 

l-group G. 

P r o o f . 

(1) Since S(G) is a subalgebra of the complete Boolean algebra of polar 
subgroups of G, 1Z(G) e S(G). It is easy to see that G/H is a convex l-subgroup 
of G/1Z(G) for each H e Hn G. Hence G/1Z(G) is a completely subdirect 
product of {G/H | H e HnG\. Therefore G/1Z(G) elZ.li K e S(G) such 
that G/K e 1Z, then K e HnG and K D 1Z(G). 

(2) and (3) are the Theorem 2 of [5]. • 

PROPOSITION 4. Suppose that 1Z is a sub-product class of l-groups and G is 
an l-group. Then 

(i) If Ae C(G), then 1Z(A) C 1Z(G). 
(ii) If H e S(G) and 1Z(G/H) = 0, then H D 1Z(G). 

(hi) 1Z(G/1Z(G)) = 0 . 

Conversely, suppose that we associate with each l-group G a T(G) e S(G) 
subject to (i), (ii) and (iii) above. If 1Z = {G \ T(G) = 0 } ; then TZ is a 
sub-product class of l-groups and 1Z(G) D T(G) for each l-group G. 

The proof of this Proposition is similar to Theorem 3 of [5]. 

Now let U be a weak torsion class. Put 

U = {G\ U(G) = 0} . 
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PROPOSITION 5. Suppose that U is a weak torsion class of I-groups. Then U 
is a weak complete sub-product class of l-groups. 

P r o o f . It is clear that U is closed under taking convex 1-subgroups. Sup
pose that {Gx | A G A} C U and G is a completely subdirect product of 
{Gx\ AG A} , 

E G A ^ C [ I G A . 
AeA AeA 

If U(G) 7-: 0, then there exists 0 ^ H G C(G) such that H G U. For each 

A G A put GA = {g G U &\ \ V ^ A ==> gx, = o\. Let 0 ^ h <E H. 
L AeA J _ 

Then there exists A0 G A such that hx >- 0. Since H G C(G) and GA C G, 
0 ^ ( 0 , . . . , 0 , / i A o , 0 , . . . , 0 ) G # n G A 0 G C ( G A J . That is, HHGXQ ^ 0. It is 
clear that 

H=(HnGXo)®(Hn n Gx). 
V A^A0 ' 

Hence H n I I <^A G 5 ( G ) a n d # n ^A - #/# n ( I I ^ A ) . Since W is 
A^Ao ° ^ ^ A ^ - A o ' 

closed under taking strong 1-homomorphic images, HOGx G U. This contradicts 

U(GXQ) = U(GXQ) = 0. Therefore U(G) = 0, and U is also closed under forming 
completely subdirect products. 

Suppose H G S(G) such that both i Y G W a n d G/./7 G ZY. Then ZY(G) C H 
by (2) of Proposition 2. Since W(#) = 0 and U(G) G W, W(G) = 0. Hence 
G EU and U is weak complete. • 

U is called the opposite sub-product class of U. 

Let 1Z be a sub-product class of l-groups. Put 

ft = { G | 1Z(G) = G). 

PROPOSITION 6. Suppose that 1Z is a sub-product class of l-groups. Then 1Z 
is a complete weak torsion class of l-groups. 

P r o o f . It is clear that 1Z is the class of l-groups having no nontrivial 
strong 1-homomorphic images in 1Z. By Lemma 1, 1Z is closed under taking 
strong 1-homomorphic images. 

Suppose that {GA | A G A} C C(G) and {GA | A G A} C TZ. Put G' = 
V GA . If U(G') ^ G' , then there exists 0 ^ H €HnG, such that H ^ Gl, 

AGA 
and so 

G' = H 0 H' 
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and G'/H G R. If Gx n H = Gx for all A £ A, then Gx C H for all A € A, 
and so G' = \/ Gx C H, which is a contradiction. Hence there exists A0 € A 

such that GAo n H ^ GXo. Then 

GXo = (GXonH)®(GXonH'). 

A n d W e h a V e G A OA +K- ,(G' Gx П Я 
Ao 

тғмf). 
Hence G A o / G A o n J5T G 71 and GXQ n # e W * | G A O , ^ ( G A 0 ) j = G A o n H * GXQ , 

which is a contradiction. Therefore U(G') = G' and G' G 1Z. We have proved 

that ft is closed under forming joins of convex 1-subgroups. 
Suppose that G is an 1-group, and H G £(G) such that both LI G ft and 

G/II G ft. Let if G S(G) such that G/If G ft. Then II n If G S(H) and 
LI/LIJ1 K=-(H + K)/Ke C(G/K). Hence PI/#n if G ft. On the other hand, 
H G ft and LI n K G 5(JT) infer LI/LI n If G 7^. So we have LI = II n K or 
LI C If^But G/K =• (G/H)/(K/H)._G/H eJZ and K/LI G <S(G/LT) infer 
G/If G 7?., and so K = G. Hence G G 1Z and 72, is complete. • 

1Z is called the opposite weak torsion class of ft. 
Now We will give the main theorem — the Fundamental Connection The

orem between weak torsion classes and sub-product classes of 1-groups, which 
generalizes the Connection Theorem between torsion classes and torsion-free 
classes of 1-groups in [4]. If U (resp. ft) is a weak torsion class of 1-groups (resp. 

sub-product class), let W =U (resp. ft° = ft). 

CONNECTION THEOREM. The functions (p:U -+U and (/>: ft -> ft between 
W and V form a Galois Connection. In addition, U(G) C U(G) = W(G) for 
each l-group G and each weak torsion class U. while ft(G) D ft(G) = ft°(G) 
for each l-group G and each sub-product class ft. 

P r o o f . It is clear that <p and </> are order-inverting. If G G U, it certainly 
has no strong 1-homomorphic images in U except {0}, which implies G G W. 
Thus U(G) C W(G) for each l-group G. We should have W(G/W(G)) = 0 
for each l-group G. Otherwise, there exists G' G C(G) such that W(G) C G' 
but W(G) ^ G' and G'/W(G) G W. Since W is complete, G' eW, which is 
a contradiction. Thus we have U(G/W(G)) = 0, so G/W(G) G W and 

W(G)DU(G). (1) 

On the other hand, if K G 5(G) such that G/K G ZY, then W*(G) n K G 
S(W(G)) and 

ZT(G) + If ^ K»(G) 

If w*(G)nIf 
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is a strong 1-homomorphic image of U*(G). Hence (U*(G) + K)/K belongs to 

W. (U*(G) + K)/K e C{G/K) implies (U*(G) + K)/K also belongs to U. 

Therefore U*(G) + K = K, that is, U*(G) C K. By Proposition 4, we have 

W(G)CU(G). (2) 

Combining (1) and (2) we get U*(G)=U(G). 

The proof tha t TZ(G) D 11(G) = 1Z°(G) for all sub-product classes R of 

l-groups is analogous. 

From the above, it follows that U{G) = W(G) = U{G) = (U*)~(G) for each 
1-group G. Hence U = (u*)~ for all weak torsion classes li of l-groups. Similarly, 
we have R = (R ° )~ for all sub-product classes R of l-groups. Therefore <p and 
(j> form a Galois connection. • 
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