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ON THE CONVERGENCE OF o;-PRIMITIVES 

JANINA EWERT — STANISLAV P . PONOMAREV 

{Communicated by Lubica Holá) 

ABSTRACT. We continue the series of research on oscillations of functions 
[DUSZYNSKI, Z.—GRANDE, Z.—PONOMAREV, S. P.: On the u-primitive, 
Math. Slovaca 51 (2001), 469-476], [EWERT, J.—PONOMAREV, S. P.: Os
cillation and u-primitives, Real Anal. Exchange 26 (2000/2001), 687-702]. In 
the first part we consider first-countable topological spaces X satisfying some 
neighborhood conditions (weak enough to imply the metrizability of X) and 
show that given a sequence of upper semicontinuous functions fn: X —•> [0, oo) 
converging to an upper semicontinuous function / : X —•> [0, oo), there exist func
tions Fn,F: X -> [0,oo), n 6 N, such that u{Fni-) = fn, n G N, u{F,-) = f 
and Fn —• F in the same sense as / n -^ / . By -j(g,x) we denote the oscillation 
of g: X —• R at x. Quite different technique had to be employed in the second 
part of the paper where the analogous result is proved for X = Rn equipped 
with the usual density topology rd. 

Throughout the paper we consider topological spaces X without isolated 
points. The oscillation of F: X —> E is the function u(F, •): X -> [0, oo] defined 

by 
u(F,x) = M(F,x)-m(F,x), xeX. (1) 

M(F, •), m(F, •) are respectively upper and lower Baire functions for F: 

M(F, x) = inf sup F(z), m(F, x) = sup inf F(z), (2) 
W Z£\y w z^w 

where W runs over all open neighborhoods of x from a neighborhood base at x. 

It is well known that M(F , •), ra(F, •) are respectively upper and lower semi-
continuous functions from X into R, therefore u(F, •) is nonnegative and upper 
semicontinuous. 

We let USC abbreviate upper semicontinuous. 

We say that F: X —> E is an u -primitive for a USC function / : X -> [0, oo) 

if u(F,x) = f(x) for each x e X. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i on : Primary 26A15, 54C30. 
Keywords : oscillation, u;-primitive, first-countable space, massive space, density topology, 
Bernstein set. 
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It is known that the uniform (quasi-uniform) convergence of a sequence {Fn : 
n G N} to a function F implies the same type of convergence of oscillations 
H F „ , - ) : neN} tou; (F . . ) ([1], [4]). 

We investigate the converse problem. Given a sequence {/n : n G N} of 
USC functions fn: X —•> [0, oo) convergent in some sense to a USC function 
/ : X —•> [0,oo), we ask whether there exist cj-primitives Fn,F: X -> R for fn 

and / respectively, such that Fn will be convergent to F in the same sense. We 
show that under some assumptions on X the answer is YES for various types 
of convergence. 

We will use the following definitions and notations. 
Let X be a topological space and A C X; by Ad we denote the set of all 

accumulation points of A. 
A topological space X is said to be ([2], [4]): 

• a-discrete at x G X, if there is an open neighborhood W of x which is 
a a-discrete set, i.e. 

00 

W=\jAn, 
n = l 

where An are discrete subsets of X (empty set is considered as discrete), 
• massive, if it is not a -discrete at any x £ X. 

Note that each first countable Tx dense in itself Baire space is massive ([4; 
Corollary 1.2]), but a massive space need not be Baire ([4; Examples 1.2, 1.3]). 

The proof of our first result (Theorem 1) is based on Teichmiiller-Tukey's 
lemma. For convenience of the reader we recall its formulation. 

Suppose we are given a set X and a property P pertaining to subsets of X. 
We say that P is a property of finite character (on X) if the following holds: 

A set A C X has the property P if and only if each finite subset of A 
has the property P . 

LEMMA 1 (TEICHMULLER-TUKEY). (cf. e.g., [3; p. 22]) Let ¥ be a property 
of finite character related to subsets of a set X. Then each subset A C X with 
the property P is contained in a maximal (with respect to the inclusion relation) 
set B C X, which also has the property P . 

A maximal set will be termed as P -maximal. 
In our first result we deal with first-count able topological spaces. Let X be 

such space, and r its topology. For each x e X denote by 

Af(x) = {Un(x) : n G N} 

an open countable base of r at x. If Af(x) is chosen for each x G l , then the 
family 

JV= {JV(x): xeX} (3) 
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will be called a neighborhood system on X. 

The following properties of a neighborhood system will be important for us. 
Namely we say that: 

• Af satisfies condition (Nl) if 

(\/neN)(Vx£X)(Un+1(x)cUn(x)). 

• J\f satisfies condition (N2) if 
there exists a function s: N -» N, s(n) > rc, such that 

(Vn € N)(Vx,y € X)(x G Us(n)(y) -=> y € Un(x)) . 

Remark 1. Each metrizable space X has a neighborhood system satisfying 
(Nl) and (N2). Indeed, define for each x G X 

N(x) = {Bn(x) : n G N} 

where Bn(x) is an open ball centered at x and of radius 2 ~ n . Then it is imme
diate that the corresponding neighborhood system M satisfies (Nl), (N2). More 
generally, each Moore space (for definitions see [3; p. 414] or [5; p. 426]) also has 
that property, e.g. such is the Niemytzki plane. 

Let I be a first-countable Tx-space with a neighborhood system M. For 
each nonempty set A C X we put 

N(A) = {n G N : Un(x) n A = {x} for each x e A} , 

and then we define 

A A _ J S U P U : rieN(A)} if N04)-M, Г su 
= І0 if N(A) = 0. 

We let by definition A0 = co. 

Now we define for each n G N the property P n related to subsets of X as 
follows ([4]): 

a set A C X has the property P n 4=> A_4 > ^ . 

It is easy to see that P n is a property of finite character and is hereditary. We 
will also need some results from [4] which are stated here as lemmas. 

LEMMA 2. ([4; Proposition 1.2]) A topological space is massive if and only if 
each a -discrete subset of X is a boundary set. 
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LEMMA 3. ([4; Theorem 1.2]) Let Z be a first-countable Tx-space with a neigh
borhood system M satisfying (Nl) and (N2). Then the following holds. 

(a) If A C Z and AA > 0, then Ad = 0; so A is closed and discrete. 
(b) There exists a sequence {En : n G N} of pairwise disjoint subsets of Z 

such that Ex is P1-maximal in Z, En is Pn-maximal in Z \ (Ex U . . . 
OO 

• • • U En_1) for n > 1. and the set [j En is TG, a -discrete and dense 
n=l 

in Z. 
OO 

(c) Each a-discrete set A C Z can be written in the form A = IJ An, 

where An are pairwise disjoint and &An > 0 for n G N. 
n = l 

We restrict ourselves to considering only two types of convergence for se
quences of functions, although it will be clear from proofs that Theorems 1, 2 
remain valid for some other types of convergence. 

A sequence {fn : n G N} of functions fn: X -> R is said to be convergent 
to a function / : X —> R. 

• quasi-uniformly ([8]) if 

(V e > 0) (Vx G X) (3 n0 G N) (V n > n0) (3 U(x)) 

(yzeU(x))(\f(z)-fn(z)\<e), 

(where U(x) stands for an open neighborhood of x) ; 
• in the sense of Arzela if fn —> f pointwise and 

(Ve > 0)(Vn € N) (3 m G N) (Vs € X) ( inf \f(x) - fn+k(x)\ < e) . 
\ Ac<m / 

THEOREM 1. Let X be a massive first countable Tx-space with a neighborhood 
system M satisfying (Nl) , (N2) and let fn,f: X -* [0, oo)7 n G N, be USC 
functions. Then there exist u-primitives Fn, F for fn, f with the properties: 

(a) if the sequence {fn : n G N} converges to f pointwise (uniformly, quasi-
uniformly, in the sense of Arzela), then Fn —> F in the same sense; 

OO OO 

(b) if f=Y.fn> then F=ZFn
 and 

n=l 

Ëш(Iv). 

P r o o f . We adopt the method used in the proof of [4; Theorem 2.1]. To 
unify our notations, let us put / 0 = / . For each j = 0,1, 2 , . . . , the graph of 
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f- will be denoted by G(fA and considered as a subspace of the product space 
X x R. Next we put 

Wj>n{z)=[Un(x) x [f.(x)-ll,fj(x)+l)]nG(fj) for z={x,fj(x)); 

*,{*) = iWi,n(z) •• neN}; 
Mj = {Mt{z) : z € G(fj)} for j = 0,1,2, . . . . 

It is easily checked that each subspace G(f-) is first countable and that the 
family JV. is its neighborhood system satisfying (Nl) and (N2). Using arguments 
of Lemma 3(b), we pick, in each G(f-), a sequence {E- n : n G N} of pairwise 
disjoint subsets such that 

~j,\ ls Pi-maximal in G(f-)\ 
n - l 

Ej,n i s P n - m a x i m a l i n G(fj) \ IJ E
jtk, n > 1; 

U Ejn is cr-discrete and dense in G(fj). 
n = l 

Let 7r: X x E -> X be the natural projection. We claim that each n(E. n) is 
discrete. Assume, otherwise, that for some j G NU {0} and some n G N there is 
a point xQ G (n(E^n)) n 7r(.E. ). Then there exists a sequence {a;̂  : A; G N}, 
xk G ir(E^n), xk 7-: xm for k / m, and .2^ -> x0 . Let 5 be the function from 
(N2). There is k0 > 1 such that xk G Us{n)(xQ) for k>kQ. Then by (N2) we 
have that xQ G Un(xk) for k > k0. It follows that we can choose a subsequence 

i 

{xki : i£N} with xk € fl Un(xkJ. Since the points z{ = ( a ^ . / , - ^ ) ) 
7 7 1 = 1 

belong to the Pn-maximal set E-n, we have zi £ Wjn(zm) for i 7-= m. Therefore 
l/jO2^) —/j^fcm^ ^ n ^or a ^ ^ m £ N, i 7-= m, which implies immediately that 
/ is not locally bounded at xQ. But / • is USC and nonnegative, a contradiction. 
This proves that ir(E^n) is discrete for j = 0,1,2,. . . , and all n G N, as stated 
above. Now we let 

0 0 OO 

E = U U *(-*;.») • 
j=0n=l 

Clearly the set E is a-discrete and dense in X. Moreover, by Lemma 2, E is a 
boundary set. Let ip be the characteristic function of E. Consider the functions 
Fj: X -> [0,oo), / = 0,1,2, . . . , defined by Fj(x) = /,(&)¥>(*), a: € -Y, j = 
0,1,2,. . . . Then we have m(F-,x) = 0 for each x G X, j = 0,1,2, . . . , and 
u(Fj,x) = M(Fj,x) < M(fpx) = f-(x) for x e X, j = 0,1,2, . . . . If x G £ , 
then y\(a:) = ^.(x) < M(Fpx) = u(Fjtx). Thus we have u(Fjtx) = fj(x) for 
xeE, j = 0 ,1 ,2 , . . . . 
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Now let x G X \ E. Since (xj^x)) G G(fj) and IJ Ejn is dense in 
7 1 = 1 

O O 

G(fj), there exists a sequence {xk : k G N} with (xk,fj(xk)) G IJ Ejn and 
n = l 

{xkJj(xk)) -> (*>/,•(«))-So 

/ , (x ) = lim /.(x f c) = lim F,(xfc) < Af (F-.x) = w ( F . x ) . 
^ fc—)-oo J fc—»oo J J 

Thus we have shown that u(Fjy-) = / . for each j = 0 , 1 , 2 , . . . . Denoting 
F = F0, we see that claim (a) is immediate from the definition of JF, F , 
j e N. 

0 0 

Finally, if / = ]T / n , then the series ]£ / n ^ is convergent and we have 
n = l n = l 

0 0 

I? = /^ = E/nV=EFu 
n = l n = l 

and 
/ 00 \ 00 

£FB > . = ^ ' - ) = / = E / n = EW(Í;,n,-), 
\ n = l / n = l n = l 

which completes the proof. • 

Remark 2. Theorem 1 obviously holds for each massive metric space X 
(cf. Remark 1). 

The next theorem shows that the first countability of the space X is not 
necessary in getting results like those obtained in Theorem 1. But then, of course, 
the technique of proofs should be generally different. 

In what follows, we deal with the ordinary density topology Td in Rn , see [7; 
p. 167]. The space (Rn ,r r f) is dense in itself and no point of lRn has a countable 
rd-base ([7; Theorem 2.1]); furthermore, it is a Baire space ([7; Proposition 3.16]). 

For a measurable set A C lRn, the symbol \A\ will denote the Lebesgue 
measure of A. 

Given a function / : E n -> M, we let C ( / , rd) be the set of all points at which 
/ is rd-continuous. 

THEOREM 2. Let fk,f: ( M n , r J -> [0, 00), k G N, be USC functions. Then 
there exist u-primitives Fk, F for fk, f respectively, with the properties: 

(a) if the sequence {fk : k G N} converges to f pointwise (uniformly, quasi-
uniformly or in the sense of Arzela), then {Fk : k G N} converges to F 
in the same sense; 

00 00 / 00 \ 00 

(b) iff= Zfk>t^nF= £ Fk and u, ( £ Fk, •) = E " ( - V ) -
fc=i fc=i vfc=i ' fc=i 
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P r o o f . Recall first that the set of discontinuity points of each USC func
tion defined on a topological space, is of first category [3; p. 87]. So the set 

oo 

(Rn \C(/,rd)) U |J Rn \C(fk, rd) is of Td-first category, hence of Lebesgue mea-
k=l oo 

sure zero, therefore rrf-closed. It follows that the set E := C(/ ,rd)n f] C(fk,rd) 
k=i 

is r^-open and rd-dense. Let B be a Bernstein set in Rn ; then Rn \ B is also 
a Bernstein set. We claim that the sets E n B, E\B are rrf-dense in Rn . Let 
0 ^ W e rd. Then WnE is nonempty and rd-open, whence |JVn.E| > 0. Since 
each measurable subset of any Bernstein set is of measure zero [6; pp. 58-61], 
we conclude that EnB nW y£ ® and (E\B)nW ^ 0, which shows that 
E n B, E\B are rrf-dense. Put A = E n B and let cp be the characteristic 
function of Rn \ A. Consider the functions F = ftp, Fk = fk(p, k = 1,2,... . 
We will show that u(Fk, •) = fk on Rn for all k = 0 ,1 ,2 , . . . , where /0 = / 
and F0 = F. Since A is rd-dense, we get m(Fk,x) = 0 for all k = 0,1,2, . . . , 
and all x e Rn , whence u(Fk,x) = M(Fk,x) < M(fk,x) = fk(x). Thus we 
have u(Fk,x) < fk(x) for x e Rn , k = 0,1,2,. . . . If x e Rn \ A, then 
fk(x) = Fk(x) < M(Fk>x) = "(Fk>x)> s o w e h a v e v(Fk>x) = fk(x) f o r 

xeRn \A, k = 0 , l , 2 , . . . . 

Now let x e A. Fix k e {0,1,2,3,.. .} and let e > 0 be given. Since 
A C C(fkJrd)j there is a rd-neighborhood W of x such that fk(x) — e < fk(z) 
for z e W. Taking any zx e W \ A, z2 e W n A we obtain \Fk(zx) - Fk(z2)\ = 
fk(zx) > fk(x)—e, which yields u(Fk,x) > fk(x) for x e A. Thus we have shown 
that u(Fk,-) = fk for k = 0,1,2, . . . . Now claim (a) is immediate from the 
definition of F , Fk, k e N. The proof of (b) is much the same as in Theorem 1. 

• 
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