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ON THE ASYMPTOTIC BEHAVIOUR 

OF A MODULUS OF CONTINUITY 

W I T H DISCRETE DESCRIPTION 

O N D R E J KOVACIK 

(Communicated by Ladislav Misik) 

ABSTRACT. The paper deals with a characterization of the behaviour of a mod
ulus of continuity w(t) which is described by a discrete countab le set of values. 

Many authors frequently deal with a so called modulus of continuity with re
spect to its applications in the theory of approximation and numerical methods 
(see e.g. [1], [3] and [2], [4] and the long lists of references therein). For charac 
terization of classes H™ and WkH™ (see e.g. [2] and [4]) it is necessary to knowr 

the behaviour of the modulus of continuity w. In this paper, we prove that some 
discrete description of the function w is sufficient for describing the behaviour of 
this modulus of continuity, and from there it follows the whole characterization 
of classes H™. 

Any function w(t) defined, continuous and nondecreasing on [0; 1] which 
satisfies two conditions: 

(i) tL>(0)=0, 

(ii) w(h +12) < w(tx) + w(t2) for any tx > 0, t2 > 0, tx + t2 < 1 

is called a modulus of continuity. For t > 1 we put w(t) = w(l)-

R e m a r k . Let w(t) ^ 0 be an arbitrary modulus of continuity. Then we 
can prove (see e.g. [2; pp. 182 183]) that there exists a concave modulus of 
continuity wi(t) such that 

w(t) < W!(t) < 2-w(t) 

for each t G [0; 1]. From here we get that w(t) and wi(t) are asymptotically 
equivalent functions for t —> 0 + . Therefore we can consider any modulus of 
continuity w(t) to be concave. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 26A16, 46E35. 
K e y w o r d s : Modulus of continuity, Concave function. 
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LEMMA 1. (See e.g. [4; p. 109]) Let f(t) be a continuous and nondecreasing 
function defined on [0; 1] such that 

(a) / ( 0 ) = 0 , 
(b) f(t)/t is a nonincreasing function on (0; 1]. 

Then f(t) is the modulus of continuity. 

LEMMA 2. Let x > 0. Suppose wi(t) and w2(t) are moduli of continuity for 
which w\(2x) < w2(2x). Then 

wx(t) <2-w2(t) 

for any t E [x\ 2x]. 

P r o o f . For t E [x; 2x], according to the property (ii), we have 

wi(t) < wx(2x) < w2(2x) < 2 • w2(x) < 2 • w2(t). 

D 

THEOREM. Let w be a concave modulus of continuity. Then there exists a 
piecewise linear modulus of continuity w* with the following properties: 

w*(l/n) = w(l/n) for any natural n , (1) 

0, 5 • w(t) < w*(t) < w(t) for any t E (0; 1] , (2) 

and w*(0) = 0. 

P r o o f . Putting 

w*(0) = 0, w*(t) = kn-t + qn, 

kn = n-(n + l)- [w(l/n) - w(l/(n + 1))] , 

qn = (n+l)- w(l/(n + 1)) - n • w(l/n) 

f° r ^ ^ (^+1 ' n] ( n = 1? 2- • - • )• w e g e t the required function w* . We can 
easily verify that w* is a continuous function on (0; 1] (for the "critical" points 
tn = 1/n it holds w*(tn+) = w*(tn), n = 1,2,... ) with w*(0+) = w*(0) = 0. 

Using Lemma 1, we prove that w*(t) is a modulus of continuity. Suppose 
n E N. Denote (l/(n + 1); 1/n) by In and [l/(n + 1); 1/n] by Jn. From 
concavity of the function w(t) with respect to (i), we obtain that for t E Jn 

qn > 0, 

and then 
H .~7/>*mi 

"On • t~L < 0 ďl t 

54 



ON THE ASYMPTOTIC BEHAVIOUR OF A MODULUS OF CONTINUITY . . . 

for t E In. Therefore the function w*(t)/t is nonincreasing on Jn, i.e. the 
function w*(t) is a modulus of continuity. 

The first inequality in (2) easily follows from Lemma 2, taking w*(2x) = 
w(2x) for x = l / 2 n , and the second inequality in (2) follows from concavity 
of w. 

Moreover, we will show that w* is a concave function on the set [0; 1]. We 
derive this fact from concavity of the given modulus of continuity w(t). Suppose 
n = 2, 3 , . . . . From the concavity condition for w(t) we have 

K^^^-H^)^1-")-"-^)' -SM-
and putting a = (n + l)/2n we obtain 

<i)^M^ + 1^<^TT) + ^-^-w(^T)}-
Since w*(l/m) = w(l/m) for m = 1,2,... , then one has 

•°-(i)^{(" + 1)'"''(^TT) + ("-I)-»,(^T)}. 
or 

n + 1 
\ n + l n — 1 / Vn + 1 / v ' \ n — 1 / ' 2n 

Using linearity of w*(t) on the sets [ l / (n + 1); 1/n] and [ l /n ; l / ( n — 1)] we 
conclude that w*(t) is a concave function on [ l / (n + l ) ; l / ( n — 1)] for n = 
2, 3 , . . . . Therefore, owing to continuity of w*, we obtain that the modulus of 
continuity w* is concave on [0; 1]. This completes the proof of Theorem. • 

R e m a r k . Let |w(£ n )} be a sequence of values of a concave modulus of 
continuity w(t) for a sequence of positive numbers tn —> 0+ provided t\ < 1 
and tn+\/tn > b with some positive b. Then {w(tn)} is sufficient for describing 
the asymptotic behaviour of w(t). This fact can be proved analogously as our 
Theorem. 

R e m a r k . The concavity condition for w in Theorem is essenticil. For in
stance, we can investigate the function 

w(t) = (45* - |24t - 7| + 8 • |3t - 1| - 3 • |8* - 5| + 7 • |31 - 2| ) /28 , 

which is a modulus of continuity, but the corresponding function w* is not a 
modulus of continuity. One can verify this fact with the following inequality: 

w*(l/3 + 1/3) = 43/42 > 1 = w*(l/3) + w*(l/3). 
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